AN INTRODUCTION TO BIOINFORMATICS ALGORITHMS

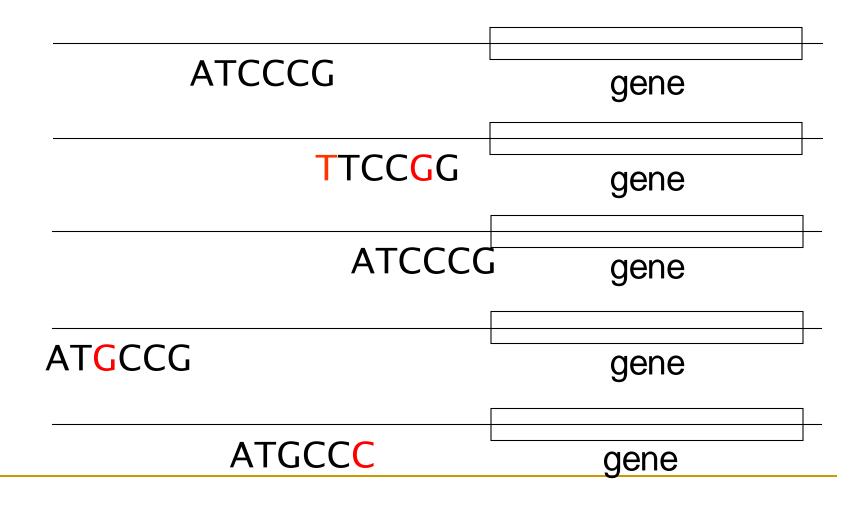
NEIL C. JONES AND PAVEL A. PEVZNER

www.bioalgorithms.info

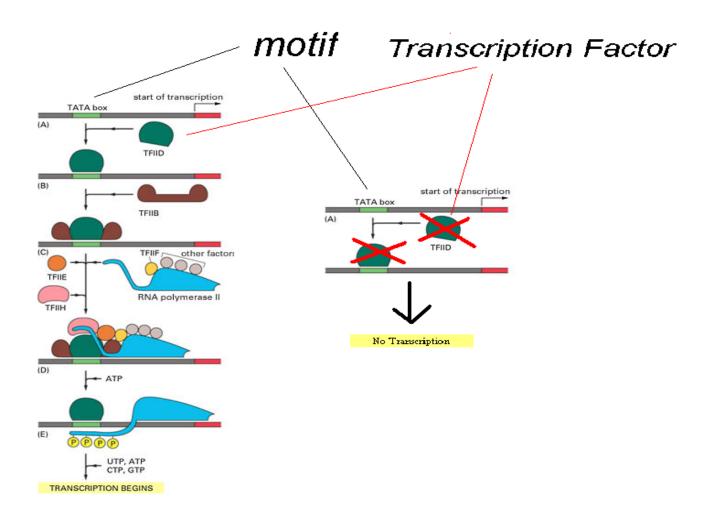
Finding Regulatory Motifs in DNA Sequences

Regulatory Proteins

- Gene X encodes regulatory protein, a.k.a. a transcription factor (TF)
- The 20 unexpressed genes rely on gene X's TF to induce transcription
- A single TF may regulate multiple genes


Regulatory Regions

- Every gene contains a regulatory region (RR) typically stretching 100-1000 bp upstream of the transcriptional start site
- Located within the RR are the Transcription Factor Binding Sites (TFBS), also known as motifs, specific for a given transcription factor
- TFs influence gene expression by binding to a specific location in the respective gene's regulatory region -TFBS

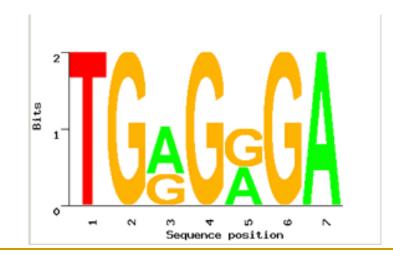

Transcription Factor Binding Sites

- A TFBS can be located anywhere within the Regulatory Region.
- TFBS may vary slightly across different regulatory regions since non-essential bases could mutate

