
P R I M E R

The base-pairing of an RNA secondary struc-
ture is a sort of biological palindrome.
A palindrome is a word or phrase that reads
the same forwards and backwards—like
‘aibohphobia’ (the irrational fear of palin-
dromes). The base pairs of an RNA stem
(say, GGACU paired to AGUCC) nest in a
palindromic fashion, with complementary
base pairings rather than identical letters.
Of course, the pattern of base pairing in RNA
secondary structures is not as simple as a
true palindrome. Not all RNA residues are
paired, and there are usually multiple stems.
‘Reengineer’ isn’t a true palindrome, but it’s
analogous to a four-base-pair RNA stem loop
(reen/neer) with a two-residue loop (gi).
‘Sniffinesses’ isn’t a palindrome either, but its
letters can be fully paired into three nested
‘stems’ (s/s, nif/fin and es/se). Still, there is a
fundamental relationship between RNA fold-
ing algorithms and algorithms for dealing
with palindrome-like, nested pairwise inter-
actions. Though RNA folding algorithms may
look daunting, this is mostly just because of
the detailed scoring systems that are used. We
can strip that complexity away and lay bare
the mechanics of the underlying folding algo-
rithm. The problem of simply finding the
structure with the maximum number of base
pairs provides a clear example of how RNA
folding algorithms work.

Base pair maximization: a simple
example
To identify the structure with the maximum
number of base pairs, our scoring system is

just a +1 per base pair, 0 for anything else.
Imagine looking at one contiguous sub-
sequence from position i to position j in our
complete sequence of length N, and calculat-
ing the score of the best structure for just that
sub-sequence—that is, the maximum num-
ber of nested base pairs that the sub-sequence
can form. The key is to recognize that this
optimal score (call it S(i,j)) can be defined
recursively in terms of optimal scores of
smaller sub-sequences. As shown in the top of
Figure 1, there are only four possible ways
that a structure of nested base pairs on i..j can
be constructed:

1. i,j are a base pair, added on to a structure
for i + 1..j – 1.

2. i is unpaired, added on to a structure for
i + 1..j.

3. j is unpaired, added on to a structure for
i..j – 1.

4. i,j are paired, but not to each other;
the structure for i..j adds together sub-
structures for two sub-sequences, i..k and
k + 1..j (a bifurcation).

Consider the first case. If we add on a i,j
base pair onto i + 1..j – 1, what is the score
S(i,j)? Crucially, we know (from the defini-
tion of our scoring system) that the score we
add for the base pair i,j is independent of any
details of the optimal structure on i + 1..j – 1.
Similarly, the optimal structure on i + 1..j – 1
and its score S(i + 1,j – 1) are unaffected by
whether i,j are base paired or not (or indeed,
anything else that happens in the rest of the
sequence). Therefore, S(i,j) in case 1 is just
S(i + 1,j – 1) plus one, if i,j can base pair.

Similar independence arguments hold for
the remaining three cases. In case 2, the opti-
mal score S(i + 1,j) is independent of the
addition of an unpaired base i, so S(i + 1,j) + 0
is the score of the optimal structure on i,j
conditional on i being unpaired. Case 3 is the

same thing, but conditional on j being un-
paired. In case 4, where we deal with putting
two independent sub-structures together, the
optimal score S(i,k) is independent of any-
thing going on in k + 1..j, and vice versa, so
S(i,k) + S(k + 1,j) is the score of the optimal
structure on i,j conditional on i and j being
paired but not to each other.

