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Histones are frequently decorated with covalent modifications.
These histone modifications are thought to be involved in various
chromatin-dependent processes including transcription. To eluci-
date the relationship between histone modifications and transcrip-
tion, we derived quantitative models to predict the expression
level of genes from histone modification levels. We found that his-
tone modification levels and gene expression are very well corre-
lated. Moreover, we show that only a small number of histone
modifications are necessary to accurately predict gene expression.
We show that different sets of histone modifications are necessary
to predict gene expression driven by high CpG content promoters
(HCPs) or low CpG content promoters (LCPs). Quantitative models
involving H3K4me3 and H3K79me1 are the most predictive of the
expression levels in LCPs, whereas HCPs require H3K27ac and
H4K20me1. Finally, we show that the connections between histone
modifications and gene expression seem to be general, as we were
able to predict gene expression levels of one cell type using a mod-
el trained on another one.

high CpG content promoter ∣ low CpG content promoter ∣
regression analysis ∣ transcription

The DNA of eukaryotic organisms is packaged into chromatin,
whose basic repeating unit is the nucleosome. A nucleosome

is formed by wrapping 147 base pairs of DNA around an octamer
of four core histones, H2A, H2B, H3, and H4 (1–5) which are
subject to a number of posttranslational covalent modifications
[(6); for review, see ref. 7]. These modifications can alter the
chromatin structure and function by changing the charge of
the nucleosome particle, and/or by recruiting protein complexes
either individually or in combination (8). Hence, histone modifi-
cations are thought to constitute a “Histone Code,” which is read
out by proteins to bring about specific downstream effects (9, 10).

Histone modifications have been linked to a number of chro-
matin-dependent processes, including replication, DNA-repair,
and transcription. The link between histone modifications and
transcription has been particularly intensively studied. It has been
found that individual modifications can be associated with
transcriptional activation or repression. Acetylation and phos-
phorylation generally accompany transcription; sumoylation,
deimination, and proline isomerization are usually found in
transcriptionally silent regions; methylation and ubiquitination
are implicated in both activation and repression of transcription
(8). Furthermore, the establishment of some modifications is de-
pendent on the presence of other modifications, e.g., the catalysis
of H3K4me3 requires the presence of H2BK120ub1 (the
so-called trans-tail pathway) and the phosphorylation on serine
5 on the C-terminal domain of RNA polymerase II (pol II)
(for review, see ref. 11, which also reviews other examples for
the combinatorial action of histone modifications).

Transcription proceeds in a series of steps, also referred to as
transcription cycle, starting with preinitiation complex formation,
pol II recruitment, the transition to an initiating and thereafter
elongating pol II, elongation, and finally termination (for review,
see refs. 12, 13). The first four steps take place at the promoter

and are tightly regulated to achieve a precise control of gene ex-
pression. The regulatory mechanisms depend on the action of
transcription factors, which facilitate the recruitment of pol II
and/or chromatin modifying complexes. Histone modifications
can therefore be viewed as a read out of the activity of transcrip-
tion factors. In line with this idea, there are established links be-
tween the distinct steps in the transcription cycle and some
histone modifications, e.g., H3K4me3 is associated with tran-
scription initiation [(14) and references therein], H3K27me3 with
the repression of transcription elongation [(15) and references
therein], and H3K36me3 with the removal of histone acetylations
in the wake of an elongating pol II (for review, see ref. 11). How-
ever, in general, little is known about the relationship between
histone modifications and the transcriptional process.

