Ansprechpartner

Prof. Dr. Stefan Mundlos
Telefon:+49 30 8413-1263-1449
Dr. Patricia Marquardt
Presse- und Öffentlichkeitsarbeit
Telefon:+49 30 8413-1716Fax:+49 30 8413-1671

Originalpublikation

Martin Franke, Daniel M. Ibrahim, Guillaume Andrey, Wibke Schwarzer, Verena Heinrich, Robert Schöpflin, Katerina Kraft, Rieke Kempfer, Ivana Jerković, Wing-Lee Chan, Malte Spielmann, Bernd Timmermann, Lars Wittler, Ingo Kurth, Paola Cambiaso, Orsetta Zuffardi, Gunnar Houge, Lindsay Lambie, Francesco Brancati, Ana Pombo, Martin Vingron, Francois Spitz & Stefan Mundlos
Formation of new chromatin domains determines pathogenicity of genomic duplications.

Verwandte Artikel

DNA-Struktur beeinflusst Wirkung von Transkriptionsfaktoren

2. September 2016

Räumliche Anordnung der Bindungsstelle und benachbarter Abschnitte verändert Genaktivität [mehr]
Berliner Forscher erklären Entstehung seltener Erkrankungen durch Zerstörung funktionaler Grenzen innerhalb der DNA

Genetische Krankheiten verschieben Grenzen im Genom

7. Mai 2015

Berliner Forscher erklären Entstehung seltener Erkrankungen durch Zerstörung funktionaler Grenzen innerhalb der DNA [mehr]

Neue Aufgaben für Gene nach Verdopplungen im Erbgut

Berliner Forscher beschreiben, wie Verdopplungen im Erbgut die dreidimensionale Struktur des Genoms beeinflussen

5. Oktober 2016

Verdopplungen unterschiedlich großer Abschnitte der DNA gehören zu den häufigsten Veränderungen im Erbgut, doch ihre Auswirkungen auf den Organismus sind für Genetiker bislang häufig überraschend und schwer zu verstehen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für molekulare Genetik und der Charité - Universitätsmedizin Berlin haben jetzt gezeigt, dass solche Duplikationen je nach ihrer Lage im Genom zur Ausbildung neuer funktioneller Einheiten führen können, den sogenannten „topologically associated domains“. Sie beschreiben, wie durch Verdopplung unterschiedlich langer DNA-Abschnitte neue TADs entstehen und die verdoppelten Gene dabei neue Funktionen erhalten können. Dieser Mechanismus stellt einen Weg für die Entstehung neuer Gene im Laufe der Evolution dar und hat weitreichende Folgen für die Interpretation genetischer Veränderungen beim Menschen.
A) Schematische Darstellung zweier TADs im gesunden Genom. <br />B) Die Duplikation befindet sich vollständig innerhalb einer TAD (Intra-TAD), die übe Bild vergrößern
A) Schematische Darstellung zweier TADs im gesunden Genom.
B) Die Duplikation befindet sich vollständig innerhalb einer TAD (Intra-TAD), die übergeordnete Struktur des Genoms wird nicht beeinflusst. Innerhalb der TAD kommt es zu einer Fehlregulation des betroffenen Gens.
C) Die Duplikation betrifft auch die Grenze zwischen zwei TADs (Inter-TAD), dadurch entsteht eine neue TAD (Neo-TAD). Diese enthält nur Steuerungselemente, aber kein Gen, daher ergeben sich keinerlei Auswirkungen auf den Organismus.
D) Die Duplikation betrifft die Grenze zwischen zwei TADs (Inter-TAD) sowie ein Gen der benachbarten TAD. Die entstandene Neo-TAD enthält die Steuerungsmechanismen der orangenen TAD und ein Gen aus der blauen TAD, das daher fehlreguliert wird. [weniger]

Topologically associated domains – abgekürzt TAD – sind räumlich getrennte Regionen im Erbgut  von Menschen und anderen Säugetieren. Dabei handelt es sich um DNA-Abschnitte, die im Durchschnitt eine Million Basenpaare lang sind und ein oder mehrere Gene und deren Steuerungselemente (enhancer) enthalten. Diese kontrollieren, wann und in welchen Zellen ein Gen ein- oder ausgeschaltet wird. Die TADs sind durch Grenzelemente räumlich voneinander getrennt, so dass die Genaktivität in benachbarten TADs voneinander unabhängig ist.

Die Wissenschaftler der Forschungsgruppe Entwicklung & Krankheit am Max-Planck-Institut für molekulare Genetik haben nun eine bislang unbekannte Funktion der TADs entdeckt, als sie Duplikationen unterschiedlicher Größe im Bereich des SOX9-Gens untersuchten. Dieses Gen ist für die Bildung eines Transkriptionsfaktors verantwortlich, der wichtige Funktionen bei der Entwicklung des Skeletts und der Ausbildung des männlichen Geschlechts hat. Durch eine Analyse der dreidimensionalen Struktur des Genoms konnten die Forscher zeigen, dass sich in der SOX9-Region zwei große TADs befinden. Eine enthält das SOX9-Gen und dessen Steuerungselemente, die andere zwei Gene für die Kaliumkanäle KCNJ2 und KCNJ16 und deren Steuerungselemente.