Since these are the only four possible cases,
the optimal score S(i,j) is just the maximum
of the four possibilities. We’ve thus defined
the optimal score S(i,j) recursively as a func-
tion only of optimal scores of smaller sub-
sequences; so we only need to remember
these scores, not the combinatorial explosion
of possible structures. Mathematically this
recursion looks like:

To run this recursion efficiently, we just
need to make sure that whenever we try to
compute an S(i,j), we already have calculated
the scores for smaller sub-sequences. This
sets up a dynamic programming algorithm.
We tabulate the scores S(i,j) in a triangular
matrix. We initialize on the diagonal; sub-
sequences of length 0 or 1 have no base pairs,
so S(i,i) = S(i,i – 1) = 0 (by convention, the
i,i – 1 cells represent zero length sequences; the
recursion must never access an empty matrix
cell). Then we work outwards on larger and
larger sub-sequences, until we reach the
upper right corner, as shown in the bottom of
Figure 1. This corner is S(1,N), the score of the
optimal structure for the complete sequence
from i = 1 to j = N. Then, from that point, we
recover the optimal structure by tracing back
the optimal path that got us into the upper
corner, one step in the structure at a time.

S(i + 1,j – 1) +1 [if i,j base pair]

S(i,j) = max S(i + 1,j)
S(i,j – 1)
maxi<k<j S(i,k) + S(k + 1,j)

How do RNA folding algorithms work?
Sean R Eddy

Programs such as MFOLD and ViennaRNA are widely used to predict RNA secondary structures. How do these
algorithms work? Why can’t they predict RNA pseudoknots? How accurate are they, and will they get better?

Sean R. Eddy is at Howard Hughes Medical
Institute & Department of Genetics,
Washington University School of Medicine,
4444 Forest Park Blvd., Box 8510, Saint Louis,
Missouri 63108, USA.
e-mail: eddy@genetics.wustl.edu

NATURE BIOTECHNOLOGY VOLUME 22 NUMBER 11 NOVEMBER 2004 1457

_computational
BIOLOGY

©
20

04
 N

at
ur

e
P

ub
lis

hi
ng

 G
ro

up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

P R I M E R

Storing the S(i,j) matrix requires memory
proportional to N2, similar to what sequence
alignment algorithms need. That’s not a big
deal these days; folding N = 1,000 nucleotides
just needs a couple of megabytes. However,
the innermost loop of having to find optimal
potential bifurcation points k means that the
folding algorithm requires time proportional
to N3, a factor of N more time-intensive than
sequence alignment. RNA folding calcula-
tions often require a hefty amount of com-
puter power.

What RNA folding programs really score
Simple base pair maximization is a poor scor-
ing scheme for RNA structure prediction. It is
more plausible that an RNA adopts a globally
minimum energy structure, not the structure
with the maximum number of base pairs.
Therefore, the usual approach is to predict an
overall free energy for a secondary structure,
approximating this overall free energy as a
sum of independent terms for different loops
and base pairing interactions. The thermo-
dynamic model has been developed in con-
junction with the development of dynamic
programming folding algorithms, so the
independence assumptions in the thermody-
namic model’s terms have been made com-
patible with the independence assumptions

needed for recursive dynamic programming
algorithms to work. Energy minimization
algorithms become somewhat complex, with
more detailed recursions that distinguish
different lengths and types of loops, and
which score base pairs according to nearest-
neighbor stacking interactions with adjacent
base pairs. Nonetheless, the mechanics of the
algorithm are pretty much the same1.

Why no pseudoknots?
In addition to nested stem-loop base pairing
interactions, RNAs can also make nonnested
base pairs between a loop of one stem
and residues outside that stem: a so-called
RNA pseudoknot. For example (continuing
the palindromish analogy) in the phrase
“no, a reiteration,” no/on and are/era can be
matched up with nested interactions, but the
remaining letters it/ti can only be matched up
if one makes a nonnested, pseudoknotted
interaction, in which these connections cross
the interactions made by the are/era stem.

The dynamic programming algorithm we
discussed here can’t deal with pseudoknots,
because pseudoknots violate the recursive
definition of the optimal score S(i,j). For
example, consider adding a pseudoknotted
base pair i,k onto the sub-sequence i + 1,j,
where the base pairing partner k lies some-

where inside the i + 1..j interval. We can’t just
add a score for an i,k base pair onto S(i+1,j) to
get S(i,j), because we need to know that k is
available to base pair with i; maybe k was
already paired with some other residue in the
optimal sub-structure S(i+1,j). The algorithm
hasn’t kept track of this. The whole point of
how the recursion works is that we only need
to remember S(i + 1,j), not any of the details
of the combinatorial explosion of possible
structures on the interval i + 1,j – 1, so the
recursion is invalidated.