Here, we systematically study this relationship. We analyzed
the recently published genome-wide localization data of 38 his-
tone modifications and one histone variant measured in human
CD4þ T-cells (16, 17). We address four major questions: (i) Is
there a quantitative relationship between histone modifications
levels and transcription? (ii) Are there histone modifications that
are more important than others to predict transcript levels?
(iii) Are there different requirements for different promoter
types? (iv) Are the relationships general? To answer these ques-
tions, we derived models that quantitatively relate the measured
expression level of genes (18) to the level of modifications at their
promoters. We show that our models faithfully capture the mea-
sured expression levels of genes, suggesting that the levels of
modifications are quantitatively related to gene expression and
that there is a tight link between these histone modifications
and the transcriptional process. Furthermore, combinations of
only two to three modifications are sufficient to build models that
give rise to at least 95% of the performance obtained by using all
modifications. The separation of low CpG content promoters
(LCPs) from high CpG content promoters (HCPs) revealed that
different histone modifications are identified dependent on the
CpG content of the promoters. Finally, gene expression levels
of another cell type were accurately predicted using a model
trained on the CD4þ T-cells, suggesting that the relationship be-
tween histone modifications and gene expression is a general one.

Results
Histone Modification Levels Are Predictive of Gene Expression in
CD4þ T-Cells. The presence or absence of certain histone modifi-
cations has been shown to correlate with the expression status of
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genes (19). To get a better understanding of the relationships
between histone modifications and gene expression, we analyzed
the publicly available genome-wide localization data for 38 his-
tone modifications and one histone variant in human CD4þ
T-cells (ChIP-seq data) (16, 17). We used the numbers of tags
for each histone modification or variant, found in a region of
4,001 base pairs surrounding the transcription start sites of
14,802 RefSeq genes, as an estimation of the level of histone
modifications. Furthermore, we examined microarray data mea-
suring the transcript abundance of each of these genes in CD4þ
T-cells (18), where the logarithm of the intensity served as expres-
sion value. Because open chromatin regions preferentially have
higher tag counts than closed chromatin regions (20, 21), we also
obtained ChIP-seq data for unspecific control ChIPs using goat
and rabbit IgG antibodies in CD4þ T-cells (22) and mapped
these tags to the same regions as the histone modification data.

We derived a simple model that relates the expression values to
the histone modification levels (for details, see Methods). Briefly,
we transformed the number of tagsNij for each modification i and
promoter j to a logarithmic scale. Because some Nij were zero,
we had to add a pseudocount αi to the levels of each modification
to assure the logarithm would always be defined (N 0

ij ¼
logðNij þ αiÞ). We chose the αi that maximizes the correlation
of Nij to the expression value (estimated using 4,934 randomly
selected promoters). We then built for the remaining 9,868 pro-
moters a linear regression model where the entire set of modifi-
cations and the control IgG data served as input (Fig. 1; referred
to as “full model”). We used 10-fold cross-validation to ascertain
that a possible quantitative relationship is of general nature and
not limited to a subset of genes. We evaluated the performance of
the model by determining the Pearson correlation coefficient r
between modeled and measured expression.

The full model is very well correlated to expression (r ¼ 0.77,
p-value of t-test <2.2e-16; Fig. 2A), clearly demonstrating that
the amounts of histone modifications at the promoter are well
correlated to the expression level. Additional information about
the slopes and the p-values of the slopes as well as the regression
can be found in Tables S1 and S2. All correlation coefficients
reported here have a p-value <2.2e-16 (see Table S3 for a sum-
mary), so we omit p-values for the correlation coefficients in the
remainder of the text. To check whether all modifications are re-
quired to model gene expression, we built models using combina-
tions of one to three modifications (referred to as “one-
modification models,” “two-modifications models,” etc.; Fig. 1).

We determined that the top one-modification (rmax ¼ 0.72,
H3K27ac), two-modifications (rmax ¼ 0.74, H3K27acþ
H4K20me1) and three-modifications models (rmax ¼ 0.75,
H3K27acþH3K4me1þH4K20me1) are very well correlated
to expression (Fig. 2B). These results establish that not all mod-
ifications are equally important, possibly because of a high degree
of redundancy. Moreover, the levels of a single modification
(H3K27ac) can be used to faithfully model gene expression. How-
ever, the prediction accuracy increases as one goes from the best
one-modification model increasing the number of modifications
accounted for to the full model. This increase is not simply due to
the higher model complexity (the more modifications considered,
the more complex a model is), because the prediction accuracy is
computed on test data. To confirm this, we used the Bayesian in-
formation criterion (BIC) (23), which also accounts for the model
complexity. As long as the value of the BIC decreases, increasing
the model complexity is beneficial. The BIC value keeps decreas-
ing continuously, suggesting that it is not the model complexity
which governs the increase in prediction accuracy. However,
the BIC values decrease only slightly after using more than four
modifications (Fig. S1A). Our results suggest that the levels of as
few as three modifications at the promoter are enough to faith-
fully model expression of the associated gene.