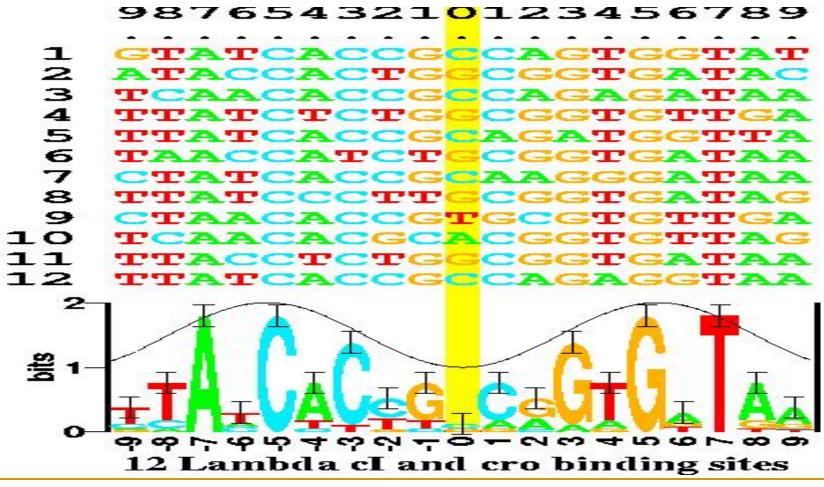
Motifs and Transcriptional Start Sites

Transcription Factors and Motifs

1							TAT	A-box							
-	-3	$^{-2}$	-1	0	1	2	3	4	5	6	7	8	9	10	11
ACGT ACGT	$ \begin{array}{r} 61\\ 145\\ 152\\ 31\\ -1.02\\ -0.28\\ 0.00\\ 0.00\\ \end{array} $	$ \begin{array}{r} 16 \\ 46 \\ 18 \\ 309 \\ -3.05 \\ -2.06 \\ -2.74 \\ \end{array} $	352 0 2 35 0.00 -5.22 -4.38	3 10 2 374 -4·61 -3·49 -4·61	354 0 5 30 0-00 -5-17 -3-77	268 0 121 0-00 -4-63 -4-73	$ \begin{array}{r} 360 \\ 3 \\ 20 \\ 6 \\ 0.00 \\ -4.12 \\ -2.65 \end{array} $	$222 \\ 2 \\ 44 \\ 121 \\ 0.00 \\ -3.74 \\ -1.50 $	155 44 157 33 -0.01 -1.13 0.00	56 135 150 48 -0.94 -0.05 0.00	83 147 128 31 -0.54 0.00	82 127 128 52 -0.48 -0.05	82 118 128 61 0-48 -0-11	68 107 139 75 0.74 0.28	77 101 140 71 0.62 0.40
	-1.68	0.00	-2.28	0.00	-2.34	-0-52	-3.62	-0-37	-1.40	-0·97	-0·09 -1·40	0-00 0-82	0-00 0-66	0-00 0-54	0-00
およういますに	G C	Т	A T	Т	A T	A T	A	A T	G A	G C	C G	G C	G C	G C	G
8	ed region:		between	-36 and	l −20.						Optin	nized cut	-off valu	e: —8·16	(79%)


The above base frequency Table and weight matrix were obtained by iterative refinement starting from TATAAA with control parameters set as indicated in Table 1. The consensus sequences shown in Tables 3 to 6 list all bases that are assigned weights above column mean, the character size reflecting their relative importance.

Philipp Bucher, J.Mol. Biol., (1990) 212, 563-578


Motif Logo

- Motifs can mutate on non important bases
- The five motifs in five different genes have mutations in position 3 and 5
- Representations called motif logos illustrate the conserved and variable regions of a motif

TGGGGGA TGAGAGA TGAGAGA TGAGGGA

Motif Logos: An Example

(http://www-Immb.ncifcrf.gov/~toms/sequencelogo.html)

Identifying Motifs

- Genes are turned on or off by regulatory proteins
- These proteins bind to upstream regulatory regions of genes to either attract or block an RNA polymerase
- Regulatory protein (TF) binds to a short DNA sequence called a motif (TFBS)
- So finding the same motif in multiple genes' regulatory regions suggests a regulatory relationship amongst those genes

Identifying Motifs: Complications

- We do not know the motif sequence
- We do not know where it is located relative to the genes start
- Motifs can differ slightly from one gene to the next
- How to discern it from "random" motifs?

