
Semi-Supervised Learning

edited by

Olivier Chapelle,

Bernhard Schölkopf,

and Alexander Zien

Semi-Supervised Learning

Adaptive Computation and Machine Learning

Thomas Dietterich, Editor

Christopher Bishop, David Heckerman, Michael Jordan, and Michael Kearns, As-

sociate Editors

Bioinformatics: The Machine Learning Approach, Pierre Baldi and Søren Brunak

Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto

Graphical Models for Machine Learning and Digital Communication, Brendan J.

Frey

Learning in Graphical Models, Michael I. Jordan

Causation, Prediction, and Search, second edition, Peter Spirtes, Clark Glymour,

and Richard Scheines

Principles of Data Mining, David Hand, Heikki Mannila, and Padhraic Smyth

Bioinformatics: The Machine Learning Approach, second edition, Pierre Baldi and

Søren Brunak

Learning Kernel Classifiers: Theory and Algorithms, Ralf Herbrich

Learning with Kernels: Support Vector Machines, Regularization, Optimization, and

Beyond, Bernhard Schölkopf and Alexander J. Smola

Introduction to Machine Learning, Ethem Alpaydin

Gaussian Processes for Machine Learning, Carl Edward Rasmussen and Christo-

pher K. I. Williams

Semi-Supervised Learning, Olivier Chapelle, Bernhard Schölkopf, and Alexander

Zien

Semi-Supervised Learning

Olivier Chapelle

Bernhard Schölkopf

Alexander Zien

The MIT Press

Cambridge, Massachusetts

London, England

c©2006 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic

or mechanical means (including photocopying, recording, or information storage and retrieval)

without permission in writing from the publisher.

Typeset by the authors using LATEX2ε

Printed and bound in the United States of America

Library of Congress Cataloging-in-Publication Data

Semi-supervised learning / edited by Olivier Chapelle, Bernhard Schölkopf, Alexander Zien.

p. cm. – (Adaptive computation and machine learning)

Includes bibliographical references.

ISBN 978-0-262-03358-9 (alk. paper)

1. Supervised learning (Machine learning) I. Chapelle, Olivier. II. Schölkopf, Bernhard. III. Zien,

Alexander. IV. Series.

Q325.75.S42 2006 006.3’1–dc22 2006044448

10 9 8 7 6 5 4 3 2 1

Contents

Series Foreword xi

Preface xiii

1 Introduction to Semi-Supervised Learning 1

1.1 Supervised, Unsupervised, and Semi-Supervised Learning 1

1.2 When Can Semi-Supervised Learning Work? 4

1.3 Classes of Algorithms and Organization of This Book 8

I Generative Models 13

2 A Taxonomy for Semi-Supervised Learning Methods 15

Matthias Seeger

2.1 The Semi-Supervised Learning Problem 15

2.2 Paradigms for Semi-Supervised Learning 17

2.3 Examples . 22

2.4 Conclusions . 31

3 Semi-Supervised Text Classification Using EM 33

Kamal Nigam, Andrew McCallum, Tom Mitchell

3.1 Introduction . 33

3.2 A Generative Model for Text . 35

3.3 Experimental Results with Basic EM 41

3.4 Using a More Expressive Generative Model 43

3.5 Overcoming the Challenges of Local Maxima 49

3.6 Conclusions and Summary . 54

4 Risks of Semi-Supervised Learning 57

Fabio Cozman, Ira Cohen

4.1 Do Unlabeled Data Improve or Degrade Classification Performance? 57

4.2 Understanding Unlabeled Data: Asymptotic Bias 59

4.3 The Asymptotic Analysis of Generative Semi-Supervised Learning . 63

4.4 The Value of Labeled and Unlabeled Data 67

4.5 Finite Sample Effects . 69

vi Contents

4.6 Model Search and Robustness . 70

4.7 Conclusion . 71

5 Probabilistic Semi-Supervised Clustering with Constraints 73

Sugato Basu, Mikhail Bilenko, Arindam Banerjee, Raymond Mooney

5.1 Introduction . 74

5.2 HMRF Model for Semi-Supervised Clustering 75

5.3 HMRF-KMeans Algorithm . 81

5.4 Active Learning for Constraint Acquisition 93

5.5 Experimental Results . 96

5.6 Related Work . 100

5.7 Conclusions . 101

II Low-Density Separation 103

6 Transductive Support Vector Machines 105

Thorsten Joachims

6.1 Introduction . 105

6.2 Transductive Support Vector Machines 108

6.3 Why Use Margin on the Test Set? 111

6.4 Experiments and Applications of TSVMs 112

6.5 Solving the TSVM Optimization Problem 114

6.6 Connection to Related Approaches 116

6.7 Summary and Conclusions . 116

7 Semi-Supervised Learning Using Semi-Definite Programming 119

Tijl De Bie, Nello Cristianini

7.1 Relaxing SVM Transduction . 119

7.2 An Approximation for Speedup . 126

7.3 General Semi-Supervised Learning Settings 128

7.4 Empirical Results . 129

7.5 Summary and Outlook . 133

Appendix: The Extended Schur Complement Lemma 134

8 Gaussian Processes and the Null-Category Noise Model 137

Neil D. Lawrence, Michael I. Jordan

8.1 Introduction . 137

8.2 The Noise Model . 141

8.3 Process Model and Effect of the Null-Category 143

8.4 Posterior Inference and Prediction 145

8.5 Results . 147

8.6 Discussion . 149

9 Entropy Regularization 151

Contents vii

Yves Grandvalet, Yoshua Bengio

9.1 Introduction . 151

9.2 Derivation of the Criterion . 152

9.3 Optimization Algorithms . 155

9.4 Related Methods . 158

9.5 Experiments . 160

9.6 Conclusion . 166

Appendix: Proof of Theorem 9.1 . 166

10 Data-Dependent Regularization 169

Adrian Corduneanu, Tommi Jaakkola

10.1 Introduction . 169

10.2 Information Regularization on Metric Spaces 174

10.3 Information Regularization and Relational Data 182

10.4 Discussion . 189

III Graph-Based Methods 191

11 Label Propagation and Quadratic Criterion 193

Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux

11.1 Introduction . 193

11.2 Label Propagation on a Similarity Graph 194

11.3 Quadratic Cost Criterion . 198

11.4 From Transduction to Induction . 205

11.5 Incorporating Class Prior Knowledge 205

11.6 Curse of Dimensionality for Semi-Supervised Learning 206

11.7 Discussion . 215

12 The Geometric Basis of Semi-Supervised Learning 217

Vikas Sindhwani, Misha Belkin, Partha Niyogi

12.1 Introduction . 217

12.2 Incorporating Geometry in Regularization 220

12.3 Algorithms . 224

12.4 Data-Dependent Kernels for Semi-Supervised Learning 229

12.5 Linear Methods for Large-Scale Semi-Supervised Learning 231

12.6 Connections to Other Algorithms and Related Work 232

12.7 Future Directions . 234

13 Discrete Regularization 237

Dengyong Zhou, Bernhard Schölkopf

13.1 Introduction . 237

13.2 Discrete Analysis . 239

13.3 Discrete Regularization . 245

13.4 Conclusion . 249

viii Contents

14 Semi-Supervised Learning with Conditional Harmonic Mixing 251

Christopher J. C. Burges, John C. Platt

14.1 Introduction . 251

14.2 Conditional Harmonic Mixing . 255

14.3 Learning in CHM Models . 256

14.4 Incorporating Prior Knowledge . 261

14.5 Learning the Conditionals . 261

14.6 Model Averaging . 262

14.7 Experiments . 263

14.8 Conclusions . 273

IV Change of Representation 275

15 Graph Kernels by Spectral Transforms 277

Xiaojin Zhu, Jaz Kandola, John Lafferty, Zoubin Ghahramani

15.1 The Graph Laplacian . 278

15.2 Kernels by Spectral Transforms . 280

15.3 Kernel Alignment . 281

15.4 Optimizing Alignment Using QCQP for Semi-Supervised Learning . 282

15.5 Semi-Supervised Kernels with Order Constraints 283

15.6 Experimental Results . 285

15.7 Conclusion . 289

16 Spectral Methods for Dimensionality

Reduction 293

Lawrence K. Saul, Kilian Q. Weinberger, Fei Sha, Jihun Ham, Daniel D. Lee

16.1 Introduction . 293

16.2 Linear Methods . 295

16.3 Graph-Based Methods . 297

16.4 Kernel Methods . 303

16.5 Discussion . 306

17 Modifying Distances 309

Sajama, Alon Orlitsky

17.1 Introduction . 309

17.2 Estimating DBD Metrics . 312

17.3 Computing DBD Metrics . 321

17.4 Semi-Supervised Learning Using Density-Based Metrics 327

17.5 Conclusions and Future Work . 329

V Semi-Supervised Learning in Practice 331

18 Large-Scale Algorithms 333

Contents ix

Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux

18.1 Introduction . 333

18.2 Cost Approximations . 334

18.3 Subset Selection . 337

18.4 Discussion . 340

19 Semi-Supervised Protein Classification

Using Cluster Kernels 343

Jason Weston, Christina Leslie, Eugene Ie, William Stafford Noble

19.1 Introduction . 343

19.2 Representations and Kernels for Protein Sequences 345

19.3 Semi-Supervised Kernels for Protein Sequences 348

19.4 Experiments . 352

19.5 Discussion . 358

20 Prediction of Protein Function from

Networks 361

Hyunjung Shin, Koji Tsuda

20.1 Introduction . 361

20.2 Graph-Based Semi-Supervised Learning 364

20.3 Combining Multiple Graphs . 366

20.4 Experiments on Function Prediction of Proteins 369

20.5 Conclusion and Outlook . 374

21 Analysis of Benchmarks 377

21.1 The Benchmark . 377

21.2 Application of SSL Methods . 383

21.3 Results and Discussion . 390

VI Perspectives 395

22 An Augmented PAC Model for Semi-Supervised Learning 397

Maria-Florina Balcan, Avrim Blum

22.1 Introduction . 398

22.2 A Formal Framework . 400

22.3 Sample Complexity Results . 403

22.4 Algorithmic Results . 412

22.5 Related Models and Discussion . 416

23 Metric-Based Approaches for Semi-

Supervised Regression and Classification 421

Dale Schuurmans, Finnegan Southey, Dana Wilkinson, Yuhong Guo

23.1 Introduction . 421

23.2 Metric Structure of Supervised Learning 423

x Contents

23.3 Model Selection . 426

23.4 Regularization . 436

23.5 Classification . 445

23.6 Conclusion . 449

24 Transductive Inference and

Semi-Supervised Learning 453

Vladimir Vapnik

24.1 Problem Settings . 453

24.2 Problem of Generalization in Inductive and Transductive Inference . 455

24.3 Structure of the VC Bounds and Transductive Inference 457

24.4 The Symmetrization Lemma and Transductive Inference 458

24.5 Bounds for Transductive Inference 459

24.6 The Structural Risk Minimization Principle for Induction and Trans-

duction . 460

24.7 Combinatorics in Transductive Inference 462

24.8 Measures of the Size of Equivalence Classes 463

24.9 Algorithms for Inductive and Transductive SVMs 465

24.10 Semi-Supervised Learning . 470

24.11 Conclusion: Transductive Inference and the New Problems of Infer-

ence . 470

24.12 Beyond Transduction: Selective Inference 471

25 A Discussion of Semi-Supervised Learning and Transduction 473

References 479

Notation and Symbols 499

Contributors 503

Index 509

Series Foreword

The goal of building systems that can adapt to their environments and learn from

their experience has attracted researchers from many fields, including computer

science, engineering, mathematics, physics, neuroscience, and cognitive science.

Out of this research has come a wide variety of learning techniques that have

the potential to transform many scientific and industrial fields. Recently, several

research communities have converged on a common set of issues surrounding su-

pervised, unsupervised, and reinforcement learning problems. The MIT Press series

on Adaptive Computation and Machine Learning seeks to unify the many diverse

strands of machine learning research and to foster high-quality research and inno-

vative applications.

Thomas Dietterich

Preface

During the last years, semi-supervised learning has emerged as an exciting new

direction in machine learning reseach. It is closely related to profound issues of how

to do inference from data, as witnessed by its overlap with transductive inference

(the distinctions are yet to be made precise).

At the same time, dealing with the situation where relatively few labeled training

points are available, but a large number of unlabeled points are given, it is directly

relevant to a multitude of practical problems where is it relatively expensive to

produce labeled data, e.g., the automatic classification of web pages. As a field,

semi-supervised learning uses a diverse set of tools and illustrates, on a small scale,

the sophisticated machinery developed in various branches of machine learning such

as kernel methods or Bayesian techniques.

As we work on semi-supervised learning, we have been aware of the lack of

an authoritative overview of the existing approaches. In a perfect world, such an

overview should help both the practitioner and the researcher who wants to enter

this area. A well researched monograph could ideally fill such a gap; however, the

field of semi-supervised learning is arguably not yet sufficiently mature for this.

Rather than writing a book which would come out in three years, we thus decided

instead to provide an up-to-date edited volume, where we invited contributions by

many of the leading proponents of the field. To make it more than a mere collection

of articles, we have attempted to ensure that the chapters form a coherent whole

and use consistent notation. Moreover, we have written a short introduction, a

dialogue illustrating some of the ongoing debates in the underlying philosophy of

the field, and we have organized and summarized a comprehensive benchmark of

semi-supervised learning.

Benchmarks are helpful for the practitioner to decide which algorithm should be

chosen for a given application. At the same time, they are useful for researchers

to choose issues to study and further develop. By evaluating and comparing the

performance of many of the presented methods on a set of eight benchmark

problems, this book aims at providing guidance in this respect. The problems are

designed to reflect and probe the different assumptions that the algorithms build

on. All data sets can be downloaded from the book web page, which can be found

at http://www.kyb.tuebingen.mpg.de/ssl-book/.

Finally, we would like to give thanks to everybody who contributed towards the

success of this book project, in particular to Karin Bierig, Sabrina Nielebock, Bob

Prior, to all chapter authors, and to the chapter reviewers.

1 Introduction to Semi-Supervised Learning

1.1 Supervised, Unsupervised, and Semi-Supervised Learning

In order to understand the nature of semi-supervised learning, it will be useful first

to take a look at supervised and unsupervised learning.

1.1.1 Supervised and Unsupervised Learning

Traditionally, there have been two fundamentally different types of tasks in machine

learning.

The first one is unsupervised learning. Let X = (x1, . . . , xn) be a set of n examplesunsupervised

learning (or points), where xi ∈ X for all i ∈ [n] := {1, . . . , n}. Typically it is assumed

that the points are drawn i.i.d. (independently and identically distributed) from

a common distribution on X. It is often convenient to define the (n × d)-matrix

X = (x⊤
i)⊤i∈[n] that contains the data points as its rows. The goal of unsupervised

learning is to find interesting structure in the data X . It has been argued that the

problem of unsupervised learning is fundamentally that of estimating a density

which is likely to have generated X . However, there are also weaker forms of

unsupervised learning, such as quantile estimation, clustering, outlier detection,

and dimensionality reduction.

The second task is supervised learning. The goal is to learn a mapping fromsupervised

learning x to y, given a training set made of pairs (xi, yi). Here, the yi ∈ Y are called

the labels or targets of the examples xi. If the labels are numbers, y = (yi)
⊤
i∈[n]

denotes the column vector of labels. Again, a standard requirement is that the pairs

(xi, yi) are sampled i.i.d. from some distribution which here ranges over X × Y.

The task is well defined, since a mapping can be evaluated through its predictive

performance on test examples. When Y = R or Y = R
d (or more generally, when the

labels are continuous), the task is called regression. Most of this book will focus on

classification (there is some work on regression in chapter 23), i.e., the case where

y takes values in a finite set (discrete labels). There are two families of algorithms

for supervised learning. Generative algorithms try to model the class-conditionalgenerative

methods

2 Introduction to Semi-Supervised Learning

density p(x|y) by some unsupervised learning procedure.1 A predictive density can

then be inferred by applying Bayes theorem:

p(y|x) =
p(x|y)p(y)∫

Y
p(x|y)p(y)dy

. (1.1)

In fact, p(x|y)p(y) = p(x, y) is the joint density of the data, from which pairs

(xi, yi) could be generated. Discriminative algorithms do not try to estimate howdiscriminative

methods the xi have been generated, but instead concentrate on estimating p(y|x). Some

discriminative methods even limit themselves to modeling whether p(y|x) is greater

than or less than 0.5; an example of this is the support vector machine (SVM). It

has been argued that discriminative models are more directly aligned with the goal

of supervised learning and therefore tend to be more efficient in practice. These two

frameworks are discussed in more detail in sections 2.2.1 and 2.2.2.