To identify modifications, whose levels harbor most of the in-
formation about gene expression, we focused on the three-mod-
ifications models. We determined all three-modifications models
whose Pearson correlation coefficient r reached at least 95% of
the one obtained by the full model (rfull ¼ 0.77). There were 142
models that satisfied this criterion, which is a sufficiently high
number to justify an overrepresentation analysis by computing
the probability of observing a particular modification in that
many subsets due to chance alone. Our results show that four his-
tone modifications, H4K20me1, H3K27ac, H3K79me1, and
H2BK5ac (Fig. 2C), are significantly overrepresented in the
set of models (p-values of the hypergeometric test 7.58e-50,
8.95e-46, 7.83e-30, and 2.88e-27, respectively), each of them ap-
pearing in roughly half the studied models (57.7%, 54.9.5%,
42.9%, and 40.8%, respectively). The remaining histone modifi-
cations appear in at most 7% of the models, a frequency expected
from random sampling (p-value of the hypergeometric test 0.47).
Goat and rabbit IgG were found in only a small number of the
best models (2.11% and 3.52%, p-values of the hypergeometric
test 0.99 and 0.95, respectively), which shows they do not contri-
bute significantly to the prediction accuracy. This, along with the
fact that the prediction accuracy of one-modification models
trained on these variables is low (rgoat:IgG ¼ 0.15; rrabbit:IgG ¼
0.09; Fig. S1B), shows that the high prediction accuracy of linear
models using histone modifications as predictors is not merely a
consequence of higher accessibility of open chromatin. The result

N'i y

N'i

N'j

y

Two-modifications model (820 models)

f(N'i, N'j) = a + bi N'i + bj N'j

Three-modifications model (10,660 models)

f(N'i, N'j, N'k ) = a + bi N'i + bj N'j + bk N'k

Full model (1 model)

f(N'1, ..., N'41) = a + b1 N'1 + ... + b41 N'41

One-modification model (41 models)
f(N'i) = a + bi * N'i

y

N'1

N'41

... f(N'1, ... , N'41)

N'i

N'j

N'k

yf(N'i, N'j, N'k )

f(N'i, N'j )

f(N'i )

Fig. 1. Modeling framework. Models are equations that linearly relate the
levels of histone modifications to the measured expression value. N0

i
corresponds to a vector of length L (the number of promoters), where the
components are the transformed levels of a histone modification i
(N0

i ¼ logðNi þ αiÞ, with Ni representing the number of tags in each promo-
ter), a is the y intercept , and the bi to the slope associated with N0

i . y denotes
a vector of length Lwhose components are the expression values. In the one-
modification models, i can be any of the 39 modifications or two control IgG
antibodies. In the two-modifications models, i and j are chosen to cover all
combinations of two modifications without repetition. In the three-modifi-
cations models, i, j, and k are chosen to cover all combinations of three mod-
ifications without repetition. The full model incorporates all 41 variables.

Karlić et al. PNAS ∣ February 16, 2010 ∣ vol. 107 ∣ no. 7 ∣ 2927

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 8
4.

11
5.

21
9.

21
 o

n 
A

pr
il 

4,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

84
.1

15
.2

19
.2

1.

http://www.pnas.org/content/vol0/issue2010/images/data/0909344107/DCSupplemental/ST1.doc
http://www.pnas.org/content/vol0/issue2010/images/data/0909344107/DCSupplemental/ST2.doc
http://www.pnas.org/content/vol0/issue2010/images/data/0909344107/DCSupplemental/ST3.doc
http://www.pnas.org/cgi/data/0909344107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0909344107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0909344107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0909344107/DCSupplemental/Supplemental_PDF#nameddest=SF1


of the overrepresentation analysis is robust to variations of the
threshold (Fig. S2A and B), presuming that the set of best scoring
models does not exceed 20% of the total number of models,
which then naturally leads to random inclusion of other histone
modifications. Thus, H4K20me1, H3K27ac, H3K79me1, and
H2BK5ac appear to be the most important modifications asso-
ciated with gene expression levels.