Unterschiedliche Arten von Duplikationen

Duplikationen im Bereich des SOX9-Gens können zu völlig unterschiedlichen Krankheitsbildern führen. Um herauszufinden, warum das so ist, haben die Forscher drei Duplikationen untersucht, die alle die Steuerungselemente des SOX9-Gens und zusätzlich unterschiedlich lange weitere Abschnitte der DNA umfassen.

Die erste der untersuchten Duplikationen führt beim Menschen zu einer Umkehrung des Geschlechts von weiblich zu männlich. Dabei sind die betroffenen Personen äußerlich Männer, obwohl sie zwei X-Chromosomen haben. Die Wissenschaftler konnten nachweisen, dass diese Duplikation nur die DNA und Steuerungselemente betrifft, die innerhalb der SOX9-TAD liegen. Größere Duplikationen, die sich weiter in Richtung der benachbarten Gene KCNJ2 und KCNJ16 erstrecken und damit auch Teile der benachbarten TAD beinhalten, haben überraschenderweise dagegen keinerlei klinische Auswirkungen auf die Entwicklung des Geschlechts. Noch größere Duplikationen, die neben der nicht-kodierenden DNA aus der SOX9-Region auch das benachbarte KCNJ2-Gen umfassen, führen dagegen zum sogenannten Cooks-Syndrom – einer angeborenen Fehlbildung der Hände, die mit fehlenden Fingernägeln und verkürzten Fingern einhergeht.

Intra- und Inter-TAD-Duplikationen

„Je nach Lage einer Duplikation müssen wir also zwischen Intra-TAD- und Inter-TAD-Duplikationen unterscheiden“, erklärt Stefan Mundlos, Leiter der Forschungsgruppe, in der diese Arbeiten durchgeführt worden sind. „Bei der Umkehrung des Geschlechts werden Steuerungselemente innerhalb einer TAD verdoppelt, dabei bleibt aber der Effekt auf diese TAD beschränkt. Dadurch wird ausschließlich das Gen in der TAD fehlgesteuert und so entweder zu stark oder zu wenig aktiviert. Im Fall des SOX9-Gens kommt es zu einer erhöhten Genaktivität und somit zu einer Ausbildung des männlichen Geschlechts, auch wenn die betroffenen Patienten genetisch weiblich sind.“

Da die TADs funktional voneinander abgegrenzt sind, beschränken sich die Folgen einer Intra-TAD-Duplikation auf die betroffene TAD und haben keine Auswirkungen auf die benachbarten TADs. Bei den Inter-TAD-Duplikationen hingegen werden nicht nur die Steuerungselemente der SOX9-Region, sondern auch die Grenze zwischen zwei TADs verdoppelt. Durch diese verdoppelte Grenze entsteht eine neue TAD (Neo-TAD), die den duplizierten Bereich des Genoms in sich einschließt und von seiner Umgebung abschirmt.

„Die Auswirkungen einer Neo-TAD hängen davon ab, welche Elemente des Genoms sie enthält“, so Mundlos. „Wenn in der Neo-TAD nur Steuerungselemente, aber kein Gen vorhanden sind, hat dies für den Organismus keine weiteren Folgen. Die Steuerungselemente werden durch die Grenzen der TAD von den benachbarten Genen abgeschirmt und können sie nicht weiter beeinflussen. Wenn bei einer Duplikation allerdings zu den Steuerungselementen in der Neo-TAD auch ein Gen aus einer benachbarten TAD hinzukommt, wird dieses auf eine vom Organismus nicht vorgesehene Weise reguliert und kann Erkrankungen oder Fehlbildungen auslösen.“

TAD-Verdopplung mit Gen und Steuerungselement

Genau dies ist der Fall bei der dritten von den Forschern untersuchten Duplikation, die beim Menschen das Cooks-Syndrom auslöst. Die neu entstandene TAD enthält nicht nur die Steuerungselemente des SOX9-Gens, sondern auch eine Kopie des KCNJ2-Gens. Dieses wird in der Neo-TAD durch die Steuerungselemente des SOX9-Gens reguliert und dadurch bei der Entwicklung des Organismus zum falschen Zeitpunkt und in den falschen Geweben aktiv. Dies verursacht die oben beschriebenen Fehlbildungen.

Durch die Einbeziehung der TAD-Struktur in die Interpretation von genetischen Veränderungen können Wissenschaftler wesentlich genauere Aussagen über die Auswirkungen von Mutationen machen als bisher. Dies betrifft zum Beispiel Duplikationen, die Erbkrankheiten verursachen, aber auch Veränderungen in Krebszellen, in denen häufig Duplikationen gefunden werden.

Duplikationen gehören zu den treibenden Kräften der Evolution. Die Verdopplung eines Gens ermöglicht es, dass die Kopie neue bzw. andere Eigenschaften entwickelt als das ursprüngliche Gen, welches durch diesen Prozess nicht beeinträchtigt wird. So könnten Duplikationen durch die neue Kombination von Steuerungselementen und Genen in Neo-TADs einen evolutionären Mechanismus zur Erlangung neuer Genfunktionen darstellen.

pm/HR

Die Forschungsgruppe von Stefan Mundlos wird von einer privaten Förderin der Max-Planck-Förderstiftung im Rahmen des Projektes „Moderne Verfahren der Genomanalyse bei seltenen Erkrankungen“ unterstützt.

 
loading content