1.1.2 Semi-Supervised Learning

Semi-supervised learning (SSL) is halfway between supervised and unsupervised

learning. In addition to unlabeled data, the algorithm is provided with some super-

vision information – but not necessarily for all examples. Often, this information

will be the targets associated with some of the examples. In this case, the datastandard setting

of SSL set X = (xi)i∈[n] can be divided into two parts: the points Xl := (x1, . . . , xl), for

which labels Yl := (y1, . . . , yl) are provided, and the points Xu := (xl+1, . . . , xl+u),

the labels of which are not known. This is “standard” semi-supervised learning as

investigated in this book; most chapters will refer to this setting.

Other forms of partial supervision are possible. For example, there may be

constraints such as “these points have (or do not have) the same target” (cf.

Abu-Mostafa, 1995). This more general setting is considered in chapter 5. TheSSL with

constraints different setting corresponds to a different view of semi-supervised learning: In

chapter 5, SSL is seen as unsupervised learning guided by constraints. In contrast,

most other approaches see SSL as supervised learning with additional information

on the distribution of the examples x. The latter interpretation seems to be more

in line with most applications, where the goal is the same as in supervised learning:

to predict a target value for a given xi. However, this view does not readily apply

if the number and nature of the classes are not known in advance but have to be

inferred from the data. In constrast, SSL as unsupervised learning with constraints

may still remain applicable in such situations.

A problem related to SSL was introduced by Vapnik already several decades ago:

so-called transductive learning. In this setting, one is given a (labeled) training settransductive

learning and an (unlabeled) test set. The idea of transduction is to perform predictions only

for the test points. This is in contrast to inductive learning, where the goal is toinductive learning

1. For simplicity, we are assuming that all distributions have densities, and thus we restrict
ourselves to dealing with densities.

1.1 Supervised, Unsupervised, and Semi-Supervised Learning 3

output a prediction function which is defined on the entire space X. Many methods

described in this book will be transductive; in particular, this is rather natural for

inference based on graph representations of the data. This issue will be addressed

again in section 1.2.4.

1.1.3 A Brief History of Semi-Supervised Learning

Probably the earliest idea about using unlabeled data in classification is self-

learning, which is also known as self-training, self-labeling, or decision-directedself-learning

learning. This is a wrapper-algorithm that repeatedly uses a supervised learning

method. It starts by training on the labeled data only. In each step a part of

the unlabeled points is labeled according to the current decision function; then

the supervised method is retrained using its own predictions as additional labeled

points. This idea has appeared in the literature already for some time (e.g., Scudder

(1965); Fralick (1967); Agrawala (1970)).

An unsatisfactory aspect of self-learning is that the effect of the wrapper depends

on the supervised method used inside it. If self-learning is used with empirical risk

minimization and 1-0-loss, the unlabeled data will have no effect on the solution

at all. If instead a margin maximizing method is used, as a result the decision

boundary is pushed away from the unlabeled points (cf. chapter 6). In other cases

it seems to be unclear what the self-learning is really doing, and which assumption

it corresponds to.

Closely related to semi-supervised learning is the concept of transductive

inference, or transduction, pioneered by Vapnik (Vapnik and Chervonenkis, 1974;transductive

inference Vapnik and Sterin, 1977). In contrast to inductive inference, no general decision rule

is inferred, but only the labels of the unlabeled (or test) points are predicted. An

early instance of transduction (albeit without explicitly considering it as a concept)

was already proposed by Hartley and Rao (1968). They suggested a combinatorial

optimization on the labels of the test points in order to maximize the likelihood of

their model.

It seems that semi-supervised learning really took off in the 1970s when the

problem of estimating the Fisher linear discriminant rule with unlabeled datamixture of

Gaussians was considered (Hosmer, 1973; McLachlan, 1977; O’Neill, 1978; McLachlan and

Ganesalingam, 1982). More precisely, the setting was in the case where each class-

conditional density is Gaussian with equal covariance matrix. The likelihood of

the model is then maximized using the labeled and unlabeled data with the help

of an iterative algorithm such as the expectation-maximization (EM) algorithm

(Dempster et al., 1977). Instead of a mixture of Gaussians, the use of a mixture

of multinomial distributions estimated with labeled and unlabeled data has been

investigated in (Cooper and Freeman, 1970).

Later, this one component per class setting has been extended to several com-

ponents per class (Shahshahani and Landgrebe, 1994) and further generalized by

Miller and Uyar (1997).

Learning rates in a probably approximately correct (PAC) framework (Valiant,

4 Introduction to Semi-Supervised Learning

1984) have been derived for the semi-supervised learning of a mixture of twotheoretical

analysis Gaussians by Ratsaby and Venkatesh (1995). In the case of an identifiable mixture,

Castelli and Cover (1995) showed that with an infinite number of unlabeled points,

the probability of error has an exponential convergence (w.r.t. the number of labeled

examples) to the Bayes risk. Identifiable means that given P (x), the decomposition

in
∑

y P (y)P (x|y) is unique. This seems a relatively strong assumption, but it is

satisfied, for instance, by mixtures of Gaussians. Related is the analysis in (Castelli

and Cover, 1996) in which the class-conditional densities are known but the class

priors are not.

Finally, the interest in semi-supervised learning increased in the 1990s, mostlytext applications

due to applications in natural language problems and text classification (Yarowsky,

1995; Nigam et al., 1998; Blum and Mitchell, 1998; Collins and Singer, 1999;

Joachims, 1999).

Note that, to our knowledge, Merz et al. (1992) were the first to use the term

“semi-supervised” for classification with both labeled and unlabeled data. It has

in fact been used before, but in a different context than what is developed in this

book; see, for instance, (Board and Pitt, 1989).

1.2 When Can Semi-Supervised Learning Work?

A natural question arises: is semi-supervised learning meaningful? More precisely:

in comparison with a supervised algorithm that uses only labeled data, can one

hope to have a more accurate prediction by taking into account the unlabeled

points? As you may have guessed from the size of the book in your hands, in

principle the answer is “yes.” However, there is an important prerequisite: that the

distribution of examples, which the unlabeled data will help elucidate, be relevant

for the classification problem.

In a more mathematical formulation, one could say that the knowledge on p(x)

that one gains through the unlabeled data has to carry information that is useful

in the inference of p(y|x). If this is not the case, semi-supervised learning will not

yield an improvement over supervised learning. It might even happen that using

the unlabeled data degrades the prediction accuracy by misguiding the inference;

this effect is investigated in detail in chapter 4.

One should thus not be too surprised that for semi-supervised learning to work,

certain assumptions will have to hold. In this context, note that plain supervised

learning also has to rely on assumptions. In fact, chapter 22 discusses a way ofsmoothness

assumption formalizing assumptions of the kind given below within a PAC-style framework.

One of the most popular such assumptions can be formulated as follows.

1.2 When Can Semi-Supervised Learning Work? 5

Smoothness assumption of supervised learning:2 If two points x1, x2 are close, then

so should be the corresponding outputs y1, y2.

Clearly, without such assumptions, it would never be possible to generalize from

a finite training set to a set of possibly infinitely many unseen test cases.

1.2.1 The Semi-Supervised Smoothness Assumption

We now propose a generalization of the smoothness assumption that is useful

for semi-supervised learning; we thus call it the “semi-supervised smoothness

assumption”. While in the supervised case according to our prior beliefs the output

varies smoothly with the distance, we now also take into account the density of

the inputs. The assumption is that the label function is smoother in high-densitysemi-supervised

smoothness

assumption

regions than in low-density regions:

Semi-supervised smoothness assumption: If two points x1, x2 in a high-density region

are close, then so should be the corresponding outputs y1, y2.

Note that by transitivity, this assumption implies that if two points are linked by

a path of high density (e.g., if they belong to the same cluster), then their outputs

are likely to be close. If, on the other hand, they are separated by a low-density

region, then their outputs need not be close.

Note that the semi-supervised smoothness assumption applies to both regression

and classification. In the next section, we will show that in the case of classification,

it reduces to assumptions commonly used in SSL. At present, it is less clear how

useful the assumption is for regression problems. As an alternative, chapter 23

proposes a way to use unlabeled data for model selection that applies to both

regression and classification.

1.2.2 The Cluster Assumption

Suppose we knew that the points of each class tended to form a cluster. Then thecluster

assumption unlabeled data could aid in finding the boundary of each cluster more accurately:

one could run a clustering algorithm and use the labeled points to assign a class

to each cluster. That is in fact one of the earliest forms of semi-supervised learning

(see chapter 2). The underlying, now classical, assumption may be stated as follows:

Cluster assumption: If points are in the same cluster, they are likely to be of the

same class.

This assumption may be considered reasonable on the basis of the sheer existence

2. Strictly speaking, this assumption only refers to continuity rather than smoothness;
however, the term smoothness is commonly used, possibly because in regression estimation
y is often modeled in practice as a smooth function of x.

6 Introduction to Semi-Supervised Learning

of classes: if there is a densly populated continuum of objects, it may seem unlikely

that they were ever distinguished into different classes.

Note that the cluster assumption does not imply that each class forms a single,

compact cluster: it only means that, usually, we do not observe objects of two

distinct classes in the same cluster.

The cluster assumption can easily be seen as a special case of the above-proposed

semi-supervised smoothness assumption, considering that clusters are frequently

defined as being sets of points that can be connected by short curves which traverse

only high-density regions.

The cluster assumption can be formulated in an equivalent way:low density

separation
Low density separation: The decision boundary should lie in a low-density region.

The equivalence is easy to see: A decision boundary in a high-density region

would cut a cluster into two different classes; many objects of different classes in

the same cluster would require the decision boundary to cut the cluster, i.e., to go

through a high-density region.

Although the two formulations are conceptually equivalent, they can inspire

different algorithms, as we will argue in section 1.3. The low-density version

also gives additional intuition why the assumption is sensible in many real-world

problems. Consider digit recognition, for instance, and suppose that one wants to

learn how to distinguish a handwritten digit “0” against digit “1”. A sample point

taken exactly from the decision boundary will be between a 0 and a 1, most likely

a digit looking like a very elongated zero. But the probability that someone wrote

this “weird” digit is very small.

1.2.3 The Manifold Assumption

A different but related assumption that forms the basis of several semi-supervised

learning methods is the manifold assumption:manifold

assumption
Manifold assumption: The (high-dimensional) data lie (roughly) on a low-dimensional

manifold.

How can this be useful? A well-known problem of many statistical methods and

learning algorithms is the so-called curse of dimensionality (cf. section 11.6.2). It iscurse of

dimensionality related to the fact that volume grows exponentially with the number of dimensions,

and an exponentially growing number of examples is required for statistical tasks

such as the reliable estimation of densities. This is a problem that directly affects

generative approaches that are based on density estimates in input space. A related

problem of high dimensions, which may be more severe for discriminative methods,

is that pairwise distances tend to become more similar, and thus less expressive.

If the data happen to lie on a low-dimensional manifold, however, then the

learning algorithm can essentially operate in a space of corresponding dimension,

thus avoiding the curse of dimensionality.

As above, one can argue that algorithms working with manifolds may be seen

1.2 When Can Semi-Supervised Learning Work? 7

as approximately implementing the semi-supervised smoothness assumption: such

algorithms use the metric of the manifold for computing geodesic distances. If we

view the manifold as an approximation of the high-density regions, then it becomes

clear that in this case, the semi-supervised smoothness assumption reduces to the

standard smoothness assumption of supervised learning, applied on the manifold.

Note that if the manifold is embedded into the high-dimensional input space in a

curved fashion (i.e., it is not just a subspace), geodesic distances differ from those in

the input space. By ensuring more accurate density estimates and more appropriate

distances, the manifold assumption may be useful for classification as well as for

regression.

1.2.4 Transduction

As mentioned before, some algorithms naturally operate in a transductive setting.

According to the philosophy put forward by Vapnik, high-dimensional estimation

problems should attempt to follow the following principle:

Vapnik’s principle: When trying to solve some problem, one should not solve a more

difficult problem as an intermediate step.

Consider as an example supervised learning, where predictions of labels y cor-

responding to some objects x are desired. Generative models estimate the density

of x as an intermediate step, while discriminative methods directly estimate the

labels.

In a similar way, if label predictions are only required for a given test set,

transduction can be argued to be more direct than induction: while an inductive

method infers a function f : X → Y on the entire space X, and afterward returns

the evaluations f(xi) at the test points, transduction consists of directly estimating

the finite set of test labels, i.e., a function f : Xu → Y only defined on the test

set. Note that transduction (as defined in this book) is not the same as SSL: some

semi-supervised algorithms are transductive, but others are inductive.

Now suppose we are given a transductive algorithm which produces a solution

superior to an inductive algorithm trained on the same labeled data (but discarding

the unlabeled data). Then the performance difference might be due to one of the

following two points (or a combination thereof):

1. transduction follows Vapnik’s principle more closely than induction does, or

2. the transductive algorithm takes advantage of the unlabeled data in a way similar

to semi-supervised learning algorithms.

There is ample evidence for improvements being due to the second of these

points. We are presently not aware of empirical results that selectively support

the first point. In particular, the evaluation of the benchmark associated with this

book (chapter 21) does not seem to suggest a systematic advantage of transductive

methods. However, the properties of transduction are still the topic of debate, and

chapter 25 tries to present different opinions.

8 Introduction to Semi-Supervised Learning

1.3 Classes of Algorithms and Organization of This Book

Although many methods were not explicitly derived from one of the above assump-

tions, most algorithms can be seen to correspond to or implement one or more

of them. We try to organize the semi-supervised learning methods presented in

this book into four classes that roughly correspond to the underlying assumption.

Although the classification is not always unique, we hope that this organization

makes the book and its contents more accessible to the reader, by providing a

guiding scheme.

For the same reason, this book is organized in “parts.” There is one part for each

class of SSL algorithms and an extra part focusing on generative approaches. Two

further parts are devoted to applications and perspectives of SSL. In the following

we briefly introduce the ideas covered by each book part.

1.3.1 Generative Models

Part I presents history and state of the art of SSL with generative models. Chapter 2

starts with a thorough review of the field.

Inference using a generative model involves the estimation of the conditional

density p(x|y). In this setting, any additional information on p(x) is useful. As

a simple example, assume that p(x|y) is Gaussian. Then one can use the EM

algorithm to find the parameters of the Gaussian corresponding to each class. Themixture models

only difference to the standard EM algorithm as used for clustering is that the

“hidden variable” associated with any labeled example is actually not hidden, but

it is known and equals its class label. It implements the cluster assumption (cf.

section 2.2.1), since a given cluster belongs to only one class.

This small example already highlights different interpretations of semi-supervised

learning with a generative model:

It can be seen as classification with additional information on the marginal

density.

It can be seen as clustering with additional information. In the standard setting,

this information would be the labels of a subset of points, but it could also come

in the more general form of constraints. This is the topic of chapter 5.

A strength of the generative approach is that knowledge of the structure of the

problem or the data can naturally be incorporated by modeling it. In chapter 3,

this is demonstrated for the application of the EM algorithm to text data. It is

observed that, when modeling assumptions are not correct, unlabeled data can

decrease prediction accuracy. This effect is investigated in depth in chapter 4.

In statistical learning, before performing inference, one chooses a class of func-

tions, or a prior over functions. One has to choose it according to what is known

in advance about the problem. In the semi-supervised learning context, if one has

some ideas about what the structure of the data tells about the target function, the

1.3 Classes of Algorithms and Organization of This Book 9

choice of this prior can be made more precise after seeing the unlabeled data: onedata-dependent

priors could typically put a higher prior probability on functions that satisfy the cluster

assumption. From a theoretical point, this is a natural way to obtain bounds for

semi-supervised learning as explained in chapter 22.

1.3.2 Low-Density Separation

Part II of this book aims at describing algorithms which try to directly implement

the low-density separation assumption by pushing the decision boundary away from

the unlabeled points.

The most common approach to achieving this goal is to use a maximum margin

algorithm such as support vector machines. The method of maximizing the margin

for unlabeled as well as labeled points is called the transductive SVM (TSVM).