Interestingly, the prediction accuracies of the one-modifica-
tion models, based on the overrepresented modifications only,
greatly vary (rH3K27ac ¼ 0.72, rH2BK5ac ¼ 0.71, rH3K79me1 ¼ 0.67,
and rH4K20me1 ¼ 0.55; Fig. S1B). Furthermore, the two-modifica-
tions with the highest individual information content, H3K27ac
and H2BK5ac, appear only two times together in the set of best
scoring models (Fig. S2C), suggesting that the information they
provide is redundant, which is supported by the finding that their
levels are highly correlated (r ¼ 0.97). H4K20me1 and
H3K79me1 occur together in only three of the 142 models, indi-
cating that they are at least partially redundant. Moreover, we
found that in almost all 142 models (92.9%), H3K27ac or
H2BK5ac occur together with either H4K20me1 or H3K79me1.

Differential Requirement of HistoneModifications in High Vs. Low CpG
Content Promoters. Given the good agreement between modeled
and measured expression values, we proceeded with further ana-
lysis of our models to infer the relationships between distinct his-

tone modifications and different groups of promoters. More
specifically, we separated the promoters into LCPs and HCPs.
This was motivated by the fact that the nucleosomes in HCPs
are almost always decorated with H3K4me3, whereas nucleo-
somes in LCPs carry this modification only when they are
expressed (24). H3K4me3 is thought to be a mark of transcription
initiation [(14) and references therein]. We reasoned that if these
promoters are differently marked by histone modifications then
the predictive power of histone modifications should also differ
between these two groups of promoters.

We divided the promoters according to their CpG content,
with 2,779 LCPs and 7,089 HCPs, and determined the regression
parameters for the full model on both groups separately in a 10-
fold cross-validation setting. As a first result, we observed that the
prediction accuracy for LCPs (r ¼ 0.72) is comparable to HCPs
(r ¼ 0.75) (Fig. S3).

We proceeded with building models with all combinations of
one, two, and three modifications, for both sets of promoters se-
parately. For HCPs, we found that the overall ranking of models
remained very similar to the ranking of models determined for all
promoters. This is hardly surprising because HCPs constitute
72% of all analyzed promoters, suggesting that the results for
all promoters were dominated by HCPs. For LCPs, the ranking
of the models changed compared to all promoters, although for
the one-modification models, H3K27ac still remained the best

Fig. 2. Quantitative relationship between histone modification levels and expression. (A) Scatterplot with the predicted expression value in CD4þ T-cells using
the full linear model on the x axis and the measured expression value in CD4þ T-cells on the y axis. The shades of blue indicate the density of points; the darker
color, the more points. The red line indicates the linear fit between predicted and measured expression (y ¼ 0.99x þ 0.02), which are highly correlated
(r ¼ 0.77), indicating a quantitative relationship between levels of histone modifications at the promoter and gene expression levels. (B) Comparison of pre-
diction accuracy between all possible one-modification, two-modifications, three-modifications models, and the full model for CD4þ T-cells. Models are sorted
by ascending prediction accuracy along the x axis. The best models using only a small subset of modifications almost reach the prediction accuracy of the full
linear model. (C) Bar plot showing the frequency of appearance of different histone modifications in best scoring three-modifications models (142 models) for
CD4þ T-cells. Best scoring models are defined as reaching at least 95% of prediction accuracy of the full linear model. (D, E) Expression values of genes, which
were at least 5-fold up or down regulated in CD36þ and CD133þ cells with respect to CD4þ T-cells, predicted using model parameters trained on data from
CD4þ T-cells. The predicted and measured expression values are highly correlated for both CD36þ (D) (r ¼ 0.75; 1,412 genes) and CD133þ (E) (r ¼ 0.63; 1,243
genes) cells. The equations of the regression line for both CD36þ and CD133þ cells (y ¼ 0.43x þ 6.04 and y ¼ 0.53x þ 6.17, respectively) show a high value of
the intercept and a slope different from one due to the fact that the levels of the histone modifications were not normalized across cell types.
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correlated modification (r ¼ 0.65). Strikingly, upon considering
combinations of two modifications, we found that the model with
the combination of H3K4me3 and H3K79me1 performed best
(r ¼ 0.69, compared to H3K27ac and H3K79me1 r ¼ 0.67).