Jaspar data base

- Contains weight matrices for bindings sites of many transcription factors
- http://jaspar.genereg.net/

ID MA0004.1	name	JASPAR r species	matrix models: class			ANALYZE selected matrix models:
		species	oloss			
MA0004.1	Acrot		CIRSS	family	Sequence logo	CLUSTER ? selected models using STAMP
	Am	Mus musculus	Zipper-Type	Helix-Loop-Helix	CACGTG	Create RANDOM matrix models based on selected models
					Click to view details	Number of matrices: 200 Format: Raw
		A.L.o.			1 CONTO	RANDOMIZE ?
MA0005.1	Amt::Ahr	Mus musculus	Zipper-Type	Helix-Loop-Helix	Click to view details	Create models with PERMUTED columns from selected:
					24 _ L	Type: Within each matrix Format: Raw
MA0009.1	т	Mus musculus	Beta-Hairpin- Ribbon	т	TAGGTGTOAA	PERMUTE ?
					Click to view details	SCAN this (fasta-formatted) sequence with selected matrix models
MA0017.1	NR2F1	Homo sapiens	Zinc-coordinating	Hormone-nuclear Receptor	TGACTTTG	
					Click to view details	
		Rattus			1 Toolar	
MA0019.1	Ddit3::Cebpa	norvegicus	Zipper-Type	Leucine Zipper	Click to view details	
		Homo			TTAL OTA	
MA0025.1	NFIL3	sapiens	Zipper-Type	Leucine Zipper	Click to view details	
					24	Relative profile score threshold 80 %
MA0027.1	En1	Mus musculus	Helix-Tum-Helix	Homeo	Click to view details	SCAN ?
					4	
MA0028.1	ELK1	Homo sapiens	Winged Helix- Tum-Helix	Ets	Click to view details	
					9 1 1 4	
MA0029.1	Mecom	Mus musculus	Zinc-coordinating	BetaBetaAlpha-zinc finger	Click to view details	
		Homo	Winced Helix-		1 THINK	
MA0030.1	FOXF2	sapiens	Tum-Helix	Forkhead	Lessing	
	MADD17.1 MADD19.1 MADD25.1 MADD27.1 MADD28.1	M0009.1 T M0017.1 NR2F1 M0019.1 DdH3::Cebpa M0025.1 NFIL3 M0027.1 En1 M0028.1 ELK1 M0029.1 Mecom	MODODS.1 T musculus MA0017.1 NR2F1 Homo sapiens MA0019.1 Ddit3::Cebpe Rathus norvegicus MA0025.1 NFIL3 Homo sapiens MA0027.1 En1 Mus musculus MA0028.1 ELK1 Homo sapiens MA0029.1 Mecom Mus musculus	MODOS:1 1 musculus Ribbon MA0017.1 NR2F1 Homo sapiens Zinc-coordinating MA0019.1 Ddit3::Cebpa Ratius norvegicus Zipper-Type MA0025.1 NFIL3 Homo sapiens Zipper-Type MA0027.1 En1 Mus musculus Helix-Tum-Helix MA0028.1 ELK1 Homo sapiens Winged Helix- Tum-Helix MA0029.1 Mecom Mus musculus Zinc-coordinating	MADOOS.1 I Immuneculus Ribbon I MADO17.1 NR2F1 Homo sapiens Zinc-coordinating Hormone-nuclear Receptor MADO19.1 DdR3::Cebpa Rattus norvegicus Zipper-Type Leucine Zipper MADO25.1 NFIL3 Homo sapiens Zipper-Type Leucine Zipper MADO27.1 En1 Mus museculus Heix-Turn-Heix Homeo MADO28.1 ELK1 Homo sapiens Zinc-coordinating BetaBetaAlpha-zinc finger MADO29.1 Mecom Mus museculus Zinc-coordinating BetaBetaAlpha-zinc finger	MA0009.1 T Mus musculus Beta-Hairpin- Rabon T MA0017.1 NR2F1 Homo sapiens Zinc-coordinating Homoe-nuclear Receptor Image: Cick to view details MA0019.1 Ddit3::Cetpa Rattus norvegicus Zipper-Type Leucine Zipper MA0025.1 NFIL3 Homo sapiens Zipper-Type Leucine Zipper MA0027.1 En1 Mus musculus Heix-Turm-Heix Homeo MA0028.1 ELK1 Homo sapiens Zinc-coordinating Beta-Hairpin- Cick to view details MA0028.1 ELK1 Homo sapiens Zipc-coordinating Beta-Hairpin- Receptor MA0028.1 ELK1 Homo sapiens Zipc-coordinating Beta-Hairpin- Cick to view details MA0028.1 ELK1 Homo winged Heix- musculus Ets Image: Cick to view details MA0028.1 Mecon Mus musculus Zinc-coordinating BetaBetaAlpha-zinc finger Image: Cick to view details MA0028.1 EDXE2 Homo Winged Heix- musculus Ets Image: Cick to view details

Randomized Algorithms and Motif Finding

The Motif Finding Problem

Motif Finding Problem: Given a list of *t* sequences each of length *n*, find the "best" pattern of length *I* that appears in each of the *t* sequences.