However, the corresponding problem is nonconvex and thus difficult to optimize.transductive

SVM (TSVM) One optimization algorithm for the TSVM is presented in chapter 6. Starting

from the SVM solution as trained on the labeled data only, the unlabeled points are

labeled by SVM predictions, and the SVM is retrained on all points. This is iterated

while the weight of the unlabeled points is slowly increased. Another possibility is

the semi-definite programming SDP relaxation suggested in chapter 7.

Two alternatives to the TSVM are then presented that are formulated in a

probabilistic and in an information theoretic framework, respectively. In chapter

8, binary Gaussian process classification is augmented by the introduction of a null

class that occupies the space between the two regular classes. As an advantage over

the TSVM, this allows for probabilistic outputs.

This advantage is shared by the entropy minimization presented in chapter 9. It

encourages the class-conditional probabilities P (y|x) to be close to either 1 or 0 at

labeled and unlabeled points. As a consequence of the smoothness assumption, the

probability will tend to be close to 0 or 1 throughout any high-density region, while

class boundaries correspond to intermediate probabilities.

A different way of using entropy or information is the data-dependent regulariza-

tion developed in chapter 10. As compared to the TSVM, this seems to implement

the low-density separation even more directly: the standard squared-norm regular-

izer is multiplied by a term reflecting the density close to the decision boundary.

1.3.3 Graph-Based Methods

During the last couple of years, the most active area of research in semi-supervised

learning has been in graph-based methods, which are the topic of part III of this

book. The common denominator of these methods is that the data are represented

by the nodes of a graph, the edges of which are labeled with the pairwise distances

of the incident nodes (and a missing edge corresponds to infinite distance). If the

distance of two points is computed by minimizing the aggregate path distance over

all paths connecting the two points, this can be seen as an approximation of the

geodesic distance of the two points with respect to the manifold of data points.

10 Introduction to Semi-Supervised Learning

Thus, graph methods can be argued to build on the manifold assumption.

Most graph methods refer to the graph by utilizing the graph Laplacian. Let

g = (V, E) be a graph with real edge weights given by w : E → R. Here, the weight

w(e) of an edge e indicates the similarity of the incident nodes (and a missing edge

corresponds to zero similarity). Now the weighted adjacency matrix (or weightweight matrix

matrix, for short) W of the graph g = (V, E) is defined by

Wij :=

{
w(e) if e = (i, j) ∈ E,

0 if e = (i, j) ∈ E.
(1.2)

The diagonal matrix D defined by Dii :=
∑

j Wij is called the degree matrix of

g. Now there are different ways of defining the graph Laplacian, the two mostgraph Laplacian

prominent of which are the normalized graph Laplacian, L, and the unnormalized

graph Laplacian, L:

L := I− D−1/2WD−1/2,

L := D− W.
(1.3)

Many graph methods that penalize nonsmoothness along the edges of a weighted

graph can in retrospect be seen as different instances of a rather general family of

algorithms, as is outlined in chapter 11. Chapter 13 takes a more theoretical point

of view, and transfers notions of smoothness from the continuous case onto graphs

as the discrete case. From that, it proposes different regularizers based on a graph

representation of the data.

Usually the prediction consists of labels for the unlabeled nodes. For this reason,

this kind of algorithm is intrinsically transductive, i.e., it returns only the value of

the decision function on the unlabeled points and not the decision function itself.

However, there has been recent work in order to extend graph-based methods to

produce inductive solutions, as discussed in chapter 12.

Information propagation on graphs can also serve to improve a given (possibly

strictly supervised) classification, taking unlabeled data into account. Chapter 14

presents a probabilistic method for using directed graphs in this manner.

Often the graph g is constructed by computing similarities of objects in some

other representation, e.g., using a kernel function on Euclidean data points. But

sometimes the original data already have the form of a graph. Examples include

the linkage pattern of webpages and the interactions of proteins (see chapter 20).

In such cases, the directionality of the edges may be important.

1.3.4 Change of Representation

The topic of part IV is algorithms that are not intrinsically semi-supervised, but

instead perform two-step learning:

1. Perform an unsupervised step on all data, labeled and unlabeled, but ignoring

the available labels. This can, for instance, be a change of representation, or the

1.3 Classes of Algorithms and Organization of This Book 11

construction of a new metric or a new kernel.

2. Ignore the unlabeled data and perform plain supervised learning using the new

distance, representation, or kernel.

This can be seen as direct implementation of the semi-supervised smoothness

assumption, since the representation is changed in such a way that small distances

in high-density regions are conserved.

Note that the graph-based methods (part III) are closely related to the ones

presented in this part: the very construction of the graph from the data can be

seen as an unsupervised change of representation. Consequently, the first chapter

of part IV, chapter 15, discusses spectral transforms of such graphs in order to build

kernels. Spectral methods can also be used for nonlinear dimensionality reduction,

as extended in chapter 16. Furthermore, in chapter 17, metrics derived from graphs

are investigated, for example, those derived from shortest paths.

1.3.5 Semi-Supervised Learning in Practice

Semi-supervised learning will be most useful whenever there are far more unlabeled

data than labeled. This is likely to occur if obtaining data points is cheap, but

obtaining the labels costs a lot of time, effort, or money. This is the case in many

application areas of machine learning, for example:

In speech recognition, it costs almost nothing to record huge amounts of speech,

but labeling it requires some human to listen to it and type a transcript.

Billions of webpages are directly available for automated processing, but to

classify them reliably, humans have to read them.

Protein sequences are nowadays acquired at industrial speed (by genome sequenc-

ing, computational gene finding, and automatic translation), but to resolve a three-

dimensional (3D) structure or to determine the functions of a single protein may

require years of scientific work.

Webpage classification is introduced in chapter 3 in the context of generative

models.

Since unlabeled data carry less information than labeled data, they are required

in large amounts in order to increase prediction accuracy significantly. This implies

the need for fast and efficient SSL algorithms. Chapters 18 and 19 present two

approaches to dealing with huge numbers of points. In chapter 18 methods are

developed for speeding up the label propagation methods introduced in chapter 11.

In chapter 19 cluster kernels are shown to be an efficient SSL method.

Chapter 19 also presents the first of two approaches to an important bioinformat-

ics application of semi-supervised learning: the classification of protein sequences.

While here the predictions are based on the protein sequences themselves, Chap-

ter 20 moves on to a somewhat more complex setting: The information is here

assumed to be present in the form of graphs that characterize the interactions of

proteins. Several such graphs exist and have to be combined in an appropriate way.

12 Introduction to Semi-Supervised Learning

This book part concludes with a very practical chapter: the presentation and

evaluation of the benchmarks associated with this book (chapter 21). It is intended

to give hints to the practitioner on how to choose suitable methods based on the

properties of the problem.

1.3.6 Outlook

The last part of the book, part VI, is devoted to some of the most interesting

directions of ongoing research in SSL.

Until now this book has mostly resticted itself to classification. Chapter 23

introduces another approach to SSL that is suited for both classification and

regression, and derives algorithms from it. Interestingly it seems not to require

the assumptions proposed in chapter 1.

Further, this book mostly presented algorithms for SSL. While the assumptions

discussed above supply some intuition on when and why SSL works, and chapter 4

investigates when and why it can fail, it would clearly be more satisfactory to have

a thorough theoretical understanding of SSL in total. Chapter 22 offers a PAC-style

framework that yields error bounds for SSL problems.

In chapter 24 inductive semi-supervised learning and transduction are compared

in terms of Vapnik-Chervonenkis (VC) bounds and other theoretical and philosoph-

ical concepts.

The book closes with a hypothetical discussion (chapter 25) between three

machine learning researchers on the relationship of (and the differences between)

semi-supervised learning and transduction.

I Generative Models

2 A Taxonomy for Semi-Supervised Learning

Methods

Matthias Seeger matthias.seeger@tuebingen.mpg.de

We propose a simple taxonomy of probabilistic graphical models for the semi-

supervised learning problem. We give some broad classes of algorithms for each

of the families and point to specific realizations in the literature. Finally, we shed

more detailed light on the family of methods using input-dependent regularization

(or conditional prior distributions) and show parallels to the co-training paradigm.

2.1 The Semi-Supervised Learning Problem

The semi-supervised learning (SSL) problem has recently drawn large attention

in the machine learning community, mainly due to its significant importance in

practical applications. In this section we define the problem and introduce the

notation to be used in the rest of this chapter.

In statistical machine learning, we distinguish between unsupervised and super-

vised learning. In the former scenario we are given a sample {xi} of patterns in X

drawn independently and identically distributed (i.i.d.) from some unknown data

distribution with density P (x). Our goal is to estimate the density or a (known)

functional thereof. Supervised learning consists of estimating a functional relation-

ship x → y between a covariate x ∈ X and a class variable1 y ∈ {1, . . . , M}, with

the goal of minimizing a functional of the (joint) data distribution P (x, y) such

as the probability of classification error. The marginal data distribution P (x) is

referred to as input distribution. Classification can be treated as a special case of

estimating the joint density P (x, y), but this is wasteful since x will always be

given at prediction time, so there is no need to estimate the input distribution.

The terminology “unsupervised learning” is a bit unfortunate: the term density

1. We restrict ourselves to classification scenarios in this chapter.

16 A Taxonomy for Semi-Supervised Learning Methods

estimation should probably be preferred. Traditionally, many techniques for density

estimation propose a latent (unobserved) class variable y and estimate P (x) as

mixture distribution
∑M

y=1 P (x|y)P (y). Note that y has a fundamentally different

role than in classification, in that its existence and range c is a modeling choice

rather than observable reality. However, in other density estimation techniques,

such as nonlinear dimensionality reduction, the term “unsupervised” does not make

sense.

The semi-supervised learning problem belongs to the supervised category, since

the goal is to minimize the classification error, and an estimate of P (x) is not

sought after.2 The difference from a standard classification setting is that along

with a labeled sample Dl = {(xi, yi) | i = 1, . . . , n} drawn i.i.d. from P (x, y) we

also have access to an additional unlabeled sample Du = {xn+j | j = 1, . . . , m} from

the marginal P (x). We are especially interested in cases where m ≫ n which may

arise in situations where obtaining an unlabeled sample is cheap and easy, while

labeling the sample is expensive or difficult. We denote X l = (x1, . . . ,xn), Yl =

(y1, . . . , yn) and Xu = (xn+1, . . . ,xn+m). The unobserved labels are denoted

Yu = (yn+1, . . . , yn+m). In a straightforward generalization of SSL (not discussed

here) uncertain information about Yu is available.

There are two obvious baseline methods for SSL. We can treat it as a supervised

classification problem by ignoring Du, or we can treat y as a latent class variable

in a mixture estimate of P (x) which is fitted using an unsupervised method, then

associate latent groups with observed classes using Dl (see section 2.3.1 for more

details). One would agree that any valid SSL technique should outperform both

baseline methods significantly in a range of practically relevant situations. If this

sounds rather vague, note that in general for a fixed SSL method it should be easy to

construct data distributions for which either of the baseline methods does better.3

In our view, SSL is much more a practical than a theoretical problem. A useful

SSL technique should be configurable to the specifics of the task in a similar way as

Bayesian learning, through the choice of prior and model. While some theoretical

work has been done for SSL, the bulk of relevant work so far has tackled real-world

applications.

2. While this statement is probably open to debate, it is in fact agreed upon in statistics.
In our opinion, methods should be classified foremost according to the problem they try to
solve, not by which sources of data they make use of. On the other hand, there are problems
in which density estimation is the goal and labeled data are treated as an auxiliary source.
However, these fall into a category with very different characteristics and are not in the
scope of this chapter. In our opinion, it would be very confusing to lump them together
with methods we classify as SSL here. A label like “semi-unsupervised learning” would be
more appropriate.
3. This is a “no free lunch” statement for SSL, but in practice it seems to be a more
serious problem than in the purely supervised context (where a “no free lunch” statement
holds as well). See chapter 4 for some examples.

2.2 Paradigms for Semi-Supervised Learning 17

2.2 Paradigms for Semi-Supervised Learning

Since SSL methods are supervised learning techniques, they can be classified

according to the standard taxonomy into generative and diagnostic paradigms. In

this section we present these paradigms and highlight their differences in the case

of SSL. We also note that this taxonomy, which originated for purely supervised

methods, can be ambiguous when applied to SSL, and we suggest how the borderline

can be drawn exactly.

In the figures of this section, we employ a convenient graphical notation frequently

used in statistics and machine learning (Lauritzen, 1996; Jordan, 1999). These so-

called directed graphical models (or independence diagrams) have the following

intuitive semantics. Nodes represent random variables. The parents of a node i are

the nodes j for which a directed edge j → i exists.4 It is possible to sample the

value of a node once the values of all its parents are known. Thus, a graphical model

is a simple way of representing the sampling mechanism from a distribution over

several variables. As such, the graphical model encodes conditional independency

constraints that have to hold for the distribution. In order to sample from the

distribution, we start with nodes without parents and work in the directions of the

edges. We also make use of plates which are rectangular boxes grouping a set of

nodes. This means that the group is sampled repeatedly and independently from

the same distribution (i.i.d.) conditioned on all nodes which are parents of any

plate member. For example, the figure of section 2.2.1 means that we first sample

θ and π independently (neither has parents), then draw a sample {(xi, yi)} i.i.d.

conditioned on θ , π (which are parents of the plate).

Note that we describe the generative and diagnostic paradigm from an explicitly

Bayesian viewpoint. This is somewhat a matter of personal choice here, and

certainly one could sketch these classes without ever mentioning concepts like prior

distributions. On the other hand, the Bayesian view avoids many unnecessary

complications, in that all variables are random, no difference has to be made

between functional and probabilistic independence, and so on, so we do not think

our presentation lacks clarity or generality because of this choice.

4. Directed cycles are not allowed. In other words, it must be impossible to return to a
node by moving along edges and respecting their direction.

18 A Taxonomy for Semi-Supervised Learning Methods

2.2.1 The Generative Paradigm

We refer to architectures following the generative paradigm

as generative methods. Within such, we model the class dis-

tributions P (x|y) using model families {P (x|y, θ)}, further-

more the class priors P (y) by πy = P (y|π), π = (πy)y .

We refer to an architecture of this type as a joint density

model, since we are modeling the full joint density P (x, y)

by πyP (x|y, θ). For any fixed θ̂ , π̂, an estimate of P (y|x)

can then be computed by Bayes’ formula:

θ π

x y

P (y|x, θ̂, π̂) =
π̂yP (x|y, θ̂)

∑M
y′=1 π̂y′P (x|y′, θ̂)

.

This is sometimes referred to as plug-in estimate. Alternatively, one can obtain

the Bayesian predictive distribution P (y|x, Dl) by averaging P (y|x, θ, π) over the

posterior P (θ , π|Dl).5 Within the generative paradigm, a model for the marginal

P (x) emerges naturally as

P (x|θ , π) =

M∑

y=1

πyP (x|y, θ).

If labeled and unlabeled data are available, a natural criterion emerges as the joint

log likelihood of both Dl and Du,

n∑

i=1

log πyi
P (xi|yi, θ) +

n+m∑

i=n+1

log

M∑

y=1

πyP (xi|y, θ), (2.1)

or alternatively the posterior P (θ , π|Dl, Du).6 This is essentially an issue of max-

imum likelihood in the presence of missing data (treating y as a latent variable),

which can in principle be attacked by the expectation-maximization (EM) algorithm

(see section 2.3.1) or by direct gradient descent.

Some researchers have been quick in hailing this strategy as an obvious solution

to the SSL problem, but this is not the case, in about the same sense as generative

methods often do not provide good solutions to classification problems. Generative

techniques provide an estimate of P (x) along the way, although this is not required

for classification, and in general this proves wasteful given limited data. For ex-

5. In a sense, the predictive distribution is a Bayesian’s best estimate of the underlying
true data distribution P (y|x). It is, however, obtained as posterior expectation, not by
maximizing some criterion.
6. To predict, we average P (y|x, θ , π) over the posterior. If we know that x is drawn from
P (x) and independent from D, we should rather employ the posterior P (θ , π|Dl, Du, x).
However, in this case the test set usually forms a part of Du, and the two posteriors are
the same.

2.2 Paradigms for Semi-Supervised Learning 19

ample, maximizing the joint likelihood of a finite sample need not lead to a small

classification error, because depending on the model it may be possible to increase

the likelihood more by improving the fit of P (x) than the fit of P (y|x). This is an

instance of the general problem of balancing the impact of Dl and Du on the final

predictions, especially in the case m ≫ n. This issue is discussed in section 2.3.1.

Furthermore, in the SSL setting y is a latent variable which has to be summed

out on Du, leading to highly multimodal posteriors, so that likelihood or posterior

maximization techniques are plagued by the presence of very many (local) minima.