There are RNA folding algorithms that deal
with pseudoknots, but each has at least one
serious limitation of its own. There is an effi-
cient algorithm (maximum weighted match-
ing) that can guarantee optimal solutions, so
long as one uses a simple base-pair dependent
scoring system, not the more realistic stacking-
dependent thermodynamic model. Very com-
plex dynamic programming algorithms that
guarantee optimal pseudoknotted solutions
under the thermodynamic model are known,
but they are too inefficient for most practi-
cal uses. Finally, different efficient heuristic
approaches exist for searching for reasonable,
though not provably optimal, pseudoknotted
structures under the thermodynamic model.

Elegant, but still too often wrong
In practice, benchmarks of prediction accuracy
on single RNA sequences show that current
RNA folding programs get about 50–70% of
base pairs correct, on average. This is useful for
many purposes, but not as good as we’d like.

Dynamic programming algorithms for
RNA folding are guaranteed to give the math-
ematically optimal structure. Any lack of pre-
diction accuracy is more the scoring system’s
problem than the algorithm’s problem. The
fundamental trouble seems to be that the ther-
modynamic model is only accurate to within
maybe 5–10%, and a surprising number of
alternative RNA structures lie within 5–10%
of the predicted global energy minimum. It’s
therefore hard for a single sequence folding
algorithm to resolve which of the plausible
lowest-energy structures is correct. Much cur-
rent research focuses on adding more biologi-
cal information to the scoring model to
further constrain RNA structure predictions.
For example, several new approaches have
attempted to combine thermodynamic scores
with comparative sequence information, in
order to predict consensus RNA structures for
homologous RNA sequences. Nonetheless,
for most of these approaches, the mechanics
of the underlying dynamic programming
algorithm remain essentially the same.

1. Zuker, M. Calculating nucleic acid secondary struc-
ture. Curr. Opin. Struct. Biol. 10, 303–310 (2000).

1458 VOLUME 22 NUMBER 11 NOVEMBER 2004 NATURE BIOTECHNOLOGY

1. i,j pair 2. i unpaired 3. j unpaired 4. Bifurcation

i ji + 1

S(i + 1,j)

i j

j – 1i + 1

S(i + 1,j – 1)

i jk k + 1

S(i,k) S(k + 1,j)

i jj – 1

S(i,j – 1)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

G G G A A A U C C

G

G

G

A

A

A

U

C

C

j

i

Initialization;

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

0

0

1

1

1

0

1

2

1

1

2

2

2

3

3

G G G A A A U C C

G

G

G

A

A

A

U

C

C

j

i

recursive fill;

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

0

0

1

1

1

0

1

2

1

1

2

2

2

3

3

G G G A A A U C C

G

G

G

A

A

A

U

C

C

j

i

traceback;

b Dynamic programming algorithm for all sub-sequences i,j, from smallest to largest:

a Recursive definition of the best score for a sub-sequence i,j looks at four possibilities:

G
G

C
G C
A U

AA

result.

Figure 1 Dynamic programming algorithm for RNA secondary structure prediction. (a) The four cases
examined by the dynamic programming recursion. Red dots mark the bases being added onto previously
calculated optimal sub-structures (i,j pair, unpaired i or unpaired j). Gray boxes are a reminder that the
recursion tabulates the score of the smaller optimal sub-structures, not the structures themselves.
Example sub-structures are shown in the gray boxes solely as examples. (b) The dynamic programming
algorithm in operation, showing the matrix S(i,j) for a sequence GGGAAAUCC after initialization, after
the recursive fill, and after an optimal structure with three base pairs has been traced back.

©
20

04
 N

at
ur

e
P

ub
lis

hi
ng

 G
ro

up

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
eb

io
te

ch
no

lo
gy