A New Motif Finding Approach

- Motif Finding Problem: Given a list of t sequences each of length n, find the "best" pattern of length / that appears in each of the t sequences.
- Previously: we solved the Motif Finding Problem using a Branch and Bound or a Greedy technique.
- Now: randomly select possible locations and find a way to greedily change those locations until we have converged to the hidden motif.

Profiles Revisited

- Let s=(s₁,...,s_t) be the set of starting positions for *l*-mers in our *t* sequences.
- The substrings corresponding to these starting positions will form:
 - t x / alignment matrix and
 - 4 x / profile matrix* P.

*We make a special note that the profile matrix will be defined in terms of the frequency of letters, and not as the count of letters.

Scoring Strings with a Profile

- Prob(a|P) is defined as the probability that an I-mer a was created by the Profile P.
- If a is very similar to the consensus string of P then Prob(a|P) will be high
- If a is very different, then Prob(a|P) will be low.

$$n$$

$$Prob(\mathbf{a}|\mathbf{P}) = \prod_{i=1}^{n} p_{a_i}, i$$

Scoring Strings with a Profile (cont'd)

Given a profile: P =

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string: *Prob*(**aaacct**|**P**) = ???

Scoring Strings with a Profile (cont'd)

Given a profile: P =

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string: $Prob(aaacct|P) = 1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8 = .033646$

Scoring Strings with a Profile (cont'd)

Given a profile: P =

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string: $Prob(aaacct|P) = 1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8 = .033646$

Probability of a different string: $Prob(atacag|P) = 1/2 \times 1/8 \times 3/8 \times 5/8 \times 1/8 \times 1/8 = .001602$

P-Most Probable /-mer

 Define the P-most probable I-mer from a sequence as an I-mer in that sequence which has the highest probability of being created from the profile P.

	Α	1/2	7/8	3/8	0	1/8	0
P =	С	1/8	0	1/2	5/8	3/8	0
• -	Т	1/8	1/8	0	0	1/4	7/8
	G	1/4	0	1/8	3/8	1/4	1/8

Given a sequence = ctataaaccttacatc, find the P-most probable *l*-mer

P-Most Probable /-mer (cont'd)

Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

Find the *Prob*(**a**|**P**) of every possible 6-mer: First try: **ctataaaccttacatc** Second try: **ctataaaccttacatc** Third try: **ctataaaccttacatc**

-Continue this process to evaluate every possible 6-mer

P-Most Probable /-mer(cont'd)

Compute *prob*(**a**|**P**) for every possible 6-mer:

String, Highlighted in Red	Calculations	prob(a P)
ctataaaccttacat	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
ctataaaccttacat	1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
ctataaaccttacat	1/2 x 0 x 1/2 x 0 1/4 x 0	0
ctataaaccttacat	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
ctataaac <mark>cttaca</mark> t	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
ctataaaccttacat	1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004

P-Most Probable /-mer (cont'd)

P-Most Probable 6-mer in the sequence is aaacct:

String, Highlighted in Red	Calculations	Prob(a P)
ctataaaccttacat	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/2 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
ctataaaccttacat	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
ctataaaccttacat	1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8	.0299
ctataaaccttacat	1/2 x 0 x 1/2 x 0 1/4 x 0	0
ctataaaccttacat	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
ctataaac <mark>cttaca</mark> t	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
ctataaaccttacat	1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8	.0004

P-Most Probable /-mer (cont'd)

aaacct is the **P**-most probable 6-mer in:

ctataaaccttacatc

because Prob(aaacct|P) = .0336 is greater than the Prob(a|P) of any other 6-mer in the sequence.

Dealing with Zeroes

- In our toy example prob(a|P)=0 in many cases. In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is small.
- To avoid many entries with prob(a|P)=0, there exist techniques to equate zero to a very small number so that one zero does not make the entire probability of a string zero (we will not address these techniques here).

P-Most Probable /-mers in Many Sequences

 Find the P-most probable *I*-mer in each of the sequences.