2.2.2 The Diagnostic Paradigm

In diagnostic methods, we model the conditional distribu-

tion P (y|x) directly using the family {P (y|x, θ)}. To arrive

at a complete sampling model for the data, we also have to

model P (x) by a family P (x|µ); however if we are only in-

terested in updating our belief in θ or in predicting y on

unseen points, this is not necessary, as we will see next.

Under this model, θ and µ are a priori independent, i.e.

P (θ, µ) = P (θ)P (µ).

µ θ

x y

The likelihood factors as

P (Dl, Du|θ, µ) = P (Yl|X l, θ)P (X l, Du|µ),

which implies that P (θ |Dl, Du) ∝ P (Yl|X l, θ)P (θ), i.e. P (θ|Dl, Du) = P (θ |Dl),

and θ and µ are a posteriori independent. Furthermore, P (θ |Dl, µ) = P (θ |Dl).

This means that neither knowledge of the unlabeled data Du nor any knowledge

of µ changes the posterior belief P (θ|Dl) of the labeled sample. Therefore, in the

standard data generation model for diagnostic methods, unlabeled data Du cannot

be used for Bayesian inference, and modeling the input distribution P (x) is not

necessary. There are non-Bayesian diagnostic techniques in which we can make use

of Du (see section 2.3.2), but the impact of doing so (as opposed to ignoring Du) is

usually very limited. In order to make significant use of unlabeled data in diagnostic

methods, the data generation model discussed above has to be modified as discussed

in the following section.

2.2.3 Regularization Depending on the Input Distribution

When learning from a sample Dl of limited size, typically very many associations

x → y are consistent with the data. The idea of regularization is to bias our choice

of classifier toward “simpler” hypotheses, by adding a regularization functional

to the criterion to be minimized which grows with complexity. Here, the notion of

simplicity depends on the task and the model setup. For example, for a linear model

it is customary to penalize a norm of the weight vector, and for some commonly

used regularization functionals this can be shown to be equivalent to placing a

20 A Taxonomy for Semi-Supervised Learning Methods

zero-mean prior distribution on the weight vector. From now on we will only be

interested in regularization by priors and will use the terms interchangeably.

We have seen in section 2.2.2 that with straight diagnostic Bayesian methods

for classification, we cannot make use of additional unlabeled data Du, because θ

(parameterizing P (y|x)) and µ (parameterizing P (x)) are a priori independent. In

other words, the model family {P (y|x, θ)} is regularized independently of the input

distribution.

If we allow prior dependencies between θ and µ, e.g.

P (θ, µ) = P (θ |µ)P (µ) and P (θ) =
∫

P (θ |µ)P (µ) dµ (as

shown in the independence diagram to the right), the situ-

ation is different. The conditional prior P (θ|µ) in principle

allows information about µ to be transferred to θ . In gen-

eral, θ and Du will be dependent given the labeled data Dl,

therefore unlabeled data can change our posterior belief in

θ.

µ θ

x y

We conclude that to make use of additional unlabeled data within the context

of diagnostic Bayesian supervised techniques, we have to allow an a priori depen-

dence between the latent function representing the conditional probability and the

input probability itself. In other words, we have to use a regularization of the latent

function which depends on the input distribution. The potential gain can be demon-

strated by the following argument. Note that conditional priors imply a marginal

prior P (θ) which is a mixture distribution: P (θ) =
∫

P (θ|µ)P (µ) dµ. By condi-

tioning on the unlabeled data, this is replaced by P (θ |Du) =
∫

P (θ |µ)P (µ|Du) dµ

which can have a much smaller entropy than P (θ), implying that the posterior be-

lief P (θ|Dl, Du) can be much narrower than P (θ |Dl). On the other hand, the same

argument can be used to demonstrate that using additional unlabeled data Du can

hurt instead of help. Namely, if the priors P (θ |µ) enforce certain constraints very

rigidly, but these happen to be violated in the true distribution P (x, y), the con-

ditional “prior” P (θ|Du) will assign much lower probability than P (θ) to models

P (y|x, θ) close to the truth, and the posterior P (θ|Dl, Du) can be concentrated

around suboptimal models. While it is certainly easy to construct artificial situ-

ations where additional unlabeled data hurt, it is worrying that such failures do

happen quite unexpectedly in practically relevant settings as well. For a more thor-

ough analysis of this problem, see Cozman and Cohen (chapter 4 in this volume).

We note that while the modification to the standard data generation model

for diagnostic methods suggested here is straightforward, choosing appropriate

conditional priors P (θ|µ) suitable for a task at hand can be challenging. However,

several general techniques for SSL can actually be seen as realizing input-dependent

regularization, as is demonstrated in section 2.3.3.

The reader may feel uneasy at this point. If we use a priori dependent θ and µ, the

final predictive distribution depends on the prior P (µ) over the input distribution.

This forces us to model the input distribution itself, in contrast to the situation

for standard diagnostic methods. In this case, will our method still be a diagnostic

one? Is it not the case that any method which models P (x) in some way must

2.2 Paradigms for Semi-Supervised Learning 21

automatically be generative? Diagnostic methods can be much more parsimonious

simply because P (x) need not be estimated. In order to implement input-dependent

regularization, do we have to use a generative model with the drawbacks discussed

in section 2.2.1? There is indeed some ambiguity here, but we will try to clarify this

point in section 2.2.4. Under this general viewpoint, input-dependent regularization

is indeed a diagnostic SSL technique.

In the diagnostic paradigm for purely supervised tasks, θ and µ are treated

as a priori independent, leading to the fact that no aspects of P (x) have to be

estimated. While this is convenient, it is not clear whether we should really believe

in such independence for a real-world task. For example, suppose that P (θ) enforces

smoothness of the relationship P (y|x, θ). Is it sensible to enforce smoothness of

x → y around all x, or should we not rather penalize rough behavior only where

P (x) has significant volume? The former is more conservative and possibly more

robust, but also risks ignoring valuable information sources (see section 2.3.3.1 for

an example).

2.2.4 The Borderline between the Paradigms

While the borderline between supervised and unsupervised methods is clearly

drawn, the distinction between generative and diagnostic techniques can be am-

biguous, especially if we apply this taxonomy to SSL. In this section we give two

criteria for a clear discrimination: a simple and a more elaborate one. In a sense

they are both based on the same issue, namely the role that the P (x) estimate

plays for the prediction.

Recall that we restrict ourselves to methods whose ultimate goal it is to estimate

P (y|x). Traditionally, generative methods achieve this by modeling the joint dis-

tribution P (y, x) and fit this model to data by capturing characteristics of the true

joint data distribution. An estimate of P (x) can always be obtained by marginaliz-

ing the joint estimate. In contrast, diagnostic methods concentrate on modeling the

conditional distribution P (y|x) only, and an estimate of P (x) cannot be extracted.

However, in the SSL case we do have to model P (x) in order to profit from Du. So

are all SSL methods generative? We argue against this viewpoint and try to classify

SSL techniques according to the role which the P (x) estimate actually plays.

While it is true that any SSL method has to model P (x) in some way, in a

generative technique we model the class-conditional distributions P (x|y) explicitly,

so that the model for P (x) is a mixture of those. From these estimates (and

the estimates of P (y)) we obtain an estimate of P (y|x) using the Bayes formula.

Characteristics of the predictive estimate (such as the function class in a parametric

situation) depend entirely on the class-conditional models. For example, if the latter

are Gaussian with the same covariance matrix, the predictive estimates will be

based on linear functions. In a nutshell, we specify the P (x|y) using our modeling

toolbox, which implies the form of our P (y|x) and P (x) estimates (the latter is a

mixture of the P (x|y)). The only way to encode specific properties for the latter

estimates is to find P (x|y) candidates which are both tractable to work with and

22 A Taxonomy for Semi-Supervised Learning Methods

imply the desired properties of P (y|x) and P (x). In contrast to that, in a diagnostic

method we model P (y|x) directly, and also typically have considerable freedom in

modeling P (x). In SSL we regularize the P (y|x) estimates using information from

P (x), but we do not have to specify the class-conditional distributions explicitly.7

While this definition is workable for the SSL methods mentioned here, it may be too

restrictive on the generative side. For example, the “many-centers-per-class” model

of section 2.3.1 is clearly generative, but works with a mixture model for P (x)

which has several components for each class y, and P (x|y) is modeled indirectly

via P (x|y) =
∑

k πyβy,kP (x|k), i.e., as a mixture itself. In the following paragraph

we suggest an alternative view which leaves more freedom for generative techiques.

The practical success of SSL has shown that unlabeled data, i.e., knowledge about

P (x), can be useful for supervised tasks, but it is not necessarily the same type

of knowledge that would lead to a good estimate of P (x) according to common

performance criteria for density estimation. In fact, it is actually a few general

characteristics of P (x) which seem to help classification (see e.g.: section 2.3.3.1).

For example, if we convert a purely diagnostic technique such as SVM or logistic

regression into an SSL technique by employing a regularizer penalizing P (y|x)

estimates which violate certain aspects of P (x) such as the cluster assumption (see

section 2.3.3.1), the influence of P (x) on the final P (y|x) estimate is restricted

to just these aspects that we hope are important for better classification. These

restrictions are engineered by us because we want to make best use of Du in order to

predict P (y|x). In contrast, if we perform SSL by maximizing a suitably reweighted

version of the joint log likelihood (2.1) of a mixture model (see section 2.3.1), such

a restriction to classification-relevant aspects is not given or at least not directly

planned. In fact the joint model is designed in much the same way as we would do

for density estimation.

For example, consider the framework of conditional priors of section 2.2.3. While

it is essential to learn about P (x) in SSL, the impact of an oversimple model for

P (x) on the final prediction is much less severe than in density estimation. This is

because a suitable regularization will only depend on certain aspects of P (x) (e.g.,

on the coarse locations of high-density regions under the cluster assumption; see

section 2.3.3.1), and our model for the x distribution only has to be able to capture

those accurately.

2.3 Examples

In this section we provide examples of SSL methods falling in each of the categories

introduced in the previous section. We do not try to provide a comprehensive

7. There are, of course, class-conditional distributions which are implied by the models of
P (y|x) and P (x) (use the Bayes formula), but importantly we do not have to work with
them directly, so that their form is not restricted by tractability requirements.

2.3 Examples 23

literature review here (see (Seeger, 2000b) for review of work up to about 2001),

but are selective in order to point out characteristics of and differences between the

categories. Note that in this context (and also in (Seeger, 2000b)) some methods are

classified as “baseline methods.” This does not constitute a devaluation, and in fact

some of these methods belong to the top performers on some tasks. Furthermore, we

think that theoretical analyses of such methods are of great value, not least because

many practitioners use them. Our label applies to methods which can be derived

fairly straightforwardly from standard unsupervised or supervised methods, and

we hope that truly novel proposals are in fact compared against the most closely

related baseline methods.

2.3.1 Generative Techniques

Recall from section 2.2.1 that generative techniques use a model family {P (x, y|θ, π)}
in order to model the joint data distribution P (x, y). The simplest idea is to run a

mixture density estimation method for P (x) on X l∪Xu, treating y as a latent class

variable, then using the labeled sample Dl in order to associate latent classes with

actual ones. An obvious problem with this approach is that the labeling provided by

the unsupervised method may be inconsistent with Dl, in which case the clustering

should be modified to achieve consistency with Dl. Castelli and Cover (Castelli

and Cover, 1995) provide a simple analysis of this baseline method under fairly

unrealistic identifiability conditions. Namely, they assume that the data distribu-

tion is exactly identifiable by the unsupervised method at hand, which employs a

mixture model with one component for each class. It is not clear how to achieve

this in practice, even if P (x) is exactly known.8 In the large-sample limit, all class

distributions can be learned perfectly, but the assignment of classes to label names

obviously remains completely open. However, only a few additional labeled points

are required in order to learn this assignment. In fact, it is easy to see that the

error rate converges to the Bayes error exponentially fast (in the number of labeled

examples drawn from P (x, y)).

Another baseline method consists of maximizing the joint likelihood of Eq. 2.1.

For m > 0, the criterion to be minimized is not convex and typically multimodal,

so we have to contend ourselves with finding a local maximum. This can be

done by direct gradient descent or more conveniently by applying the expectation-

maximization (EM) algorithm (Dempster et al., 1977). The latter is an iterative

procedure which is guaranteed to converge to a local maximum of the likelihood.

If all data in Eq. 2.1 were labeled, a local maximum would be found by a single

optimization over θ. In fact, if the class-conditional distributions P (x|y, θ) are from

8. It is not unrealistic to assume that P (x) is exactly known, or that m → ∞. The
problem is that they assume that if P (x) is viewed as mixture distribution, then the
model can fit the class distributions P (x|y) exactly. This is not realistic for real-world
problems, especially if the quantities of interest are simply good estimates of P (y|x) or a
small generalization error of the resulting classifier.

24 A Taxonomy for Semi-Supervised Learning Methods

an exponential family, the global maximum can be found analytically. EM works by

assigning label distributions q(y|xi) to all points xi. For a labeled point, the label

is represented in that q(y|xi) = δy,yi
. If xi is unlabeled, we use the conditional

posterior (for the current θ), i.e. q(y|xi) ∝ πyP (xi|y, θ). Intuitively, this choice

reflects our best current point estimate for the label of xi. The E step in EM

consists of computing q(y|xi) for all points. In the M step, the parameters θ , π are

updated by maximizing the expected log likelihood under the q distributions:

φ(θ′, π′) =
n+m∑

i=1

M∑

y=1

q(y|xi) log π′
yP (xi|y, θ′).

E and M steps are iterated until convergence. It is easy to show that φ is a lower

bound on the joint log likelihood (2.1) for any choice of q on the unlabeled points.

The bound becomes an equality if the q are chosen as posteriors and the parameters

θ, π are not changed. Furthermore, under this choice the gradient of lower bound

and joint log likelihood are the same at θ , π , so that if EM converges we have found

a local maximum of Eq. 2.1.

The idea of using EM on a joint generative model to train on labeled and

unlabeled data is almost as old as EM itself. Titterington et.al. (Titterington et al.,

1985, section 5.7) review early theoretical work on the problem of discriminant

analysis in the presence of additional unlabeled data. The most common assumption

is that the data have been generated from a mixture of two Gaussians with equal

covariance matrices, in which case the Bayes discriminant is linear. They analyze

the “plug-in” method from the generative paradigm (see section 2.2.1) in which the

parameters of the class distributions are estimated by maximum likelihood. If the

two Gaussians are somewhat well separated, the asymptotic gain of using unlabeled

samples is very significant. For details, see (O’Neill, 1978; Ganesalingam and

McLachlan, 1978, 1979). McLachlan (McLachlan, 1975) gives a practical algorithm

for this case which is essentially a “hard” version of EM, i.e. in every E step the

unlabeled points are allocated to one of the populations, using the discriminant

derived from the mixture parameters of the previous step (note that the general

EM algorithm had not been proposed at that time). He proves that for “moderate-

sized” training sets from each population and for a pool Du of points sampled

from the mixture, if the algorithm is initialized with the maximum-likelihood (ML)

solution based on the labeled data, the solutions computed by the method converge

almost surely against the true mixture distribution with |Du| = m → ∞. These

early papers provide some important insight into properties of the semi-supervised

problem, but their strict assumptions limit the conclusions that can be drawn for

large real-world problems.

The EM algorithm has been applied to text classification by Nigam et.al. (see

(Nigam et al., 2000), or chapter 3 in this book). From Eq. 2.1 we see that in the

joint log likelihood, labeled and unlabeled data are weighted at the ratio n to m.

This “natural” weighting makes sense if the likelihood is taken at face value, i.e. as

a correct description of the sampling mechanism for the data, but it is somewhat

2.3 Examples 25

irrelevant to the problem of SSL where a strong sampling bias is present whose

exact size is usually unknown. In other words, unlabeled data are often available

in huge quantities simply because they can be obtained much cheaper than labeled

data. If we use the natural weighting in the interesting case m ≫ n, the labeled data

Dl are effectively ignored. Nigam et.al. suggest reweighting the terms in Eq. 2.1 by

(1−λ)/n and λ/m respectively (the natural weighting is given by λ = m/(m +n))

and adjusting λ by standard techniques such as cross-validation on Dl.

Note that y is treated as the latent class variable as far

as the estimation of P (x) from Du is concerned, and we can

just as well allow for more mixture components than classes.