Next, we determined the overrepresented modifications in the
best performing three-modifications models. H4K20me1 and
H3K27ac (and possibly H2BK5ac) are significantly overrepre-
sented among the best scoring models for HCPs (Fig. 3A; p-va-
lues of the hypergeometric test 9.97e-43, 2.58e-31, and 0.003,
respectively), and H3K4me3 and H3K79me1 are significantly
overrepresented in the LCPs (Fig. 3B; p-values of the hypergeo-
metric test 9.71e-36 and 2.1e-34, respectively), demonstrating
that different modifications are important for the prediction of
expression of genes in these two groups.

To gain further insight into the possible functions of the histone
modifications that were highly correlated with gene expression
for HCPs and LCPs, we examined the average normalized tag
densities for these five modifications in the region surrounding
the transcription start site (TSS) (Fig. 3C), referred to as locali-
zation analysis. We found that H3K4me3, H3K27ac, and
H2BK5ac have the highest levels at the promoter, with the high-
est peaks around 100 base pairs downstream of the TSS.
H3K79me1 is enriched along the gene body, and H4K20me1
shows two distinct patterns: a peak close to the promoter at a
similar position to H3K4me3 and H3K27ac, and a further enrich-
ment across the gene body region.

Histone Modification Levels Are Predictive of Gene Expression Across
Different Cell Types.We showed that models incorporating only the
information of four histone modifications can accurately predict
gene expression levels within a given cell type. Next, we wanted to
check whether models trained on the data of one cell type can be
used to predict gene expression in another cell type. We obtained
genome-wide localization data for histone modifications as
well as microarray gene expression values in CD36þ and
CD133þ cells (25). Here, our analysis was restricted to the nine
histone modifications (H3K4me1∕3, H3K27me1∕3, H2A.Z,
H4K20me1, H3K9me1∕3, and H3K36me3) measured in all three
cell types. We trained a linear model on the CD4þ data. Using
the trained model parameters, we predicted gene expression le-
vels from histone modification data measured in CD36þ and
CD133þ cells.

Because the gene expression profiles of CD36þ and CD133þ
cells are highly correlated to CD4þ T-cells (r ¼ 0.79 and r ¼ 0.82,
respectively) (Fig. S4A and B), we restricted the prediction to
genes with a fold change higher than five. The correlation of pre-
dicted and measured expression values is high for both CD36þ
(r ¼ 0.75; Fig. 2D) and CD133þ (r ¼ 0.63; Fig. 2E) cells, and
does not vary significantly when genes with fold changes higher
or lower than five are selected (Fig. S4C–H). This result strongly
suggests that the relationship between histone modifications and
gene expression is general and not dependent on the cellular con-
text (see Discussion).

In summary, we found that the levels of histone modifications
are well correlated to gene expression and that this relationship
can be generalized across different cell types. Moreover, our ana-
lysis revealed that the number of important modifications can be
reduced from 39 to four, indicating that these four modifications
may play a crucial role in the transcriptional process, both rein-
forcing each other or in a combinatorial manner. We also found
that, upon separating promoters into LCPs and HCPs, different
sets of modifications were found to be important, which indicates
that these promoters are regulated differently (see Discussion).