	А	1/2	7/8	3/8	0	1/8	0
P=	С	1/8	0	1/2	5/8	3/8	0
	Т	1/8	1/8	0	0	1/4	7/8
	G	1/4	0	1/8	3/8	1/4	1/8

ctataaacgttacatc

atagcgattcgactg

cagcccagaaccct

cggtataccttacatc

tgcattcaatagctta

tatcctttccactcac

ctccaaatcctttaca

ggtcatcctttatcct

P-Most Probable /-mers in Many

Sequences (cont'd)

ctataaacgttacatc

1	а	а	а	С	g	t
2	а	t	а	g	С	g
3	а	а	С	С	С	t
4	g	а	а	С	С	t
5	а	t	а	g	С	t
6	g	а	С	С	t	g
7	а	t	С	С	t	t
8	t	а	С	С	t	t
А	5/8	5/8	4/8	0	0	0
С	0	0	4/8	6/8	4/8	0
Т	1/8	3/8	0	0	3/8	6/8
G	2/8	0	0	2/8	1/8	2/8

atagcgattcgactg cagcccagaaccct cggtgaaccttacatc tgcattcaatagctta tgtcctgtccactcac ctccaaatcctttaca ggtctacctttatcct

P-Most Probable *I*-mers form a new profile

1/8

3/8

1/4

1/4

0

0

7/8

1/8

Comparing New and Old Profiles

_								-					
	1	а	а	а	С	g	t						
	2	а	t	а	g	С	g						
	3	а	а	С	С	С	t						
	4	g	а	а	С	С	t						
	5	а	t	а	g	С	t						
	6	g	а	С	С	t	g						
	7	а	t	С	С	t	t						
	8	t	а	С	С	t	t						
	А	5/8	5/8	4/8	0	0	0		A	1/2	7/8	3/8	0
	С	0	0	4/8	6/8	4/8	0		С	1/8	0	1/2	5/8
Ī	Т	1/8	3/8	0	0	3/8	6/8		Т	1/8	1/8	0	0
	G	2/8	0	0	2/8	1/8	2/8		G	1/4	0	1/8	3/8

Red – frequency increased, Blue – frequency descreased

Greedy Profile Motif Search

Use P-Most probable *I*-mers to adjust start positions until we reach a "best" profile; this is the motif.

- 1) Select random starting positions.
- 2) Create a profile **P** from the substrings at these starting positions.
- 3) Find the **P**-most probable *I*-mer **a** in each sequence and change the starting position to the starting position of **a**.
- 4) Compute a new profile based on the new starting positions after each iteration and proceed until we cannot increase the score anymore.

GreedyProfileMotifSearch Algorithm

- 1. <u>GreedyProfileMotifSearch(DNA, t, n, 1)</u>
- 2. Randomly select starting positions $\mathbf{s} = (s_1, \dots, s_t)$ from *DNA*
- 3. *bestScore* $\leftarrow 0$
- 4. while Score(s, DNA) > bestScore
- 5. Form profile **P** from **s**
- 6. *bestScore* \leftarrow Score(**s**, *DNA*)
- 7. for $i \in 1$ to t
- 8. Find a **P**-most probable /-mer **a** from the *I*th sequence
- 9. $s_i \leftarrow$ starting position of **a**
- 10. return *bestScore*

GreedyProfileMotifSearch Analysis

- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.
- It is unlikely that the random starting positions will lead us to the correct solution at all.
- In practice, this algorithm is run many times with the hope that random starting positions will be close to the optimum solution simply by chance.

Gibbs Sampling

- GreedyProfileMotifSearch is probably not the best way to find motifs.
- However, we can improve the algorithm by introducing Gibbs Sampling, an iterative procedure that discards one *I*-mer after each iteration and replaces it with a new one.
- Gibbs Sampling proceeds more slowly and chooses new *I*-mers at random increasing the odds that it will converge to the correct solution.

How Gibbs Sampling Works

- 1) Randomly choose starting positions
 - $s = (s_1, ..., s_t)$ and form the set of *I*-mers associated with these starting positions.
- 2) Randomly choose one of the *t* sequences.
- 3) Create a profile **P** from the other t-1 sequences.
- 4) For each position in the removed sequence, calculate the probability that the *I*-mer starting at that position was generated by **P**.
- 5) Choose a new starting position for the removed sequence at random based on the probabilities calculated in step 4.
- 6) Repeat steps 2-5 until there is no improvement