Namely, we can introduce an additional separator variable k

such that under the model x and y are independent given

k. This means that all the information x contains about its

class y is already captured in k. This fact is illustrated in the

independence model on the right.

k

x y

The reweighted joint log-likelihood is

1 − λ

n

n∑

i=1

log
∑

k

βyi,kπkP (xi|k,θ) +
λ

m

n+m∑

i=n+1

log
∑

k

πkP (xi|k,θ),

where πk = P (k|θ) and βy,k = P (y|k,θ). It is straightforward to maximize

this criterion using EM. Miller and Uyar (Miller and Uyar, 1997) present some

results using this model together with Gaussian components P (x|k,θ). The “many-

centers-per-class” case in (Nigam et al., 2000) is equivalent to this method.

Some drawbacks of this simple generative mixture model approach have already

been mentioned in section 2.2.1. First, the weighting λ between the labeled and

unlabeled data sources has to be chosen carefully; for example, the natural weighting

is usually not appropriate. A selection of λ by cross-validation on Dl is robust in

principle, but bound to fail if n is very small. Second, for λ not close to 0 the

joint log likelihood has many (local) maxima, and for λ → 1 consistency with

Dl is less and less enforced. Both problems are adressed in a principal manner

by Corduneanu and Jaakkola (Corduneanu and Jaakkola, 2002). Under suitable

identifiability conditions9 on P (x|y, θ) the maximum point for λ = 0 (labeled data

only) is unique, while for λ = 1 (unlabeled data only) there are many equivalent

maximum points at least due to label permutation symmetry. Therefore, as we

trace the maximum point for growing λ starting from 0, the path must split at

a first critical λ∗ > 0. The authors argue that the maximum point of the log

likelihood at this λ∗ provides a promising solution to the SSL problem (in this

generative setting) in that it still fully incorporates the label information. Also, the

path up to λ∗ is unique, while it splits for larger λ, and the decision of which one to

9. These are not very restrictive; for example, they hold for all (regular) exponential
families.

26 A Taxonomy for Semi-Supervised Learning Methods

follow is independent of the label information. They show how to employ homotopy

continuation (path-following) methods in order to trace the solution path up to λ∗

fairly efficiently. By restricting themselves to λ ≤ λ∗ they circumvent the many

(local) maxima problem, and their choice of λ = λ∗ is well motivated.

Murray and Titterington [1978] (see also (Titterington et al., 1985), ex. 4.3.11)

suggest using Dl for each class to obtain kernel-based estimates of the densities

P (x|y). They fix these estimates and use EM in order to maximize the joint

likelihood of Dl, Du w.r.t. the mixing coefficients πt only.10 This procedure is

robust, but does not make a lot of use of the unlabeled data. If Dl is small, the

kernel-based estimates of the P (x|y) will be poor, and even if Du can be used to

obtain better values for the mixing coefficients, this is not likely to rescue the final

discrimination. Furthermore, the procedure has been suggested for situations where

the natural weighting between Dl, Du is appropriate, which is typically not the case

for SSL.

Shahshahani and Landgrebe (Shahshahani and Landgrebe, 1994) provide an

analysis aimed toward the general question whether unlabeled data can help in

classification, based on methods originating in asymptotic maximum-likelihood

theory. Their argumentation is somewhat unclear and has been criticized by various

other authors (e.g., (Nigam et al., 2000; Zhang and Oles, 2000)). They do not define

model classes and seem to confuse asymptotic and finite-sample terms. After all,

their claim seems to be that unlabeled data can reduce the asymptotic variance of

an estimator, but they do not worry about the fact that such modifications could

actually introduce new bias, especially in the interesting case where m ≫ n. On the

practical side, the algorithm they suggest is the joint EM scheme discussed above.

Another analysis of SSL which also employs Fisher information, is given by Zhang

and Oles (Zhang and Oles, 2000). The authors show that for purely diagnostic

models, unlabeled data cannot help (this fact has of course been known for a long

time; see also section 2.2.2). In the generative setup, they show that Du can only

help. While this is true under their assumptions, it draws on asymptotic concepts

and may not be relevant in practical situations. The Fisher information charac-

terizes the minimal asymptotic variance of an unbiased estimator only, and the

maximum-likelihood estimator is typically only asymptotically unbiased. Applying

such concepts to the case where Dl is small cannot lead to strong conclusions, and

the question of (even asymptotic) bias remains in the case where m grows much

faster than n. On the practical side, some empirical evidence is presented on a

text categorization task which shows that unlabeled data can lead to instabilities

in common transduction algorithms and therefore “hurt” (see comments in section

2.2.3).

10. EM w.r.t. the mixing coefficients only always converges to a unique global optimum.
It is essentially a variant of the Blahut-Arimoto algorithm to compute the rate distortion
function which is important for quantization (see (Cover and Thomas, 1991)).

2.3 Examples 27

2.3.2 Diagnostic Techniques

We noted in section 2.2.2 that unlabeled data cannot be used in Bayesian diagnostic

methods if θ and µ are a priori independent, so in order to make use of Du we

have to employ conditional priors P (θ |µ). Unlabeled data may still be useful in

non-Bayesian settings. An example has been given by Tong and Koller (Tong and

Koller, 2000) under the name of restriced Bayes optimal classification (RBOC).

Consider a diagnostic method in which the sum of an empirical loss term and a

regularization functional is minimized. The empirical loss term is the expectation

w.r.t. the labeled sample Dl of a loss function relevant to the problem (e.g., the zero-

one loss L(x, y, h) = I{y �=h(x)}). The authors suggest incorporating unlabeled data

Du by estimating P (x, y) from Dl∪Du, then replacing the empirical loss term by the

expectation of the loss under this estimate. The regularization term is not changed.

We can compare this method directly with input-dependent regularization (see

section 2.2.3). In the former, the empirical loss part (the negative log likelihood for

a probabilistic model) is modified based on Du; in the latter it is the regularization

term. We would not expect RBOC to produce very different results from the

corresponding diagnostic technique, especially if n is rather small (which is the

interesting case in practice). This is somewhat confirmed by the weak results in

(Tong and Koller, 2000). A very similar idea is proposed in (Chapelle et al., 2001)

in order to modify the diagnostic SVM framework.

Anderson (Anderson, 1979) suggested an interesting modification of logistic

regression in which unlabeled data can be used. In binary logistic regression, the log

odds are modeled as linear function, which gives P (x|1) = exp(βT
x)P (x|2) and

P (x) = (π1 exp(βT
x)+1−π1)P (x|2), where π1 = P{t = 1}. Anderson now chooses

the parameters β, π1 and P (x|2) in order to maximize the likelihood of both Dl

and Du, subject to the constraints that P (x|1) and P (x|2) are normalized. For

finite X, this problem can be transformed into an unconstrained optimization w.r.t.

the parameters β, π1. For a continuous input variable x, Anderson advocates using

the form of P (x|2) derived for the “finite X” case, although this is not a smooth

function. Unfortunately, it is not clear how to generalize this idea to more realistic

models, for example how to “kernelize” it, and the form of P (x|2) is inadequate for

many problems with infinite X.

2.3.3 Input-Dependent Regularization

We discussed in section 2.2.3 that unlabeled data Du can be useful within a

diagnostic technique if θ and µ are dependent a priori. In order to implement

this idea, we have to specify conditional priors P (θ|µ) encoding our belief in how

characteristics of x → y depend on knowledge about P (x).

28 A Taxonomy for Semi-Supervised Learning Methods

2.3.3.1 The Cluster Assumption

It is not hard to construct “malicious” examples of P (x, y) which defy any given

dependence assumption on θ , µ. However, in practice it is often the case that

cluster structure in the data for x indeed is mostly consistent with the labeling.

It is not very fruitful to speculate about why this is the case, although certainly

there is a selection bias toward features (i.e. components in x) which are relevant

w.r.t. the labeling process, which means they should group in the same way (w.r.t.

a simple distance) as labelings. The cluster assumption (CA) (e.g., (Seeger, 2000b))

provides a general way of exploiting this observation for SSL. It postulates that two

points x′, x′′ should have the same label y with high probability if there is a “path”

between them in X which moves through regions of significant density P (x) only. In

other words, a discrimination function between the classes should be smooth within

connected high-density regions of P (x). Thus, the CA can be compared directly

with global smoothness assumptions requiring the discriminant to change smoothly

everywhere, independent of P (x). While the latter penalize sharp changes also in

regions which will be sparsely populated by training and test data, the CA remains

indifferent there.

The CA is implemented (to different extent) in a host of methods proposed

for SSL. Most prominent are probably label propagation methods (Szummer and

Jaakkola, 2002b; Belkin and Niyogi, 2003b; Zhu et al., 2003b). The rough idea

is to construct a graph with vertices from X l ∪ Xu which contains the test

set to be labeled and all of X l. Nearest neighbors are joined by edges with a

weight proportional to local correlation strength. We then initialize the nodes

corresponding to X l with the labels Yl and propagate label distributions over the

remaining nodes in the manner of a Markov chain on the graph (Szummer and

Jaakkola, 2002b). It is also possible to view the setup as a Gaussian field with

the graph and edge weights specifying the inverse covariance matrix (Zhu et al.,

2003b). Label propagation techniques implement the CA relative to unsupervised

spectral clustering (Belkin and Niyogi, 2003b). The CA has been implemented for

kernel machines by way of the cluster kernel (Chapelle et al., 2003). Furthermore,

the generative SSL techniques of section 2.3.1 can be seen as implementing the CA

relative to a mixture model clustering.

A generalization of the CA has been given by Corduneanu and Jaakkola (see

chapter 10 in this book) who show how to obtain a regularizer for the conditional

distribution P (y|x) from information-theoretic arguments.

2.3.3.2 The Fisher Kernel

The Fisher kernel was proposed in (Jaakkola and Haussler, 1999) in order to

exploit additional unlabeled data within a kernel-based support vector machine

(SVM) framework for detecting remote protein homologies. The idea is to fit a

generative model P (x|µ) to Du by maximum likelihood (resulting in µ̂, say). If

x are DNA sequences, a hidden Markov model (HMM) can be employed. P (x|µ̂)

2.3 Examples 29

represents the knowledge extracted from Du, and the Fisher kernel is a general way

of constructing a covariance kernel Kµ̂ which depends on this knowledge. We can

then fit an SVM or a Gaussian process (GP) classifier to Du using the kernel Kµ̂ .

Identifying this setup as an instance of input-dependent regularization is easiest in

the GP context. Here, θ is a process representing the discriminant function (we

assume c = 2 for simplicity), and P (θ|µ) is a GP distribution with zero-mean

function and covariance kernel Kµ . In the ML context, P (µ|Du) is approximated

by the delta distribution δµ̂ .

Define the Fisher score to be Fµ̂(x) = ∇µ̂ log P (x|µ) (the gradient w.r.t. µ is

evaluated at µ̂). The Fisher information matrix is F = EP (·|µ̂)

[
Fµ̂(x)Fµ̂(x)T

]
.

The naive Fisher kernel is Kµ̂(x, x′) = Fµ̂(x)T F−1Fµ̂(x′). In a variant, F is

replaced by αI for a scale parameter α. Other variants of the Fisher kernel are

obtained by using the Fisher score Fµ̂(x) as feature vector for x and plugging

these into a standard kernel such as the Gaussian radial basis function (RBF) one.

The latter “embeddings” seem to be more useful in practice. The Fisher kernel can

be motivated from various angles (see (Jaakkola and Haussler, 1999)), for example,

as first-order approximation to a sample mutual information between x, x′ (Seeger,

2002).

2.3.3.3 Co-Training

Co-training was introduced by Blum and Mitchell (Blum and Mitchell, 1998) and is

related to earlier work on unsupervised learning (Becker and Hinton, 1992). The idea

is to make use of different “views” on the objects to be classified (here we restrict

ourselves to binary classification, c = 2, and to two views). For example, a webpage

can be represented by the text on the page, but also by the text of hyperlinks

referring to the page. We can train classifiers separately which are specialized to

each of the views, but in this context unlabeled data Du can be helpful in that,

although the true label is missing, it must be the same for all the views. It turns out

that co-training can be seen as a special case of Bayesian inference using conditional

priors (see section 2.2.3), as is demonstrated below in this section.

Let X = X(1) × X(2) be a finite or countable input space. If x = (x(1), x(2)), the

x(j) are different “views” on x. We are also given spaces Θ(j) of concepts (binary

classifiers) θ(j). Elements θ = (θ(1), θ(2)) ∈ Θ = Θ(1) × Θ(2) are called concepts

over X, although we may have θ(1)(x(1))
= θ(2)(x(2)) for some x = (x(1), x(2)) ∈ X.

Whenever the θ(j) agree, we write θ(x) = θ(1)(x(1)). If A ⊂ X, we say that

a concept θ = (θ(1), θ(2)) is compatible with A if θ(1)(x(1)) = θ(2)(x(2)) for all

x = (x(1), x(2)) ∈ A. Denote by Θ(A) the space of all concepts compatible with

A.11 If Q(x) is a distribution over X with support S = suppQ(x) = {x|Q(x) > 0},
we say that a concept θ is compatible with the distribution Q if it is compatible

11. In order not to run into trivial problems, we assume that Θ(A) is never empty, which
can be achieved by adding the constant concept 1 to both Θ(j).

30 A Taxonomy for Semi-Supervised Learning Methods

with S.

In the co-training setting, there is an unknown input distribution P (x). A

target concept θ is sampled from some unknown distribution over Θ, and the

data distribution is P (y|x) = I{θ(x)=y} if θ ∈ Θ({x}), 1/2 otherwise.12 However,

the central assumption is that the target concept θ is compatible with the input

distribution P (x). More specifically, the support of the concept distribution must be

contained in Θ(suppP (x)). Therefore, unlabeled data Du can be used by observing

that Θ(suppP (x)) ⊂ Θ(Du∪X l), so the effective concept space can be shrunk from

Θ to Θ(Du ∪ X l).

We demonstrate that co-training can be understood as Bayesian inference with

conditional priors encoding the compatibility assumption. We model P (x) by

{P (x|µ)} and introduce the variable S = suppP (x|µ) for convenience, then define

P (θ|µ) = P (θ |S) as

P (θ |S) = fS(θ)I{θ∈Θ(S)}, S ⊂ X,

where fS(θ) > 0, and all P (θ |S) are properly normalized. For example, if Θ(S)

is finite, we can choose fS(θ) = |Θ(S)|−1. The likelihood is given by P (y|x, θ) =

(1/2)(I{θ(1)(x(1))=y} + I{θ(2)(x(2))=y}) (noiseless case). Since P (θ|S) = 0 for θ
∈
Θ(S), the conditional prior encodes the compatibility assumption. The posterior

belief about θ is given by

P (θ |Dl, Du) ∝ I{θ(xi)=yi, i=1,...,n}

∫
P (θ|S)P (S|X l, Du) dS,

so that P (θ|Dl, Du)
= 0 iff θ is consistent with the labeled data Dl and θ ∈
Θ(Du ∪X l). Namely, if θ
∈ Θ(Du ∪X l), then P (θ|S) = 0 for all S which contain

Du∪X l, and P (S|Du, X l) = 0 for all other S. On the other hand, if θ ∈ Θ(Du∪X l),

then we have P (θ|Ŝ) > 0 and P (Ŝ|Du, X l) > 0 at least for Ŝ = Du ∪ X l. In the

terminology of Blum and Mitchell, suppP (θ|Dl, Du) is equal to the “version space”

given all the data. The biases for the learning methods on Θ(j) may be encoded in

the potentials fS(θ).

Once co-training is understood within a Bayesian framework with conditional

priors, one can employ standard techniques in order to perform inference. In fact,

we showed in (Seeger, 2000a) that the co-training algorithm suggested by Blum

and Mitchell can be seen as a variant of (sequential) EM on the probabilistic model

sketched above. This viewpoint allows us to generalize co-training along various

dimensions, e.g., allowing for noise, smoother prior distributions, using batch rather

than online training, uncertain rather than fixed labels on the test points, etc. We

refer to (Seeger, 2000a) for details.

12. Here, IE is 1 if E is true, 0 otherwise. The scenario is called noiseless because the only
source of randomness is the uncertainty in the target function.

2.4 Conclusions 31

2.4 Conclusions

In this chapter we have described a simple taxonomy of methods for semi-supervised

learning and given many examples of SSL methods for each of the categories.

Advantages and potential pitfalls of each group have been discussed. We have

underlined the importance of using conditional priors in diagnostic Bayesian SSL

techniques and have given several examples of methods proposed in the literature

which fall into this category.