Discussion
We have shown that the levels of histone modifications at a pro-
moter proximal region are well correlated to the expression of
genes. Other studies classified the promoters for each modifica-
tion into groups (17, 26), e.g., modification X is present or absent.
Discretization ought to have two beneficial effects, namely the
reduction of noise and parameters. Although discretization is ne-
cessary in some modeling approaches to reduce the number of
parameters, e.g., learning a Bayesian network (26), in our ap-
proach, it increases the number of parameters, because one
has to choose at least one threshold for each modification in ad-
dition to the slopes in the linear regression model. If discretiza-
tion is indeed beneficial for modeling gene expression, we expect
that the results of a discrete model should be better than a cor-
responding continuous model. Thus, we compared full models
incorporating either the levels directly (continuous model) or a
binary classification of them (discrete model). Although the cor-
relation is not significantly different (Fig. 2A and Fig. S5A), the
mean squared error (MSE) increased from 1.54 for the contin-
uous model to 1.71 for the discrete model. The same is true
for the best three-modification continuous and discrete models.
Here, the discrete model is only able to reproduce the general
trend in expression values and thus has a higher MSE (MSE ¼
1.84; Fig. S5B) than the continuous model (MSE ¼ 1.68, which is
even lower than the MSE for the full discrete model; Fig. S5C).
We conclude that discretization has no beneficial effect on the
prediction accuracy and argue that in our modeling framework
discretization is not necessary and is even reducing the predictive
power at the cost of increasing the number of parameters.

We demonstrated that only a few histone modifications are ne-
cessary to faithfully model gene expression. This finding can be
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Fig. 3. Differences in transcriptional regulation between HCPs and LCPs. (A,
B) Bar plots showing the frequency of appearance of different histone mod-
ifications in best scoring three-modifications models for HCPs (B) (50 models)
and LCPs (C) (40 models) in CD4þ T-cells. Best scoring models are defined as
reaching at least 95% of prediction accuracy of the full model trained on
HCPs and LCPs, respectively. Only the top ten modifications are depicted.
(C) Normalized cumulative tag counts in the region of −500 base pairs to
3,000 base pairs surrounding the transcription start site of RefSeq genes
in CD4þ T-cells for the five important modifications identified by our analysis.
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understood if one assumes that the histone modifications belong
to different groups, whose members are either involved in tran-
scription or not. The modifications within the transcription-
related groups provide almost the same information and our
approach selects one representative modification. Alternatively,
the selected histone modifications are involved in distinct steps
during the transcription cycle. For example, they could recruit
activities that are required to enable RNA pol II to progress from
an initiating to an elongating state. In the light of the “Histone
Code Hypothesis,” the latter idea is very attractive, but we would
have much more confidence in supporting this idea if we were
able to reproduce our results using an equally rich dataset in a
preferentially independent cell type, which to our knowledge is
currently not available.

We used three sets of promoters, namely all, LCPs, and HCPs
to identify “important”modifications. Upon analyzing all promo-
ters, we found that H2BK5ac, H3K27ac, H3K79me1, and
H4K20me1 are overrepresented in models giving rise to the high-
est prediction accuracy in CD4þ T-cells. A recent study identified
a common set of 17 modifications (mainly acetylations), referred
to as the backbone. These modifications colocalize and their le-
vels are well correlated (17). Genes with all of these backbone
modifications present tend to be expressed, suggesting that either
all or a subset of them are involved in transcription. Our analysis
revealed only two of these modifications, H3K27ac and
H2BK5ac, are important for modeling gene expression. This in-
dicates that the remaining backbone modifications carry either
redundant information or are less important for gene expression.
Furthermore, the other two important modifications, H3K79me1
and H4K20me1, have been shown to be enriched in highly
expressed genes, along with the modification backbone (17). This
observation is in line with the idea that H3K79me1 and
H4K20me1 are also involved in transcription. Thus, we conclude
that our approach identified histone modifications which are
likely to be key players in the transcriptional process.