Input:

t = 5 sequences, motif length l = 8

- **1. GTAAACAATATTTATAGC**
- 2. AAAATTTACCTCGCAAGG
- **3. CCGTACTGTCAAGCGTGG**
- 4. TGAGTAAACGACGTCCCA
- 5. TACTTAACACCCTGTCAA

1) Randomly choose starting positions, $s=(s_1, s_2, s_3, s_4, s_5)$ in the 5 sequences:

- $s_1 = 7$ GTAAACAATATTTATAGC
- $s_2 = 11$ AAAATTTACCTTAGAAGG
- s₃=9 CCGTACTGTCAAGCGTGG
- s₄=4 TGAGTAAACGACGTCCCA
- $s_5 = 1$ **TACTTAACACCCTGTCAA**

2) Choose one of the sequences at random: **Sequence 2:** AAAATTTACCTTAGAAGG

- $s_1 = 7$ GTAAACAATATTTATAGC
- $s_2 = 11$ AAAATTTACCTTAGAAGG
- s₃=9 CCGTACTGTCAAGCGTGG
- s₄=4 TGAGTAAACGACGTCCCA
- $s_5 = 1$ **TACTTAACACCCTGTCAA**

2) Choose one of the sequences at random: **Sequence 2:** AAAATTTACCTTAGAAGG

- $s_1 = 7$ GTAAACAATATTTATAGC
- $s_3=9$ CCGTACTGTCAAGCGTGG $s_4=4$ TGAGTAAACGACGTCCCA $a_4=4$ TACTTAACACCCCTCTCAA
- $s_5 = 1$ **TACTTAACACCCTGTCAA**

Gibbs Sampling: an Example 3) Create profile *P* from *I*-mers in remaining 4 sequences:

1	А	А	Т	A	Т	Т	Т	А
3	Т	С	А	А	G	С	G	Т
4	G	Т	А	A	A	С	G	А
5	Т	А	С	Т	Т	А	А	С
Α	1/4	2/4	2/4	3/4	1/4	1/4	1/4	2/4
С	0	1/4	1/4	0	0	2/4	0	1/4
Т	2/4	1/4	1/4	1/4	2/4	1/4	1/4	1/4
G	1/4	0	0	0	1/4	0	3/4	0
Consensus String	Т	А	А	А	Т	С	G	А

Calculate the prob(a/P) for every possible 8mer in the removed sequence:

Strings Highlighted in Red	prob(a P)
AAAATTTACCTTAGAAGG	.000732
AAAATTTACCTTAGAAGG	.000122
AAAATTTACCTTAGAAGG	0
AAAATTT <mark>ACCTTAGA</mark> AGG	.000183
AAAATTTA <mark>CCTTAGAA</mark> GG	0
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0

5) Create a distribution of probabilities of *I* mers $prob(\boldsymbol{a}|\boldsymbol{P})$, and randomly select a new starting position based on this distribution.

a) To create this distribution, divide each probability $prob(\boldsymbol{a}|\boldsymbol{P})$ by the lowest probability:

Starting Position 1: prob(AAAATTTA | P) = .000732 / .000122 = 6

Starting Position 2: prob(AAATTTAC | P) = .000122 / .000122 = 1

Starting Position 8: *prob*(ACCTTAGA | P) = .000183 / .000122 = 1.5

Ratio = 6 : 1 : 1.5

Turning Ratios into Probabilities

b) Define probabilities of starting positions according to computed ratios

Probability (Selecting Starting Position 1): 6/(6+1+1.5)=0.706Probability (Selecting Starting Position 2): 1/(6+1+1.5)=0.118Probability (Selecting Starting Position 8): 1.5/(6+1+1.5)=0.176

c) Select the start position according to computed ratios:

P(selecting starting position 1): .706P(selecting starting position 2): .118P(selecting starting position 8): .176

Assume we select the substring with the highest probability – then we are left with the following new substrings and starting positions.

s ₁ =7	GTAAACAATATTTATAGC

- $s_2=1$ AAAATTTACCTCGCAAGG
- s₃=9 CCGTACTGTCAAGCGTGG
- s₄=5 TGAGTAATCGACGTCCCA
- s₅=1 TACTTCACACCCTGTCAA

6) We iterate the procedure again with the above starting positions until we cannot improve the score any more.

Gibbs Sampler in Practice

- Gibbs sampling needs to be modified when applied to samples with unequal distributions of nucleotides (*relative entropy* approach).
- Gibbs sampling often converges to locally optimal motifs rather than globally optimal motifs.
- Needs to be run with many randomly chosen seeds to achieve good results.