Hidden Markov Models

Nucleotide frequencies in the human genome

A	C	T	G
29.5	20.4	20.5	29.6

Written CpG to distinguish from a $C=G$ base pair)
 CpG Islands

- CpG dinucleotides are rarer than would be expected from the independent probabilities of C and G.
- Reason: When CpG occurs, C is typically chemically modified by methylation and there is a relatively high chance of methyl-C mutating into T
- High CpG frequency may be biologically significant: e.g., may signal promoter region ("start" of a gene).
- A CpG island is a region where CpG dinucleotides are much more abundant than elsewhere.

Hidden Markov Models

- Components:
- Observed variables
- Emitted symbols
- Hidden variables
- Relationships between them
- Represented by a graph with transition probabilities
- Goal: Find the most likely explanation for the observed variables

The occasionally dishonest casino

- A casino uses a fair die most of the time, but occasionally switches to a loaded one
- Fair die: $\operatorname{Prob}(1)=\operatorname{Prob}(2)=\ldots=\operatorname{Prob}(6)=1 / 6$
- Loaded die: $\operatorname{Prob}(1)=\operatorname{Prob}(2)=\ldots=\operatorname{Prob}(5)=1 / 10$, $\operatorname{Prob}(6)=\frac{1}{2}$
- These are the emission probabilities
- Transition probabilities
- Prob(Fair \rightarrow Loaded) $=0.01$
- Prob(Loaded \rightarrow Fair) $=0.2$
- Transitions between states obey a Markov process

An HMM for the occasionally dishonest casino

The occasionally dishonest casino

- Known:
- The structure of the model
- The transition probabilities
- Hidden: What the casino did
- FFFFFLLLLLLLFFFF...
- Observable: The series of die tosses
- 3415256664666153...
- What we must infer:
- When was a fair die used?
- When was a loaded one used?
- The answer is a seguence FFFFFFFLLLLLLFFF. . .

Making the inference

- Model assigns a probability to each explanation of the observation:

$$
\begin{aligned}
& P(326 \mid F F L) \\
& =P(3 \mid F) \cdot P(F \rightarrow F) \cdot P(2 \mid F) \cdot P(F \rightarrow L) \cdot P(6 \mid L) \\
& =1 / 6 \cdot 0.99 \cdot 1 / 6 \cdot 0.01 \cdot \frac{1}{2}
\end{aligned}
$$

- Maximum Likelihood: Determine which explanation is most likely
- Find the path most likelyto have produced the observed sequence
- Total probability: Determine probability that observed sequence was produced by the HMM
- Consider all paths that could have produced the observed sequence

Notation

- x is the sequence of symbols emitted by model
- x_{i} is the symbol emitted at time i
- A path, π, is a sequence of states
- The i-th state in π is π_{i}
- $a_{k r}$ is the probability of making a transition from state k to state r.

$$
a_{k r}=\operatorname{Pr}\left(\pi_{i}=r \mid \pi_{i-1}=k\right)
$$

- $e_{k}(b)$ is the probability that symbol b is emitted when in state k

$$
e_{k}(b)=\operatorname{Pr}\left(x_{i}=b \mid \pi_{i}=k\right)
$$

A "parse" of a sequence

The occasionally dishonest casino

$$
x=\left\langle x_{1}, x_{2}, x_{3}\right\rangle=\langle 6,2,6\rangle
$$

$$
\operatorname{Pr}\left(x, \pi^{(1)}\right)=a_{0 F} e_{F}(6) a_{F F} e_{F}(2) a_{F F} e_{F}(6)
$$

${ }^{⿴} \pi^{(1)}=F F F$

$$
\begin{aligned}
& =0.5 \times \frac{1}{6} \times 0.99 \times \frac{1}{6} \times 0.99 \times \frac{1}{6} \\
& \approx 0.00227
\end{aligned}
$$

$$
\pi^{(2)}=\angle L L
$$

$$
\operatorname{Pr}\left(x, \pi^{(2)}\right)=a_{0 L} e_{L}(6) a_{L L} e_{L}(2) a_{L L} e_{L}(6)
$$

$$
=0.5 \times 0.5 \times 0.8 \times 0.1 \times 0.8 \times 0.5
$$

$$
=0.008
$$

$$
\begin{aligned}
\pi^{(3)}=L F L \quad \operatorname{Pr}\left(x, \pi^{(3)}\right) & =a_{0 L} e_{L}(6) a_{L F} e_{F}(2) a_{F L} e_{L}(6) a_{L 0} \\
& =0.5 \times 0.5 \times 0.2 \times \frac{1}{6} \times 0.01 \times 0.5 \\
& \approx 0.0000417
\end{aligned}
$$

The most probable path

The most likely path π^{*} satisfies

$$
\pi^{*}=\operatorname{argmax} \operatorname{Pr}(x, \pi)
$$

To find π^{*}, consider all possible ways the last symbol of x could have been emitted

