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Regulatory Proteins 
• Gene X encodes regulatory protein, a.k.a. a 

transcription factor (TF) 
 

• The 20 unexpressed genes rely on gene X’s TF to 
induce transcription 
 

• A single TF may regulate multiple genes  
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Regulatory Regions 
• Every gene contains a regulatory region (RR) typically 

stretching 100-1000 bp upstream of the transcriptional 
start site 
 

• Located within the RR are the Transcription Factor 
Binding Sites (TFBS), also known as motifs, specific 
for a given transcription factor 

 
• TFs influence gene expression by binding to a specific 

location in the respective gene’s regulatory region  - 
TFBS  
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Transcription Factor Binding Sites 

• A TFBS can be located anywhere within the  
    Regulatory Region. 

 
• TFBS may vary slightly across different 

regulatory regions since non-essential bases 
could mutate 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

Motifs and Transcriptional Start Sites 
 

 

gene ATCCCG 

gene TTCCGG 

gene ATCCCG 

gene ATGCCG 

gene ATGCCC 
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Transcription Factors and Motifs 
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Philipp Bucher, J.Mol. Biol., (1990) 212, 563-578 
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Motif Logo 
• Motifs can mutate on non 

important bases  
• The five motifs in five 

different genes have 
mutations in position 3 
and 5 

• Representations called 
motif logos illustrate the 
conserved and variable 
regions of a motif 
 

TGGGGGA 
TGAGAGA 
TGGGGGA 
TGAGAGA 
TGAGGGA 
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Motif Logos: An Example 

(http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html) 
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Identifying Motifs 
 • Genes are turned on or off by regulatory 

proteins 
 

• These proteins bind to upstream regulatory 
regions of genes to either attract or block an 
RNA polymerase 
 

• Regulatory protein (TF) binds to a short DNA 
sequence called a motif (TFBS) 
 

• So finding the same motif in multiple genes’ 
regulatory regions suggests a regulatory 
relationship amongst those genes 
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Identifying Motifs: Complications 

• We do not know the motif sequence 
 

• We do not know where it is located relative to 
the genes start  
 

• Motifs can differ slightly from one gene to the 
next 
 

• How to discern it from “random” motifs? 
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Jaspar data base 
• Contains weight matrices for bindings sites of 

many transcription factors 
• http://jaspar.genereg.net/ 
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Randomized Algorithms 
and Motif Finding 
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The Motif Finding Problem 
Motif Finding Problem: Given a list of t 

sequences each of length n, find the “best” 
pattern of length l that appears in each of the 
t sequences. 
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A New Motif Finding Approach 
• Motif Finding Problem: Given a list of t 

sequences each of length n, find the “best” 
pattern of length l that appears in each of the 
t sequences. 

• Previously: we solved the Motif Finding 
Problem using a Branch and Bound or a 
Greedy technique. 

• Now: randomly select possible locations and 
find a way to greedily change those locations 
until we have converged to the hidden motif. 
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Profiles Revisited 
• Let s=(s1,...,st) be the set of starting positions 

for l-mers in our t sequences.   
• The substrings corresponding to these 

starting positions will form: 
    - t x l alignment matrix and  
    - 4 x l profile matrix* P. 

 
 
 
 
 
 

 *We make a special note that the profile matrix will be defined in terms of 
the frequency of letters, and not as the count of letters. 
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• Prob(a|P) is defined as the probability that an 
l-mer a was created by the Profile P.  

• If a is very similar to the consensus string of 
P then Prob(a|P)  will be high 

• If a is very different, then Prob(a|P) will be 
low. 

                                           n 
                           Prob(a|P) =Π  pai 

, i 
                                                              i=1 

Scoring Strings with a Profile 
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Scoring Strings with a Profile (cont’d) 

Given a profile: P =  
 
 
 

A 1/2 7/8 3/8 0 1/8 0 
C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 

   Prob(aaacct|P) = ???  
The probability of the consensus string: 
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Scoring Strings with a Profile (cont’d) 

Given a profile: P =  
 
 
 

A 1/2 7/8 3/8 0 1/8 0 
C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 

   Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646 
The probability of the consensus string: 
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Scoring Strings with a Profile (cont’d) 

Given a profile: P =  
 
 
 

A 1/2 7/8 3/8 0 1/8 0 
C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 

Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602 

   Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646 
The probability of the consensus string: 

Probability of a different string: 
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P-Most Probable l-mer 
• Define the P-most probable l-mer from a sequence 

as an l-mer in that sequence which has the highest 
probability of being created from the profile P. 
 