3 Semi-Supervised Text Classification Using

EM

Kamal Nigam knigam@kamalnigam.com

Andrew McCallum mccallum@cs.umass.edu

Tom Mitchell tom.mitchell@cmu.edu

For several decades, statisticians have advocated using a combination of labeled and

unlabeled data to train classifiers by estimating parameters of a generative model

through iterative expectation-maximization (EM) techniques. This chapter explores

the effectiveness of this approach when applied to the domain of text classification.

Text documents are represented here with a bag-of-words model, which leads to

a generative classification model based on a mixture of multinomials. This model

is an extremely simplistic representation of the complexities of written text. This

chapter explains and illustrates three key points about semi-supervised learning

for text classification with generative models. First, despite the simplistic repre-

sentation, some text domains have a high positive correlation between generative

model probability and classification accuracy. In these domains, a straightforward

application of EM with the naive Bayes text model works well. Second, some text

domains do not have this correlation. Here we can adopt a more expressive and ap-

propriate generative model that does have a positive correlation. In these domains,

semi-supervised learning again improves classification accuracy. Finally, EM suffers

from the problem of local maxima, especially in high-dimension domains such as

text classification. We demonstrate that deterministic annealing, a variant of EM,

can help overcome the problem of local maxima and increase classification accuracy

further when the generative model is appropriate.

3.1 Introduction

The idea of learning classifiers from a combination of labeled and unlabeled data

is an old one in the statistics community. At least as early as 1968, it was

34 Semi-Supervised Text Classification Using EM

suggested that labeled and unlabeled data could be combined to build classifiers

with likelihood maximization by testing all possible class assignments (Hartley

and Rao, 1968). The seminal paper by Day (1969) presents an iterative EM-like

approach for parameters of a mixture of two normals with known covariances

from unlabeled data alone. Similar iterative algorithms for building maximum-

likelihood classifiers from labeled and unlabeled data with an explicit generative

model followed, primarily for mixtures of normal distributions (McLachlan, 1975;

Titterington, 1976).

Dempster et al. (1977) presented the theory of the EM framework, bringing to-

gether and formalizing many of the commonalities of previously suggested iterative

techniques for likelihood maximization with missing data. Its applicability to es-

timating maximum likelihood (or maximum a posteriori) parameters for mixture

models from labeled and unlabeled data (Murray and Titterington, 1978) and then

using this for classification (Little, 1977) was recognized immediately. Since then,

this approach continues to be used and studied (McLachlan and Ganesalingam,

1982; Ganesalingam, 1989; Shahshahani and Landgrebe, 1994). Using likelihood

maximization of mixture models for combining labeled and unlabeled data for clas-

sification has more recently made its way to the machine learning community (Miller

and Uyar, 1996; Nigam et al., 1998; Baluja, 1999).

The theoretical basis for expectation-maximization shows that with sufficiently

large amounts of unlabeled data generated by the model class in question, a more

probable model can be found than if using just the labeled data alone. If the

classification task is to predict the latent variable of the generative model, then

with sufficient data a more probable model will also result in a more accurate

classifier.

This approach rests on the assumption that the generative model is correct.

When the classification task is one of classifying human-authored texts (as we

consider here) the true generative model is impossible to parameterize, and instead

practitioners tend to use very simple representations. For example, the commonly

used naive Bayes classifier represents each authored document as a bag of words,

discarding all word-ordering information. The generative model for this classifier

asserts that documents are created by a draw from a class-conditional multinomial.

As this is an extreme simplification of the authoring process, it is interesting to

ask whether such a generative modeling approach to semi-supervised learning is

appropriate or beneficial in the domain of text classification.

This chapter demonstrates that generative approaches are appropriate for semi-

supervised text classification when the selected generative model probabilities are

well correlated with classification accuracy, and when suboptimal local maxima

can be mostly avoided. In some cases, the naive Bayes generative model, despite its

simplicity, is sufficient. We find that model probability is strongly correlated with

classification accuracy, and expectation-maximization techniques yield classifiers

with unlabeled data that are significantly more accurate than those built with

labeled data alone. In other cases, the naive Bayes generative model is not well

correlated with classification accuracy. By adopting a more expressive generative

3.2 A Generative Model for Text 35

model, accuracy and model probability correlations are restored, and again EM

yields good results.

One of the pitfalls of EM is that it only guarantees the discovery of local maxima

and not global maxima in model probability space. In domains like text classifica-

tion, with a very large number of parameters, this effect can be very significant.

We show that when model probability and classification are well correlated, the use

of deterministic annealing, an alternate modeling estimation process, finds more

probable and thus more accurate classifiers.

Nongenerative approaches have also been used for semi-supervised text classifica-

tion. Joachims (1999) uses transductive support vector machines to build discrimi-

native classifiers for several text classification tasks. Blum and Mitchell (1998) use

the co-training setting to build naive Bayes classifiers for webpages, using anchor

text and the page itself as two different sources of information about an instance.

Zelikovitz and Hirsh (2000) use unlabeled data as background knowledge to aug-

ment a nearest-neighbor classifier. Instead of matching a test example directly to

its closest labeled example, they instead match a test example to a labeled example

by measuring their similarity to a common set of unlabeled examples.

This chapter proceeds as follows. Section 3.2 presents the generative model used

for text classification and shows how to perform semi-supervised learning with EM.

Section 3.3 shows an example where this approach works well. Section 3.4 presents

a more expressive generative model that works when the naive Bayes assumption

is not sufficient, and experimental results from a domain that needs it. Section 3.5

presents deterministic annealing and shows that this finds model parameterizations

that are much more probable than those found by EM, especially when labeled data

are sparse.

3.2 A Generative Model for Text

This section presents a framework for characterizing text documents and shows how

to use this to train a classifier from labeled and unlabeled data. The framework

defines a probabilistic generative model, and embodies three assumptions about

the generative process: (1) the data are produced by a mixture model, (2) there

is a one-to-one correspondence between mixture components and classes, and (3)

the mixture components are multinomial distributions of individual words. These

are the assumptions used by the naive Bayes classifier, a commonly used tool

for standard supervised text categorization (Lewis, 1998; McCallum and Nigam,

1998a).

We assume documents are generated by a mixture of multinomials model, where

each mixture component corresponds to a class. Let there be M classes and a

vocabulary of size |X|; each document xi has |xi| words in it. How do we create a

document using this model? First, we roll a biased M -sided die to determine the

class of our document. Then, we pick up the biased |X|-sided die that corresponds

to the chosen class. We roll this die |xi| times, and count how many times each

36 Semi-Supervised Text Classification Using EM

word occurs. These word counts form the generated document.

Formally, every document is generated according to a probability distribution

defined by the parameters for the mixture model, denoted θ. The probability

distribution consists of a mixture of components cj ∈ [M].1 A document, xi, is

created by first selecting a mixture component according to the mixture weights

(or class probabilities), P(cj|θ), then using this selected mixture component to

generate a document according to its own parameters, with distribution P(xi|cj ; θ).

Thus, the likelihood of seeing document xi is a sum of total probability over all

mixture components:

P(xi|θ) =
∑

j∈[M]

P(cj |θ)P(xi|cj ; θ). (3.1)

Each document has a class label. We assume a one-to-one correspondence between

mixture model components and classes, and thus use cj to indicate the jth mixture

component, as well as the jth class. The class label for a particular document xi is

written yi. If document xi was generated by mixture component cj we say yi = cj .

A document, xi, is a vector of word counts. We write xit to be the number of

times word wt occurs in document xi. When a document is to be generated by a

particular mixture component a document length, |xi| =
∑|X|

t=1 xit, is first chosen

independently of the component.2 Then, the selected mixture component is used

to generate a document of the specified length, by drawing from its multinomial

distribution.

From this we can expand the second term from (3.1), and express the probability

of a document given a mixture component in terms of its constituent features: the

document length and the words in the document.3

P(xi|cj ; θ) ∝ P(|xi|)
∏

wt∈X

P(wt|cj ; θ)
xit . (3.2)

This formulation embodies the standard naive Bayes assumption: that the words

of a document are conditionally independent of the other words in the same

document, given the class label.

Thus the parameters of an individual mixture component define a multinomial

distribution over words, i.e. the collection of word probabilities, each written

θwt|cj
, such that θwt|cj

≡ P(wt|cj ; θ), where t ∈ [|X|] and
∑

t P(wt|cj ; θ) = 1.

Since we assume that for all classes, document length is identically distributed, it

does not need to be parameterized for classification. The only other parameters

1. We use the notation [M] to refer to the set {1, . . . , M}.
2. This assumes that document length is independent of class, though length could also
be modeled and parameterized on a class-by-class basis.
3. We omit here the multinomial coefficients for notational simplicity. For classification
purposes, these coefficients cancel out.

3.2 A Generative Model for Text 37

of the model are the mixture weights (class probabilities),θcj
≡ P(cj |θ), which

indicate the probabilities of selecting the different mixture components. Thus the

complete collection of model parameters, θ, defines a set of multinomials and class

probabilities: θ = {θwt|cj
: wt ∈ X, cj ∈ [M] ; θcj

: cj ∈ [M]}.
To summarize, the full generative model, given by combining Eqs. 3.1 and 3.2,

assigns probability P (xi|θ) to generating document xi as follows:

P(xi|θ) ∝ P(|xi|)
∑

j∈[M]

P(cj |θ)
∏

wt∈X

P(wt|cj ; θ)
xit (3.3)

where the set of word counts xit is a sufficient statistic for the parameter vector θ

in this generative model.

3.2.1 Supervised Text Classification with Generative Models

Learning a naive Bayes text classifier from a set of labeled documents consists of

estimating the parameters of the generative model. The estimate of the parameters

θ is written θ̂. Naive Bayes uses the maximum a posteriori (MAP) estimate, thus

finding argmaxθ P(θ|X, Y). This is the value of θ that is most probable given the

evidence of the training data and a prior.

Our prior distribution is formed with the product of Dirichlet distributions—one

for each class multinomial and one for the overall class probabilities. The Dirichlet

is the commonly used conjugate prior distribution for multinomial distributions.

The form of the Dirichlet is

P(θwt|cj
|α) ∝

∏

wt∈X

P(wt|cj)
αt−1. (3.4)

where the αt are constants greater than zero. We set all αt = 2, which corresponds

to a prior that favors the uniform distribution. This is identical to Laplace and

m-estimate smoothing. A well-presented introduction to Dirichlet distributions is

given by Stolcke and Omohundro (1994).

The parameter estimation formulas that result from maximization with the data

and our prior are the familiar smoothed ratios of empirical counts. The word

probability estimates θ̂wt|cj
are

θ̂wt|cj
≡ P(wt|cj ; θ̂) =

1 +
∑

xi∈X δijxit

|X| + ∑|X|
s=1

∑
xi∈X δijxis

, (3.5)

where δij is given by the class label: 1 when yi = cj and 0 otherwise.

The class probabilities, θ̂cj
, are estimated in the same manner, and also involve

a ratio of counts with smoothing:

38 Semi-Supervised Text Classification Using EM

θ̂cj
≡ P(cj|θ̂) =

1 +
∑|X|

i=1 δij

M + |X | . (3.6)

The derivation of these ratios-of-counts formulas comes directly from maximum

a posteriori parameter estimation. Finding the θ that maximizes P(θ|X, Y) is

accomplished by first breaking this expression into two terms by the Bayes rule:

P(θ|X, Y) ∝ P(X, Y |θ)P(θ). The first term is calculated by the product of all

the document likelihoods (from Eq. 3.1). The second term, the prior distribution

over parameters, is the product of Dirichlets. The whole expression is maximized

by solving the system of partial derivatives of log(P(θ|X, Y)), using Lagrange

multipliers to enforce the constraint that the word probabilities in a class must

sum to one. This maximization yields the ratio of counts seen above.

Given estimates of these parameters calculated from labeled training documents,

it is possible to turn the generative model backward and calculate the probability

that a particular mixture component generated a given document to perform

classification. This follows from an application of the Bayes rule:

P(yi = cj |xi; θ̂) =
P(cj |θ̂)P(xi|cj ; θ̂)

P(xi|θ̂)

=
P(cj |θ̂)

∏
wt∈X

P(wt|cj ; θ̂)
xit

∑M
k=1 P(ck|θ̂)

∏
wt∈X

P(wt|ck; θ̂)xit

. (3.7)

If the task is to classify a test document xi into a single class, then the class with

the highest posterior probability, argmaxj P(yi = cj |xi; θ̂), is selected.

3.2.2 Semi-Supervised Text Classification with EM

In the semi-supervised setting with labeled and unlabeled data, we would still like

to find MAP parameter estimates, as in the supervised setting above. Because there

are no labels for the unlabeled data, the closed-form equations from the previous

section are not applicable. However, using the EM technique, we can find locally

MAP parameter estimates for the generative model.

The EM technique as applied to the case of labeled and unlabeled data with

naive Bayes yields a straightforward and appealing algorithm. First, a naive Bayes

classifier is built in the standard supervised fashion from the limited amount of

labeled training data. Then, we perform classification of the unlabeled data with

the naive Bayes model, noting not the most likely class but the probabilities

associated with each class. Then, we rebuild a new naive Bayes classifier using all the

data—labeled and unlabeled—using the estimated class probabilities as true class

labels. This means that the unlabeled documents are treated as several fractional

documents according to these estimated class probabilities. We iterate this process

of classifying the unlabeled data and rebuilding the naive Bayes model until it

3.2 A Generative Model for Text 39

converges to a stable classifier and set of labels for the data. This is summarized in

algorithm 3.1.

Algorithm 3.1 Basic EM algorithm for semi-supervised learning of a text classifier

• Inputs: Collections Xl of labeled documents and Xu of unlabeled documents.

• Build an initial naive Bayes classifier, θ̂, from the labeled documents, Xl, only.

Use maximum a posteriori parameter estimation to find θ̂ = arg maxθ P(Xl|θ)P(θ)

(see Eqs. 3.5 and 3.6).

• Loop while classifier parameters improve, as measured by the change in l(θ|X, Y)

(the log probability of the labeled and unlabeled data, and the prior) (see Equa-

tion 3.8):

• (E step) Use the current classifier, θ̂, to estimate component membership

of each unlabeled document, i.e., the probability that each mixture component

(and class) generated each document, P(cj|xi; θ̂) (see Eq. 3.7).

• (M step) Re-estimate the classifier, θ̂, given the estimated component mem-

bership of each document. Use maximum a posteriori parameter estimation to

find θ̂ = argmaxθ P(X, Y |θ)P(θ) (see Eqs. 3.5 and 3.6).

• Output: A classifier, θ̂, that takes an unlabeled document and predicts a class

label.

More formally, learning a classifier is approached as calculating a maximum

a posteriori estimate of θ, i.e. argmaxθ P(θ)P(X, Y |θ), which is equivalent to

maximizing the log of the same. Consider the second term of the maximization, the

probability of all the observable data. The probability of an individual unlabeled

document is a sum of total probability over all the classes, as in Eq. 3.1. For the

labeled data, the generating component is already given by label yi and we do not

need to refer to all mixture components—just the one corresponding to the class.

Using Xu to refer to the unlabeled examples, and Xl to refer to the examples for

which labels are given, the expected log probability of the full data is

l(θ|X, Y) = log(P(θ)) +
∑

xi∈Xu

log
∑

j∈[M]

P(cj|θ)P(xi|cj ; θ)

+
∑

xi∈Xl

log (P(yi = cj |θ)P(xi|yi = cj ; θ)) . (3.8)

(We have dropped the constant terms for convenience.) Notice that this equation

contains a log of sums for the unlabeled data, which makes a maximization by

partial derivatives computationally intractable. The formalism of EM (Dempster

et al., 1977) provides an iterative hill-climbing approach to finding local maxima

of model probability in parameter space. The E step of the algorithm estimates

the expectations of the missing values (i.e., unlabeled class information) given the

40 Semi-Supervised Text Classification Using EM

latest iteration of the model parameters. The M step maximizes the likelihood of

the model parameters using the previously computed expectations of the missing

values as if they were the true ones.

In practice, the E step corresponds to performing classification of each unlabeled

document using Eq. 3.7. The M step corresponds to calculating a new maximum a

posteriori (MAP) estimate for the parameters, θ̂, using Eqs. 3.5 and 3.6 with the

current estimates for P(cj|xi; θ̂).