We identified different sets of modifications important for
modeling gene expression driven by LCPs or HCPs. In LCPs,
we found that H3K4me3 and H3K79me1, while in HCPs
H3K27ac and H4K20me1, were identified. These assignments
can be reproduced using RNA-seq (27) instead of the microarray
data, suggesting that a possible measurement bias due to the
microarray technology is not a major factor. The prediction ac-
curacy for modeling RNA-seq derived expression values is even
higher (r ¼ 0.81; Fig. S6A) than the one using microarray expres-
sion data (r ¼ 0.77). The results of the overrepresentation
analysis for all, HCPs, and LCPs are comparable between the
RNA-seq and microarray-derived expression values. The only
difference was that only H4K20me1, H3K27ac, and H2BK5ac,
but not H3K79me1, are identified as being overrepresented in
best scoring linear models for all promoters. However, when ana-
lyzing best scoring models for LCPs, H3K79me1 clearly comes up
as overrepresented (Fig. S6B–D).

The reason for the difference in the important histone mod-
ifications in LCPs and HCPs is unclear, but indicates that differ-
ent regulatory mechanisms act on these two promoter types. A
possible clue for the function of the selected modifications is pro-
vided by the localization analysis (Fig. 3C). H3K4me3, H3K27ac,
and H2BK5ac have the highest levels at the promoter, with the
highest peak around 100 base pairs downstream of the TSS.
H3K79me1 is enriched along the gene body, and H4K20me1
shows two distinct patterns: a peak close to the promoter at a
similar position to H3K4me3 and H3K27ac, and an enrichment
across the gene body region. The localization of these histone
modifications suggests that H3K27ac, H2BK5ac, H3K4me3,
and H4K20me1 function during transcription initiation and/or
promoter clearance, whereas H3K79me1 and H4K20me1 are
involved in transcription elongation.

Although for H3K4me3 a function during transcription initia-
tion has been proposed (e.g., ref. 14 and references therein), a
similar function has not been established for H3K27ac. A possi-
ble action of H3K27ac might be to prevent the repressive
trimethylation of the same residue, because H3K27ac and
H3K27me3 are mutually exclusive. Alternatively, H3K27ac itself
could be recognized by a protein complex required for transcrip-
tion. H3K79me1 is almost absent at the TSS and its levels
increase in the gene body, indicating that it is involved in transcrip-
tion elongation, in line with previous observations (28, 29). The
functions ofH2BK5acandH4K20me1 in general, and inparticular
during transcription, are not well understood.

Because we showed that histone modification levels are pre-
dictive of the gene expression levels in CD4þ T-cells, we further
investigated whether this is a universal property which holds true
for other cell types. We were able to successfully predict expres-
sion of genes in CD36þ and CD133þ cells, using histone mod-
ification data measured in these cells and model parameters
trained on CD4þ data. Significantly, the prediction accuracy does
not depend strongly on the level of change in expression in
different cell types. Thus, our results establish the idea that
the relationships between histone modification and gene expres-
sion are general. Furthermore, they underscore that the histone
modifications and the transcriptional process are tightly con-
nected to each other. We want to emphasize that our analysis
as well as the data do not allow for deciding whether the histone
modifications are cause or consequence of transcription, because
the uncovered relationships are correlative in nature and there-
fore inherently undirected. However, our results imply that the
histone modifications are very close to RNA pol II in the regu-
latory network controlling its activity. Whether they are upstream
and/or downstream has to be elucidated in further experimental
studies.

In summary, we have shown that the relationships between his-
tone modification and transcription are well reproducible across
different cell types. Furthermore, we singled out a small number
of modifications, which together can account for a large portion
of the expression variance. Whether these modifications play a
crucial role during transcription, or whether they are representa-
tives for groups of equally important modifications has to be
clarified by further experimental studies. Regardless of which
scenario turns out to be true, we can pinpoint a small number
of modifications whose levels at the promoter can be used to infer
gene expression and hence provide some information about the
transcriptional process, which reduces the experimental effort to
study the relationship between histone modifications and tran-
scription.