A 1/2 7/8 3/8 0 1/8 0 
C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 

P   = 

Given a sequence = ctataaaccttacatc, find the P-most 
probable l-mer  
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Third try:  c t a t a a a c c t t a c a t c 

Second try:  c t a t a a a c c t t a c a t c 

First try:  c t a t a a a c c t t a c a t c 

P-Most Probable l-mer (cont’d) 

A 1/2 7/8 3/8 0 1/8 0 
C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 

Find the Prob(a|P) of every possible 6-mer:   

-Continue this process to evaluate every possible 6-mer 
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P-Most Probable l-mer (cont’d) 

String, Highlighted in Red Calculations prob(a|P) 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336 

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299 

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0 

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004 

Compute prob(a|P) for every possible 6-mer: 
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P-Most Probable l-mer (cont’d) 

String, Highlighted in Red Calculations Prob(a|P) 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336 
ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299 

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0 

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004 

P-Most Probable 6-mer in the sequence is aaacct: 
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P-Most Probable l-mer (cont’d) 

ctataaaccttacatc 

because Prob(aaacct|P) = .0336  is greater 
than the Prob(a|P) of any other 6-mer in the 
sequence. 

aaacct is the P-most probable 6-mer in: 
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Dealing with Zeroes 

• In our toy example prob(a|P)=0 in many 
cases. In practice, there will be enough 
sequences so that the number of  elements in 
the profile with a frequency of zero is small. 

• To avoid many entries with prob(a|P)=0, 
there exist techniques to equate zero to a 
very small number so that one zero does not 
make the entire probability of a string zero 
(we will not address these techniques here). 
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P-Most Probable l-mers in Many Sequences 

• Find the P-most 
probable l-mer in each 
of the sequences. 

ctataaacgttacatc 

atagcgattcgactg 

cagcccagaaccct 

cggtataccttacatc 

tgcattcaatagctta 

tatcctttccactcac 

ctccaaatcctttaca 

ggtcatcctttatcct 

  

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

P= 
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P-Most Probable l-mers in Many 
Sequences (cont’d) ctataaacgttacatc 

atagcgattcgactg 

cagcccagaaccct 

cggtgaaccttacatc 

tgcattcaatagctta 

tgtcctgtccactcac 

ctccaaatcctttaca 

ggtctacctttatcct 

  P-Most Probable l-mers form a new profile 

1 a a a c g t 

2 a t a g c g 
3 a a c c c t 
4 g a a c c t 
5 a t a g c t 
6 g a c c t g 
7 a t c c t t 
8 t a c c t t 
A 5/8 5/8 4/8 0 0 0 
C 0 0 4/8 6/8 4/8 0 
T 1/8 3/8 0 0 3/8 6/8 
G 2/8 0 0 2/8 1/8 2/8 
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Comparing New and Old Profiles 

Red – frequency increased, Blue – frequency descreased 

1 a a a c g t 

2 a t a g c g 
3 a a c c c t 
4 g a a c c t 
5 a t a g c t 
6 g a c c t g 
7 a t c c t t 
8 t a c c t t 
A 5/8 5/8 4/8 0 0 0 
C 0 0 4/8 6/8 4/8 0 
T 1/8 3/8 0 0 3/8 6/8 
G 2/8 0 0 2/8 1/8 2/8 

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 
T 1/8 1/8 0 0 1/4 7/8 
G 1/4 0 1/8 3/8 1/4 1/8 
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Greedy Profile Motif Search 
Use P-Most probable l-mers to adjust start positions 

until we reach a “best” profile; this is the motif. 
 

1) Select random starting positions. 
2) Create a profile P from the substrings at these 

starting positions. 
3) Find the P-most probable l-mer a in each sequence 

and change the starting position to the starting 
position of a. 

4) Compute a new profile based on the new starting 
positions after each iteration and proceed until we 
cannot increase the score anymore. 
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GreedyProfileMotifSearch Algorithm 

1. GreedyProfileMotifSearch(DNA, t, n, l ) 
2.  Randomly select starting positions s=(s1,…,st) from DNA 
3.  bestScore  0 
4.  while Score(s, DNA) > bestScore 
5.         Form profile P from s 
6.     bestScore  Score(s, DNA) 
7.     for   i  1  to  t 
8.         Find a P-most probable l-mer a from the ith sequence 
9.         si  starting position of a 
10.  return bestScore 
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GreedyProfileMotifSearch Analysis 

• Since we choose starting positions randomly, 
there is little chance that our guess will be close 
to an optimal motif, meaning it will take a very 
long time to find the optimal motif. 

• It is unlikely that the random starting positions 
will lead us to the correct solution at all. 

• In practice, this algorithm is run many times with 
the hope that random starting positions will be 
close to the optimum solution simply by chance. 
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Gibbs Sampling 
• GreedyProfileMotifSearch is probably not the 

best way to find motifs. 
• However, we can improve the algorithm by 

introducing Gibbs Sampling, an iterative 
procedure that discards one l-mer after each 
iteration and replaces it with a new one. 

• Gibbs Sampling proceeds more slowly and 
chooses new l-mers at random increasing the 
odds that it will converge to the correct 
solution. 