Essentially all initializations of the parameters lead to some local maxima with

EM. Many instantiations of EM begin by choosing a starting model parameteri-

zation randomly. In our case, we can be more selective about the starting point

since we have not only unlabeled data but also some labeled data. Our iteration

process is initialized with a priming M step, in which only the labeled documents

are used to estimate the classifier parameters, θ̂, as in Eqs. 3.5 and 3.6. Then the

cycle begins with an E step that uses this classifier to probabilistically label the

unlabeled documents for the first time.

The algorithm iterates until it converges to a point where θ̂ does not change

from one iteration to the next. Algorithmically, we determine that convergence

has occurred by observing a below-threshold change in the log-probability of the

parameters (Eq. 3.8), which is the height of the surface on which EM is hill-

climbing.

3.2.3 Discussion

The justifications for this approach depend on the assumptions stated in section 3.2,

namely, that the data are produced by a mixture model, and that there is a one-

to-one correspondence between mixture components and classes. If the generative

modeling assumptions were correct, then maximizing model probability would be

a good criterion indeed for training a classifier. In this case the Bayes optimal

classifier, when the number of training examples approaches infinity, corresponds

to the MAP parameter estimates of the model. When these assumptions do not

hold—as certainly is the case in real-world textual data—the benefits of unlabeled

data are less clear. With only labeled data, the naive Bayes classifier does a good job

of classifying text documents (Lewis and Ringuette, 1994; Craven et al., 2000; Yang

and Pedersen, 1997; Joachims, 1997; McCallum et al., 1998). This observation is

explained in part by the fact that classification estimation is only a function of the

sign (in binary classification) of the function estimation (Domingos and Pazzani,

1997; Friedman, 1997). The faulty word independence assumption exacerbates the

tendency of naive Bayes to produce extreme (almost 0 or 1) class probability

estimates. However, classification accuracy can be quite high even when these

estimates are inappropriately extreme.

Semi-supervised learning leans more heavily on the correctness of the modeling

assumptions than supervised learning. The next section will show empirically that

this method can indeed dramatically improve the accuracy of a document classifier,

especially when there are only a few labeled documents.

3.3 Experimental Results with Basic EM 41

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 50 100 200 500 1000 2000 5000

A
c
c
u

ra
c
y

Number of Labeled Documents

10000 unlabeled documents
No unlabeled documents

Figure 3.1 Classification accuracy on the 20 Newsgroups data set, both with and without
10,000 unlabeled documents. With small amounts of training data, using EM yields more
accurate classifiers. With large amounts of labeled training data, accurate parameter
estimates can be obtained without the use of unlabeled data, and classification accuracies
of the two methods begin to converge.

3.3 Experimental Results with Basic EM

In this section we demonstrate that semi-supervised learning with labeled and

unlabeled data provides text classifiers that are more accurate than those provided

by supervised learning using only the labeled data. This is an interesting result

as the mixture of multinomials generative model is a dramatic simplification of

the true authoring process. However, we demonstrate that for some domains, the

optimization criteria of model probability are strongly correlated with classification

accuracy.

Experiments in this section use the well-known 20 Newsgroups text classifica-

tion data set (Mitchell, 1997), consisting of about 20,000 Usenet articles evenly

distributed across 20 newsgroups. The task is to classify an article into the news-

group to which it was posted. For preprocessing, stopwords are removed and word

counts of each document are scaled such that each document has constant length,

with potentially fractional word counts. As the data have timestamps, a test set

is formed from the last 20% of articles from each newsgroup. An unlabeled set is

formed by randomly selecting 10,000 articles from those remaining. Labeled train-

ing sets are formed by partitioning the remaining documents into nonoverlapping

sets. We create up to ten training sets per size of the set, as data are available.

When posterior model probability is reported and shown on graphs, some additive

and multiplicative constants are dropped, but the relative values are maintained.

Figure 3.1 shows the effect of using EM with unlabeled data on this data set. The

42 Semi-Supervised Text Classification Using EM

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-1.69e+07 -1.68e+07 -1.67e+07 -1.66e+07 -1.65e+07 -1.64e+07

A
c
c
u

ra
c
y

log Probability of Model

Figure 3.2 A scatterplot showing the correlation between the posterior model proba-
bility and the accuracy of a model trained with labeled and unlabeled data. The strong
correlation implies that model probability is a good optimization criteria for the 20 News-

groups data set.

vertical axis indicates average classifier accuracy on test sets, and the horizontal axis

indicates the amount of labeled training data on a log scale. We vary the amount of

labeled training data, and compare the classification accuracy of traditional naive

Bayes (no unlabeled documents) with an EM learner that has access to 10.000

unlabeled documents.

EM performs significantly better than traditional naive Bayes. For example,

with 300 labeled documents (15 documents per class), naive Bayes reaches 52%

accuracy while EM achieves 66%. This represents a 30% reduction in classification

error. Note that EM also performs well even with a very small number of labeled

documents; with only 20 documents (a single labeled document per class), naive

Bayes obtains 20%, EM 35%. As expected, when there are a lot of labeled data,

and the naive Bayes learning curve is close to a plateau, having unlabeled data

does not help nearly as much, because there are already enough labeled data to

accurately estimate the classifier parameters. With 5500 labeled documents (275

per class), classification accuracy increases from 76% to 78%. Each of these results

is statistically significant (p < 0.05).4

How does EM find more accurate classifiers? It does so by optimizing on posterior

model probability, not classification accuracy directly. If our generative model were

perfect, then we would expect model probability and accuracy to be correlated and

4. When the number of labeled examples is small, we have multiple trials, and use paired
t-tests. When the number of labeled examples is large, we have a single trial, and report
results instead with a McNemar test. These tests are discussed further by Dietterich (1998).

3.4 Using a More Expressive Generative Model 43

EM to be helpful. But we know that our simple generative model does not capture

many of the properties contained in the text. Our 20 Newsgroups results show that

we do not need a perfect model for EM to help text classification. Generative models

are representative enough for the purposes of text classification if model probability

and accuracy are correlated, allowing EM to indirectly optimize accuracy.

To illustrate this more definitively, let us look again at the 20 Newsgroups

experiments, and empirically measure this correlation. Figure 3.2 demonstrates the

correlation—each point in the scatterplot is one of the labeled and unlabeled splits

from figure 3.1. The labeled data here are used only for setting the EM initialization

and are not used during iterations. We plot classification performance as accuracy

on the test data and show the posterior model probability.

For this data set, classification accuracy and model probability are in good

correspondence. The correlation coefficient between accuracy and model probability

is 0.9798, a very strong correlation indeed. We can take this as a post hoc verification

that this data set is amenable to using unlabeled data via a generative model

approach. The optimization criterion of model probability is applicable here because

it is in tandem with accuracy.

3.4 Using a More Expressive Generative Model

The second assumption of the generative model of section 3.2 states that there

is a one-to-one correspondence between classes and components in the mixture

model. In some text domains, it is clear that such an assumption is a dangerous

one. Consider the task of text filtering, where we want to identify a small well-

defined class of documents from a very large pool or stream of documents. One

example might be a system that watches a network administrator’s incoming emails

to identify the rare emergency situation that would require paging her on vacation.

Modeling the nonemergency emails as the negative class with only one multinomial

distribution will result in an unrepresentative model. The negative class contains

emails with a variety of subtopics: personal emails, nonemergency requests, spam,

and many more.

What would be a more representative model? Instead of modeling a sea of

negative examples with a single mixture component, it might be better to model

it with many components. In this way, each negative component could, after

maximization, capture one clump of the sea of examples. This section takes exactly

the approach suggested by this example for text data, and relaxes the assumption of

a one-to-one correspondence between mixture components and classes. We replace it

with a less restrictive assumption: a many-to-one correspondence between mixture

components and classes. This allows us to model the subtopic structure of a class.

44 Semi-Supervised Text Classification Using EM

3.4.1 Multiple Mixture Components per Class

The new generative model must account for a many-to-one correspondence between

mixture components and classes. As in the old model, we first pick a class with a

biased die roll. Each class has several subtopics; we next pick one of these subtopics,

again with a biased die roll. Now that the subtopic is determined, the document’s

words are generated. We do this by first picking a length (independently of subtopic

and class) and then draw the words from the subtopic’s multinomial distribution.

Unlike previously, there are now two missing values for each unlabeled document—

its class and its subtopic. Even for the labeled data there are missing values; al-

though the class is known, its subtopic is not. Since we do not have access to

these missing class and subtopic labels, we must use a technique such as EM to

estimate local MAP generative parameters. As in section 3.2.2, EM is instantiated

as an iterative algorithm that alternates between estimating the values of missing

class and subtopic labels, and calculating the MAP parameters using the estimated

labels. After EM converges to high-probability parameter estimates the generative

model can be used for text classification by turning it around with the Bayes rule.

The new generative model specifies a separation between mixture components

and classes. Instead of using cj to denote both of these, cj ∈ [N] now denotes only

the jth mixture component (subtopic). We write ta ∈ [M] for the ath class; when

component cj belongs to class ta, then qaj = 1, and otherwise 0. This represents the

predetermined, deterministic, many-to-one mapping between mixture components

and classes. We indicate the class label and subtopic label of a document by yi and

zi, respectively. Thus if document xi was generated by mixture component cj we

say zi = cj , and if the document belongs to class ta, then we say yi = ta.

If all the class and subtopic labels were known for our data set, finding MAP

estimates for the generative parameters would be a straightforward application of

closed-form equations similar to those for naive Bayes seen in section 3.2.1. The

formula for the word probability parameters is identical to Eq. 3.5 for naive Bayes:

θ̂wt|cj
≡ P(wt|cj ; θ̂) =

1 +
∑

xi∈X δijxit

|X| + ∑|X|
s=1

∑
xi∈X δijxis

. (3.9)

The class probabilities are analogous to Eq. 3.6, but using the new notation for

classes instead of components:

θ̂ta
≡ P(ta|θ̂) =

1 +
∑|X|

i=1 δia

M + |X | . (3.10)

The subtopic probabilities are similar, except they are estimated only with reference

to other documents in that component’s class:

3.4 Using a More Expressive Generative Model 45

θ̂cj |ta
≡ P(cj |ta; θ̂) =

1 +
∑|X|

i=1 δijδia
∑N

j=1 qaj +
∑|X|

i=1 δia

. (3.11)

At classification time, we must estimate class membership probabilities for an

unlabeled document. This is done by first calculating subtopic membership and

then summing over subtopics to get overall class probabilities. Subtopic membership

is calculated analogously to mixture component membership for naive Bayes, with

a small adjustment to account for the presence of two priors (class and subtopic)

instead of just one:

P(zi = cj |xi; θ̂) =

∑
a∈[M] qajP(ta|θ̂)P(cj |ta; θ̂)

∏
wt∈X

P(wt|cj ; θ̂)
xit

∑
r∈[N]

∑
b∈[M] qbrP(tb|θ̂)P(cr|tb; θ̂)

∏
wt∈X

P(wt|cr; θ̂)xit

. (3.12)

Overall class membership is calculated with a sum of probability over all of the

class’s subtopics:

P(yi = ta|xi; θ̂) =
∑

j∈[N]

qajP(zi = cj |xi; θ̂). (3.13)

These equations for supervised learning are applicable only when all the training

documents have both class and subtopic labels. Without these we use EM. The

M step, as with basic EM, builds maximum a posteriori parameter estimates for

the multinomials and priors. This is done with Eqs. 3.9, 3.10, and 3.11, using the

probabilistic class and subtopic memberships estimated in the previous E step. In

the E step, for the unlabeled documents we calculate probabilistically weighted

subtopic and class memberships (Eqs. 3.12 and 3.13). For labeled documents, we

must estimate subtopic membership. But we know from its given class label that

many of the sub-topic memberships must be zero—those subtopics that belong to

other classes. Thus we calculate subtopic memberships as for the unlabeled data,

but setting the appropriate ones to zero, and normalizing the non-zero ones over

only those topics that belong to its class.

If we are given a set of class-labeled data, and a set of unlabeled data, we can now

apply EM if there is some specification of the number of subtopics for each class.

However, this information is not typically available. As a result we must resort to

some techniques for model selection. There are many commonly used approaches

to model selection such as cross-validation, Akaike information criterion (AIC),

bayesian information criterion (BIC) and others. Since we do have the availability

of a limited number of labeled documents, we use cross-validation to select the

number of subtopics for classification performance.

46 Semi-Supervised Text Classification Using EM

Table 3.1 Classification accuracy of binary classifiers on Reuters with traditional naive
Bayes (NB1), basic EM (EM1) with labeled and unlabeled data, multiple mixture compo-
nents using just labeled data (NB*), and multiple mixture components EM with labeled
and unlabeled data (EM*). For NB* and EM*, the number of components is selected
optimally for each trial, and the median number of components across the trials used for
the negative class is shown in parentheses. Note that the multicomponent model is more
natural for Reuters, where the negative class consists of many topics. Using both unlabeled
data and multiple mixture components per class increases performance over either alone,
and over naive Bayes.

Category NB1 EM1 NB* EM*

acq 86.9 81.3 88.0 (4) 93.1 (10)

corn 94.6 93.2 96.0 (10) 97.2 (40)

crude 94.3 94.9 95.7 (13) 96.3 (10)

earn 94.9 95.2 95.9 (5) 95.7 (10)

grain 94.1 93.6 96.2 (3) 96.9 (20)

interest 91.8 87.6 95.3 (5) 95.8 (10)

money-fx 93.0 90.4 94.1 (5) 95.0 (15)

ship 94.9 94.1 96.3 (3) 95.9 (3)

trade 91.8 90.2 94.3 (5) 95.0 (20)

wheat 94.0 94.5 96.2 (4) 97.8 (40)

3.4.2 Experimental Results

Here, we provide empirical evidence that to use unlabeled data with a generative

modeling approach, more expressive generative models are sometimes necessary.

With the original generative model, classification accuracy and model probability

can be negatively correlated, leading to lower classification accuracy when unlabeled

data are used. With a more expressive generative model, a moderate positive

correlation is achieved, leading to improved classification accuracies.

The Reuters 21578 Distribution 1.0 data set consists of about 13,000 news articles

from the Reuters newswire labeled with 90 topic categories. Documents in this

data set have multiple class labels, and each category is traditionally evaluated

with a binary classifier. Following several other studies (Joachims, 1998; Liere and

Tadepalli, 1997) we build binary classifiers for each of the ten most populous classes

to identify the topic. We use a stoplist, but do not stem. The vocabulary size for

each Reuters trial is selected by optimizing accuracy as measured by leave-one-out

cross-validation on the labeled training set. The standard ModApte train/test split

is used, which is time-sensitive. Seven thousand of the 9603 documents available

for training are left unlabeled. From the remaining, we randomly select up to

ten nonoverlapping training sets of just ten positively labeled documents and 40

negatively labeled documents.

The first two columns of results in table 3.1 repeat the experiments of section 3.3

3.4 Using a More Expressive Generative Model 47

85%

90%

95%

-2.121e+06 -2.12e+06 -2.119e+06 -2.118e+06 -2.117e+06

A
c
c
u

ra
c
y

log Probability of Model

85%

90%

95%

100%

-1.99e+06 -1.98e+06 -1.97e+06 -1.96e+06

A
c
c
u

ra
c
y

log Probability of Model

Figure 3.3 Scatterplots showing the relationship between model probability and classi-
fication accuracy for the Reuters acq task. On the left, with only one mixture component
for the negative class, probability and accuracy are inversely proportional, exactly what
we would not want. On the right, with ten mixture components for negative, there is a
moderate positive correlation between model probability and classification accuracy.

with basic EM on the Reuters data set. Here we see that for most categories,

classification accuracy decreases with the introduction of unlabeled data. For each

of the Reuters categories EM finds a significantly more probable model, given the

evidence of the labeled and unlabeled data. But frequently this more probable model

corresponds to a lower-accuracy classifier—not what we would hope for.

The first graph in figure 3.3 provides insight into why unlabeled data hurt. With

one mixture component per class, the correlation between classification accuracy

and model probability is very strong (r = −0.9906), but in the wrong direction!

Models with higher probability have significantly lower classification accuracy. By

examining the solutions found by EM, we find that the most probable clustering of

the data has one component with the majority of negative documents and the second

with most of the positive documents, but significantly more negative documents.

Thus, the classes do not separate with high-probability models.

The documents in this data set often have multiple class labels. With the basic

generative model, the negative class covers up to 89 distinct categories. Thus, it is

unreasonable to expect to capture such a broad base of text with a single mixture

component. For this reason, we relax the generative model and model the positive

class with a single mixture component and the negative class with between one and

forty mixture components, both with and without unlabeled data.