Methods
Data. The RefSeq Genes annotation track for the human genome sequence
(hg18, March 2006) was downloaded from the University of California, Santa
Cruz Genome Bioinformatics web site (http://genome.ucsc.edu/). The coordi-
nates of uniquely mapped ChIP-Seq tags were taken from genome-wide stu-
dies of the distribution of 19 lysine or arginine histone methylations, one
H2A.Z histone variant (16), and 19 histone acetylations in CD4þ T-cells
(17). These coordinates were transformed by adding or subtracting 73 base
pairs (for tags mapping to the þ or − strand, respectively), thus centering the
tags on the nucleosome, because only DNA corresponding to the ends of the
nucleosome is sequenced. Tags were then mapped to a 4,001 base pair region
surrounding the TSS of RefSeq genes. The tags in this region were summed
and each gene was represented by 39 values (one per modification). ChIP-Seq
data for goat and rabbit IgG was obtained (22) and mapped to the same re-
gions as histone modifications data, but was not transformed by adding or
substracting base pairs from the coordinates of the tags.

Expression microarray data for resting T-cells performed on Affymetrix
Human Genome U133 Plus 2.0 GeneChip was taken from ref. 18. Raw expres-
sion values were averaged over all replicates. Only the RefSeq genes that
could be uniquely mapped to an Affymetrix probe identifier were used in
further analysis.
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Selecting Promoters for Analysis. To exclude the possibility that some of the
RefSeq genes used in our analysis correspond to alternative transcripts of the
same gene, all RefSeq genes were mapped to corresponding Unigene clusters
(30), and only one RefSeq gene per cluster was kept, leaving 14,802 RefSeq
genes for further analysis (see SI Methods for details)

Predicting Expression Using Linear Regression. The whole dataset was divided
into two random sets D1 (4,934 promoters) and D2 (9,868 promoters). Each
modification i and promoter jwas represented by the sum of tag countsNij in
the 4,001 base pair region surrounding the TSS and transformed to a
logarithmic scale. Optimized pseudocounts αi were estimated on D1 (see
SI Methods for details) and added to each Nij , to avoid undefined values
of the logarithm when Nij equals zero. The 41 transformed values N0

ij in
the D2 set were then used as predictor variables for training a linear regres-
sion model (full model) to predict the logarithm of expression. The Pearson
correlation coefficient r between predicted and measured values was calcu-
lated in a 10-fold cross-validation setting (see SI Methods for details) and used
as a measure of prediction accuracy.

All possible one-modification (41 models), two-modifications (820
models), and three-modifications models (10,660 models) were produced
and their performance assessed as described above. The analysis was also
repeated using RNA-Seq tag counts in CD4þ T-cells as a measure of expres-
sion (see SI Methods for details).

To test against overfitting, we produced linear models using all possible
combinations of 1–5 and 37–41 modifications (there are too many 6–36 mod-
ificationmodels, so we excluded them). In each group ofmodels (correspond-
ing to the number of modifications used in combination), the model with
highest prediction accuracy was identified, and the tradeoff between model
complexity and prediction accuracy assessed using the BIC (23).

Analysis of the Importance and Combinatorial Influence of Modifications. All
10,660 possible three-modifications models were produced and their predic-
tion accuracy assessed. Best scoring models were defined as those for which

the prediction accuracy reaches at least 95% of the prediction accuracy of the
full model. The number of times each modification appears amongst this set
of models was divided by the number of best scoring models to determine
the fraction of appearance of each histone modification.

Prediction of Expression Across Different Cell Types. Coordinates of ChIP-Seq
tags for nine histonemodifications and expression microarray data measured
in CD36þ and CD133þ cells were taken from ref. 25. Expression values from
both cell lines were normalized with respect to expression values in CD4þ
T-cells, by first fitting a regression line between the two respective expression
values and then transforming the expression values in either CD36þ or
CD133þ cells in such a way that the equation of the regression line is equal
to y ¼ x. Optimal pseudocounts were determined and histone modifications
data transformed as described above. A linear model was trained on data
from CD4þ T-cells using nine histone modifications common to all three da-
tasets. The linear model was then used to predict expression values in CD36þ
and CD133þ cells using histonemodifications datameasured in each cell type
as predictor variables.

Classification of Promoters According to CpG Content. Normalized CpG con-
tent in the region of 3,000 base pairs surrounding the TSS was calculated
as defined previously (31), with the promoters having a normalized CpG con-
tent >0.4 being classified as HCP and the others being classified as LCP.
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