An Introduction to Bioinformatics Algorithms www.bioalgorithms.info 

How Gibbs Sampling Works 
 1)  Randomly choose starting positions  
         s = (s1,...,st) and form the set of  l-mers associated  
         with these starting positions. 
    2)  Randomly choose one of the t sequences. 
 3)  Create a profile P from the other t -1 sequences. 
 4)  For each position in the removed sequence, 

 calculate the probability that the l-mer starting at 
 that position was generated by P. 

 5)  Choose a new starting position for the removed 
 sequence at random based on the probabilities 
 calculated in step 4. 

 6)  Repeat steps 2-5 until there is no improvement 
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Gibbs Sampling: an Example 
Input:  
 t = 5 sequences, motif length  l = 8 
 
  1.  GTAAACAATATTTATAGC 

  2.  AAAATTTACCTCGCAAGG 

   3.  CCGTACTGTCAAGCGTGG 

   4.  TGAGTAAACGACGTCCCA 

  5.  TACTTAACACCCTGTCAA 
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Gibbs Sampling: an Example 
1)  Randomly choose starting positions, 
s=(s1,s2,s3,s4,s5) in the 5 sequences:  
   
 s1=7 GTAAACAATATTTATAGC 

 s2=11 AAAATTTACCTTAGAAGG 

 s3=9 CCGTACTGTCAAGCGTGG 

 s4=4  TGAGTAAACGACGTCCCA 

 s5=1 TACTTAACACCCTGTCAA 
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Gibbs Sampling: an Example 

2) Choose one of the sequences at random: 
 Sequence 2: AAAATTTACCTTAGAAGG  
 
    s1=7 GTAAACAATATTTATAGC 

 s2=11 AAAATTTACCTTAGAAGG 

 s3=9 CCGTACTGTCAAGCGTGG 

 s4=4  TGAGTAAACGACGTCCCA 

 s5=1 TACTTAACACCCTGTCAA 
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Gibbs Sampling: an Example 

2) Choose one of the sequences at random: 
 Sequence 2: AAAATTTACCTTAGAAGG  
 
    s1=7 GTAAACAATATTTATAGC 

  

 s3=9 CCGTACTGTCAAGCGTGG 

 s4=4  TGAGTAAACGACGTCCCA 

 s5=1 TACTTAACACCCTGTCAA 
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Gibbs Sampling: an Example 
3) Create profile P from l-mers in remaining 4 

sequences: 
1 A A T A T T T A 
3 T C A A G C G T 
4 G T A A A C G A 
5 T A C T T A A C 
A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4 
C 0 1/4 1/4 0 0 2/4 0 1/4 
T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4 
G 1/4 0 0 0 1/4 0 3/4 0 

Consensus 
String 

T A A A T C G A 
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Gibbs Sampling: an Example 
4) Calculate the prob(a|P) for every possible 8-

mer in the removed sequence:      

          Strings Highlighted in Red                      prob(a|P)  
AAAATTTACCTTAGAAGG .000732 
AAAATTTACCTTAGAAGG .000122 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG .000183 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
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Gibbs Sampling: an Example 
 
 
 

5)  Create a distribution of probabilities of l-
mers prob(a|P), and randomly select a new 
starting position based on this distribution.  

Starting Position 1:  prob( AAAATTTA | P ) =  .000732   / .000122  =   6 

Starting Position 2:  prob( AAATTTAC | P ) =  .000122   /  .000122  =  1 

Starting Position 8:  prob( ACCTTAGA | P ) = .000183   /  .000122  =  1.5 

  a) To create this distribution, divide each 
probability  prob(a|P) by the lowest probability: 

Ratio = 6 : 1 : 1.5 
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Turning Ratios into Probabilities 
 
 
 

Probability (Selecting Starting Position 1):   6/(6+1+1.5)=  0.706 

Probability (Selecting Starting Position 2):   1/(6+1+1.5)=  0.118  

Probability (Selecting Starting Position 8):   1.5/(6+1+1.5)=0.176 

 b) Define probabilities of starting positions 
according to computed ratios 
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Gibbs Sampling: an Example 
 c) Select the start position according to 
computed ratios: 

P(selecting starting position 1):     .706 

P(selecting starting position 2):     .118 

P(selecting starting position 8):     .176 
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Gibbs Sampling: an Example 
Assume we select the substring with the 
highest probability – then we are left with the 
following new substrings and starting positions. 
 
  s1=7 GTAAACAATATTTATAGC 

  s2=1 AAAATTTACCTCGCAAGG 

  s3=9 CCGTACTGTCAAGCGTGG 

  s4=5  TGAGTAATCGACGTCCCA 

  s5=1 TACTTCACACCCTGTCAA 
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Gibbs Sampling: an Example 
6) We iterate the procedure again with the 

above starting positions until we cannot 
improve the score any more. 
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Gibbs Sampler in Practice 
•  Gibbs sampling needs to be modified when 

applied to samples with unequal distributions 
of nucleotides (relative entropy approach).  

• Gibbs sampling often converges to locally  
optimal motifs rather than globally optimal 
motifs. 

• Needs to be run with many randomly chosen 
seeds to achieve good results.  
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