Let $v_{k}(i)=$ Prob. of path $\left\langle\pi_{1}, \cdots, \pi_{i}\right\rangle$ most likely to emit $\left\langle x_{1}, \ldots, x_{i}\right\rangle$ such that $\pi_{i}=k$
Then

$$
v_{k}(i)=e_{k}\left(x_{i}\right) \max _{r}\left(v_{r}(i-1) a_{r k}\right)
$$

The Viterbi Algorithm

- Initialization ($i=0$)

$$
v_{0}(0)=1, \quad v_{k}(0)=0 \text { for } k>0
$$

- Recursion ($i=1, \ldots, L$): For each state k

$$
v_{k}(i)=e_{k}\left(x_{i}\right) \max _{r}\left(v_{r}(i-1) a_{r k}\right)
$$

- Termination:

$$
\operatorname{Pr}\left(x, \pi^{*}\right)=\max _{k}\left(v_{k}(L) a_{k 0}\right)
$$

To find π^{*}, use trace-back, as in dynamic programming

Viterbi: Example

	x			
B	1	0	0	0
$\pi \mathrm{F}$	0	$\begin{gathered} (1 / 6) \times(1 / 2) \\ =1 / 12 \end{gathered}$	$\begin{aligned} & (1 / 6) \times \max \{(1 / 12) \times 0.99 \\ & \quad=0.01375 \end{aligned}$	$\begin{gathered} (1 / 6) \times \operatorname{max\{ 0.01375\times 0.99,} 0.02 \times 0.2\} \\ =0.00226875 \end{gathered}$
L	0	$\begin{gathered} (1 / 2) \div(1 / 2) \\ -1 / 4 \end{gathered}$	$\begin{gathered} (1 / 10) \times \max \{(1 / 12) \times 0.01, \\ =0.02 \stackrel{(1 / 4) \times 0.8\}}{ } \end{gathered}$	$\begin{gathered} (1 / 2) \times \max \{0.01375 \times 0.01, \\ =0.08 \quad 0.02 \times 0.8\} \end{gathered}$

$$
v_{k}(i)=e_{k}\left(x_{i}\right) \max _{r}\left(v_{r}(i-1) a_{r k}\right)
$$

Viterbi gets it right more often than not

Rolls	315116246446644245321131631164152133625144543631656626566666
Die	FFFLLLLLLLLLLLLLLL
Viterbi	
Rolls	651166453132651245636664631636663162326455235266666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFPFFFFFFFFFFFFFFFFFFL
Viterbi	FFFL
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLLFF
Viterbi	LLLLLLLLLLLLFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF

An HMM for CpG islands

In CpG Island

Emission probabilities are 0 or 1. E.g. $e_{G-}(G)=1, e_{G-}(T)=0$ See Durbin et al., Biological Sequence Analysis,. Cambridge 1998

Total probabilty

Many different paths can result in observation x.

The probability that our model will emit x is

$$
\operatorname{Pr}(x)=\sum_{\pi} \operatorname{Pr}(x, \pi)<\begin{gathered}
\text { Total } \\
\text { Probability }
\end{gathered}
$$

If HMM models a family of objects, we want total probability to peak at members of the family. (Training)

Total probability

$\operatorname{Pr}(x)$ can be computed in the same way as probability of most likely path.
Let

$$
\begin{gathered}
f_{k}(i)=\text { Prob. of observing }\left\langle x_{1}, \ldots, x_{i}\right\rangle \\
\text { assuming that } \pi_{i}=k
\end{gathered}
$$

Then

$$
f_{k}(i)=e_{k}\left(x_{i}\right) \sum_{r} f_{r}(i-1) a_{r k}
$$

and

$$
\operatorname{Pr}(x)=\sum_{k} f_{k}(L) a_{k 0}
$$

The Forward Algorithm

- Initialization ($i=0$)

$$
f_{0}(0)=1, \quad f_{k}(0)=0 \text { for } k>0
$$

- Recursion ($i=1, \ldots, \ldots$): For each state k

$$
f_{k}(i)=e_{k}\left(x_{i}\right) \sum_{r} f_{r}(i-1) a_{r k}
$$

- Termination:

$$
\operatorname{Pr}(x)=\sum_{k} f_{k}(L) a_{k 0}
$$

The Backward Algorithm

- Initialization ($i=L$)

$$
b_{k}(L)=a_{k 0} \text { for all } k
$$

- Recursion ($i=L-1, . . ., 1$): For each state k

$$
b_{k}(i)=\sum_{l} a_{k \mid} e_{l}\left(x_{i+1}\right) b_{1}(i+1)
$$

- Termination:

$$
\operatorname{Pr}(x)=\sum_{1} a_{01} e_{1}\left(x_{1}\right) b_{1}(1)
$$

Posterior Decoding

- How likely is it that my observation comes from a certain state?
$P\left(x_{i}\right.$ is emitted by state k | whole observation)
- Like the Forward matrix, one can compute a Backward matrix
- Multiply Forward and Backward entries

$$
P\left(\pi_{i}=k \mid x\right)=\frac{f_{k}(i) \cdot b_{k}(i)}{P(x)}
$$

- $P(x)$ is the total probability computed by, e.g., forward algorithm

Posterior Decoding

With prob 0.05 for switching to the loaded die:

With prob 0.01 for switching to the loaded die:

Estimating the probabilities ("training")

- Baum-Welch algorithm
- Start with initial guess at transition probabilities
- Refine guess to improve the total probability of the training data in each step
- May get stuck at local optimum
- Special case of expectation-maximization (EM) algorithm
- Viterbi training
- Derive probable paths for training data using Viterbi algorithm
- Re-estimate transition probabilities based on Viterbi path
- Iterate until paths stop changing

Profile HMMs

- Model a family of sequences
- Derived from a multiple alignment of the family
- Transition and emission probabilities are position-specific
- Set parameters of model so that total probability peaks at members of family
- Sequences can be tested for membership in family using Viterbi algorithm to match against profile

Profile HMMs

A. Sequence alignment

N	\bullet	F	L	S
N	\bullet	F	L	S
N	K	Y	L	T
Q	\bullet	W	-	T

RED POSITION REPRESENTS ALIGNMENT IN COLUMN GREEN POSITION REPRESENTS INSERT IN COLUMN PURPLE POSITION REPRESENTS DELETE IN COLUMN

B. Hidden Markov model for sequence alignment

Profile HMMs: Example

An alignment of proteins from the HMM:

- E G - K -
- E A - K -

P D - K L

- E G I W -

The states giving this alignment:

$$
\mathrm{B} \rightarrow \mathrm{I} 0 \rightarrow \mathrm{M} 1 \longrightarrow \mathrm{D} 2 \longrightarrow \mathrm{M} 3 \rightarrow \mathrm{I} 3 \rightarrow \mathrm{E}
$$

$$
\mathrm{B} \longrightarrow \mathrm{M} 1 \longrightarrow \mathrm{M} 2 \rightarrow \mathrm{I} 2 \rightarrow \mathrm{M} 3 \longrightarrow \mathrm{E}
$$

Note: These sequences could lead to other paths.

Source: http://www.csit.fsu.edu/~swofford/bioinformatics_spring05/

Pfam

- "A comprehensive collection of protein domains and families, with a range of wellestablished uses including genome annotation."
- Each family is represented by two multiple sequence alignments and two profile-Hidden Markov Models (profile-HMMs).
- A. Bateman et al. Nucleic Acids Research (2004) Database Issue 32:D138-D141

Lab 5

Some recurrences

$$
\begin{aligned}
& v_{M_{1}}(i)=e_{M_{1}}\left(x_{i}\right) \cdot \max \left\{\begin{array}{l}
a_{B M_{1}} \cdot v_{B}(i-1) \\
a_{I_{1} M_{1}} \cdot v_{I_{1}}(i-1)
\end{array}\right. \\
& v_{I_{1}}(i)=e_{I_{1}}\left(x_{i}\right) \cdot a_{B I_{1}} \cdot v_{B}(i-1) \\
& v_{Q_{1}}(i)=e_{Q_{1}}(-) \cdot a_{B Q_{1}} \cdot v_{B}(i)
\end{aligned}
$$

More recurrences

$$
\begin{aligned}
& v_{M_{2}}(i)=e_{M_{2}}\left(x_{i}\right) \cdot \max \left\{\begin{array}{l}
a_{I_{2} M_{2}} \cdot v_{I_{2}}(i-1) \\
a_{M_{1} M_{2}} \cdot v_{M_{1}}(i-1) \\
a_{D_{1} M_{2}} \cdot v_{Q_{1}}(i-1)
\end{array}\right. \\
& v_{I_{2}}(i)=e_{I_{2}}\left(x_{i}\right) \cdot a_{M_{1} I_{2}} \cdot v_{M_{1}}(i-1) \\
& v_{D_{2}}(i)=e_{D_{2}}(-) \cdot a_{M_{1} D_{2}} \cdot v_{M_{1}}(i) \\
&
\end{aligned}
$$

	ε	T	A	G	ε
Begin	1	0	0	0	0
M_{1}	0	0.35			
M_{2}	0	0.04			
M_{3}	0	0			
I_{1}	0	0.025			
I_{2}	0	0			
I_{3}	0	0			
I_{4}	0	0			
D_{1}	0.2	0			
D_{2}	0	0.07			
D_{3}	0	0			
End	0	0			