The second half of table 3.1 shows results of using multiple mixtures per class

generative model. Note two different results. First, with labeled data alone (NB*),

classification accuracy improves over the single component per class case (NB1).

Second, with unlabeled data, the new generative model results (EM*) are generally

better than the other results. This increase with unlabeled data, measured over all

trials of Reuters, is statistically significant (p < 0.05).

With ten mixture components the correlation between accuracy and model

probability is quite different. Figure 3.3 on the right shows the correlation between

48 Semi-Supervised Text Classification Using EM

Table 3.2 Performance of using multiple mixture components when the number of
components is selection via cross-validation (EM*CV) compared to the optimal selection
(EM*) and straight naive Bayes (NB1). Note that cross-validation usually selects too few
components.

Category NB1 EM* EM*CV EM*CV vs NB1

acq 86.9 93.1 (10) 91.1 (5) +4.2

corn 94.6 97.2 (40) 93.2 (3) -1.4

crude 94.3 96.3 (10) 95.4 (3) +1.1

earn 94.9 95.7 (10) 95.2 (1) +0.3

grain 94.1 96.9 (20) 94.7 (3) +0.6

interest 91.8 95.8 (10) 92.0 (3) +0.2

money-fx 93.0 95.0 (15) 92.3 (3) -0.7

ship 94.9 95.9 (3) 94.4 (3) -0.5

trade 91.8 95.0 (20) 90.7 (3) -1.1

wheat 94.0 97.8 (40) 96.3 (6) +2.3

accuracy and model probability when using ten mixture components to model the

negative class. Here, there is a moderate correlation between model probability

and classification accuracy in the right direction (r = 0.5474). For these solutions,

one component covers nearly all the positive documents and some, but not many,

negatives. The other ten components are distributed through the remaining negative

documents. This model is more representative of the data for our classification task

because classification accuracy and model probability are correlated. This allows

the beneficial use of unlabeled data through the generative model approach.

One obvious question is how to automatically select the best number of mixture

components without having access to the test set labels. We use leave-one-out cross-

validation. Results from this technique (EM*CV), compared to naive Bayes (NB1)

and the best EM (EM*), are shown in table 3.2. Note that cross-validation does

not perfectly select the number of components that perform best on the test set.

The results consistently show that selection by cross-validation chooses a smaller

number of components than is best.

3.4.3 Discussion

There is tension in this model selection process between complexity of the model

and data sparsity. With as many subtopics as there are documents, we can perfectly

model the training data—each subtopic covers one training document. With still a

large number of subtopics, we can accurately model existing data, but generalization

performance will be poor. This is because each multinomial will have its many

parameters estimated from only a few documents and will suffer from sparse

data. With very few subtopics, the opposite problem will arise. We will very

accurately estimate the multinomials, but the model will be overly restrictive,

3.5 Overcoming the Challenges of Local Maxima 49

and not representative of the true document distribution. Cross-validation should

help in selecting a good compromise between these tensions with specific regard to

classification performance.

Note that our use of multiple mixture components per class allows us to capture

some dependencies between words on the class level. For example, consider a sports

class consisting of documents about both hockey and baseball. In these documents,

the words ice and puck are likely to co-occur, and the words bat and base are

likely to co-occur. However, these dependencies cannot be captured by a single

multinomial distribution over words in the sports class. With multiple mixture

components per class, one multinomial can cover the hockey subtopic, and another

the baseball subtopic. In the hockey subtopic, the word probability for ice and

puck will be significantly higher than they would be for the whole class. This makes

their co-occurrence more likely in hockey documents than it would be under a single

multinomial assumption.

3.5 Overcoming the Challenges of Local Maxima

In cases where the likelihood in parameter space is well correlated with classifi-

cation accuracy, our optimization yields good classifiers. However, local maxima

significantly hinder our progress. For example, the local maxima we discover with

just a few labeled examples in section 3.3 are more than 40 percentage points below

the classification accuracy provided when labeled data are plentiful. Thus it is im-

portant to consider alternative approaches that can help bridge this gap, especially

when labeled data are sparse.

Typically variants of, or alternatives to, EM are created for the purpose of

speeding up the rate of convergence (McLachlan and Krishnan, 1997). In the domain

of text classification, however, we have seen that convergence is very fast. Thus, we

can easily consider alternatives to EM that improve the local maxima situation

at the expense of slower convergence. Deterministic annealing makes exactly this

tradeoff.

3.5.1 Deterministic Annealing

The intuition behind deterministic annealing is that it begins by maximizing on a

very smooth, convex surface that is only remotely related to our true probability

surface of interest. Initially we can find the global maximum of this simple surface.

Ever so slowly, we change the surface to become both more bumpy, and more close

to the true probability surface. If we follow the original maximum as the surface

gets more complex, then when the original surface is given, we’ll still have a highly

probable maximum. In this way, it avoids many of the local maxima that EM would

otherwise get caught in.

One can think of our application of EM in the previous sections as an optimization

problem where the loss function is the negation of the likelihood function (Eq. 3.8).

50 Semi-Supervised Text Classification Using EM

The iterations of EM are a hill-climbing algorithm in parameter space that locally

minimizes this loss.

Consider the closely related set of loss functions:

l(θ|X, Y) =
∑

xi∈Xu

log
∑

cj∈[M]

[P(cj |θ)P(xi|cj ; θ)]
β

+
∑

xi∈Xl

log([P(yi = cj|θ)P(xi|yi = cj ; θ)]
β), (3.14)

where β varies between zero and one. When β = 1 we have our familiar probability

surface of the previous sections, with good correlation to classification accuracy,

but with many harmful local maximum. In the limit as β approaches zero, the

surface value of the loss function in parameter space becomes convex with just

a single global maximum. But, at this extreme, the provided data have no effect

on the loss function, so the correlation with classification accuracy is poor. Values

between zero and one represent various points in the tradeoff between smoothness

of the parameter space and the similarity to the well-correlated probability surface

provided by the data.

This insight is the one that drives the approach called deterministic annealing

(Rose et al., 1992), first used as a way to construct a hierarchy during unsupervised

clustering. It has also been used to estimate the parameters of a mixture of

Gaussians from unlabeled data (Ueda and Nakano, 1995) and to construct a text

hierarchy from unlabeled data (Hofmann and Puzicha, 1998).

For a fixed value of β, we can find a local maximum given the loss function by

iterating the following steps:

E step: Calculate the expected value of the class assignments,

ẑ
(k+1)
ij = E[yi = cj |xi; θ̂

k] =
[P(cj |θ̂k)P(xi|cj ; θ̂

k)]β∑

cr∈[M]

[P(cr|θ̂k)P(xi|cr; θ̂
k)]β

. (3.15)

M step: Find the most likely model using the expected class assignments,

θ̂(k+1) = argmaxθP(θ|X ; Y ; ẑ(k+1)). (3.16)

The M step is identical to that of section 3.2.2, while the E step includes reference

to the loss constraint through β.

Formally, β is a Lagrange multiplier when solving for a fixed loss in the likelihood

space subject to an optimization criterion of maximum entropy (or minimum

relative entropy to the prior distribution). A β near zero corresponds to finding

the maximum entropy parameterization for a model with a very large allowable

loss.

Consider how model likelihood (Eq. 3.14) is affected by different target losses.

3.5 Overcoming the Challenges of Local Maxima 51

When the target loss is very large, β will be very close to zero; the probability of

each model will very nearly be its prior probability as the influence of the data will

be negligible. In the limit as β goes to zero, the probability surface will be convex

with a single global maximum. For a somewhat smaller loss target, β will be small

but not negligible. Here, the probability of the data will have a stronger influence.

There will no longer be a single global maximum, but several. When β = 1 we have

our familiar probability surface of the previous chapters, with many local maxima.

These observations suggest an annealing-like process for finding a low-loss model.

If we initialize β to be very small, we can easily find the global maximum a posteriori

solution with EM, as the surface is convex. When we raise β the probability surface

will get slightly more bumpy and complex, as the data likelihood will have a larger

impact on the probability of the model. Although more complex, the new maximum

will be very close to the old maximum if we have lowered the temperature (1/β) only

slightly. Thus, when searching for the maximum with EM, we can initialize it with

the old maximum and will converge to a good maximum for the new probability

surface. In this way, we can gradually raise β, while tracking a highly probable

solution. Eventually, when β becomes 1, we will have a good local maximum for

our generative model assumptions. Thus, we will have found a high-probability local

maximum from labeled and unlabeled data that we can then use for classification.

Note that the computational cost of deterministic annealing is significantly higher

than EM. While each iteration takes the same computation, there are many more

iterations with deterministic annealing, as the temperature is reduced very slowly.

For example, in our experiments, we performed 390 iterations for deterministic

annealing, and only seven for EM. When this extra computation can be afforded,

the benefit may be more accurate classifiers.

3.5.2 Experimental Results

In this section we see empirically that deterministic annealing finds more probable

parameters and more accurate classifiers than EM when labeled training data are

sparse.

For the experimental results, we use the News5 data set, a subset of 20 Newsgroups

containing the five confusable comp.* classes. We fix a single vocabulary for all

experiments as the top 4000 words as measured by mutual information over the

entire labeled data set. For running the deterministic annealing, we initialize β to

0.02, and at each iteration we increase β by a multiplicative factor of 1.01 until

β = 1. We made little effort to tune these parameters. Since each time we increase

β the probability surface changes only slightly, we run only one iteration of EM

at each temperature setting. Six hundred random documents per class (3000 total)

are treated as unlabeled. A fixed number of labeled examples per class are also

randomly selected. The remaining documents are used as a test set.

Figure 3.4 compares classification accuracy achieved with deterministic annealing

to that achieved by regular EM. The initial results indicate that the two methods

perform essentially the same when labeled data are plentiful, but deterministic an-

52 Semi-Supervised Text Classification Using EM

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 10 20 50 100 200 500 1000 2000

A
c
c
u

ra
c
y

Number of Labeled Documents

Deterministic Annealing: Perfect Class Assignment
Deterministic Annealing: Empirical Class Re-Assignment

Deterministic Annealing: Default Class Assignment
EM with Unlabeled Data

Naive Bayes with No Unlabeled Data

Figure 3.4 The performance of deterministic annealing compared to EM. If class-to-
component assignment was done perfectly deterministic annealing would be considerably
more accurate than EM when labeled data are sparse. Although the default correspondence
is poor, this can be corrected with a small amount of domain knowledge.

nealing actually performs worse when labeled data are sparse. For example, with

two labeled examples per class (ten total) EM gives 58% accuracy where deter-

ministic annealing gives only 51%. A close investigation of the confusion matrices

shows that there is a significant detrimental effect of incorrect class-to-component

correspondence with deterministic annealing when labeled data are sparse. This

occurs because, when the temperature is very high, the global maximum will have

each multinomial mixture component very close to its prior, and the influence of

the labeled data is minimal. Since the priors are the same, each mixture component

will be essentially identical. As the temperature lowers and the mixture compo-

nents become more distinct, one component can easily track the cluster associated

with the wrong class, when there are insufficient labeled data to pull it toward the

correct class.

In an attempt to remedy this, we alter the class-to-cluster correspondence based

on the classification of each labeled example after deterministic annealing is com-

plete. Figure 3.4 shows both the accuracy obtained by empirically selected corre-

spondence, and also the optimal accuracy achieved by perfect correspondence. We

see that by empirically setting the correspondence, deterministic annealing improves

accuracy only marginally. Where before it got 51%, by changing the correspondence

we increase this to 55%, still not better than EM at 58%. However if we could per-

form perfect class correspondence, accuracy with deterministic annealing would be

67%, considerably higher than EM.

To verify that the higher accuracy of deterministic annealing comes from finding

more probable models, figure 3.5 shows a scatterplot of model probability versus

3.5 Overcoming the Challenges of Local Maxima 53

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
c
c
u

ra
c
y

log Probability of Model

EM: One Regular Starting Point
Deterministic Annealing

Figure 3.5 A scatterplot comparing the model probabilities and accuracies of EM and
deterministic annealing. The results show that deterministic annealing succeeds because
it finds models with significantly higher probability.

accuracy for deterministic annealing (with optimal class assignment) and EM. Two

results of note stand out. The first is that indeed deterministic annealing finds much

more probable models, even with a small amount of labeled data. This accounts

for the added accuracy of deterministic annealing. A second note of interest is

that models found by deterministic annealing still lie along the same probability-

accuracy correlation line. This provides further evidence that model probability and

accuracy are strongly correlated for this data set, and that the correlation is not

just an artifact of EM.

3.5.3 Discussion

The experimental results show that deterministic annealing indeed could help clas-

sification considerably if class-to-component correspondence were solved. Determin-

istic annealing successfully avoids getting trapped in some poor local maxima and

instead finds more probable models. Since these high-probability models are cor-

related with high-accuracy classifiers, deterministic annealing makes good use of

unlabeled data for text classification.

The class-correspondence problem is most severe when there are only limited

labeled data. This is because with fewer labeled examples, it is more likely that

small perturbations can lead the correspondence astray. However, with just a

little bit of human knowledge, the class-correspondence problem can typically be

solved trivially. In all but the largest and most confusing classification tasks, it is

straightforward to identify a class given its most indicative words, as measured by

a metric such as the weighted log-likelihood ratio. For example, the top ten words

54 Semi-Supervised Text Classification Using EM

Table 3.3 The top ten words per class of the News5 data set, Usenet groups in the
comp hierarchy. The words are sorted by the weighted log-likelihood ratio. Note that from
just these ten top words, any person with domain knowledge could correctly correspond
clusters and classes.

graphics os.ms-windows.misc sys.ibm.pc.hardware sys.mac.hardware windows.x

jpeg windows scsi apple window

image ei ide mac widget

graphics win drive lc motif

images um controller duo xterm

gif dos bus nubus server

format ms dx fpu lib

pub ini bios centris entry

ray microsoft drives quadra openwindows

tiff nt mb iisi usr

siggraph el card powerbook sun

per class of our data set by this metric are shown in table 3.3. From just these ten

words, any person with even the slightest bit of domain knowledge would have no

problem perfectly assigning classes to components. Thus, it is not unreasonable to

require a small amount of human effort to correct the class correspondence after

deterministic annealing has finished. This effort can be positioned within the active

learning framework. Thus, when labeled training data are sparsest, and a modest

investment by a trainer is available to map class labels to cluster components,

deterministic annealing will successfully find more probable and more accurate

models than traditional EM.

Even when this limited domain knowledge or human effort is not available, it

should be possible to estimate the class correspondence automatically. One could

perform both EM and deterministic annealing on the data. Since EM solutions

generally have the correct class correspondence, this model could be used to fix the

correspondence of the deterministic annealing model. That is, one could measure the

distance between each EM class multinomial and each deterministic annealing class

multinomial (with Kullback-Leibler divergence, for example). Then, this matrix of

distances could be used to assign the class labels of the EM multinomials to their

closest match to a multinomial in the deterministic annealing model.

3.6 Conclusions and Summary

This chapter has explored the use of generative models for semi-supervised learn-

ing with labeled and unlabeled data in domains of text classification. The widely

used naive Bayes classifier for supervised learning defines a mixture of multino-

mials mixture models. In some domains, model likelihood and classification accu-

racy are strongly correlated, despite the overly simplified generative model. Here,

expectation-maximization finds more likely models and improved classification ac-

3.6 Conclusions and Summary 55

curacy. In other domains, likelihood and accuracy are not well correlated with the

naive Bayes model. Here, we can use a more expressive generative model that allows

for multiple mixture components per class. This helps restore a moderate correla-

tion between model likelihood and classification accuracy, and again, EM finds

more accurate models. Finally, even with a well-correlated generative model, local

maxima are a significant hindrance with EM. Here, the approach of deterministic

annealing does provide much higher likelihood models, but often loses the corre-

spondence with the class labels. When class label correspondence is easily corrected,

high accuracy models result.

4 Risks of Semi-Supervised Learning: How

Unlabeled Data Can Degrade Performance

of Generative Classifiers

Fabio Cozman fgcozman@usp.br

Ira Cohen ira.cohen@hp.com

Empirical and theoretical results have often testified favorably to the semi-

supervised learning of generative classifiers, as described in other chapters of this

book. However, the literature has also brought to light a number of situations

where semi-supervised learning fails to produce good generative classifiers. Here

some clarification is due. We are not simply concerned with classifiers that pro-

duce high classification error — this can also happen in supervised learning. Our

concern is this: it is frequently the case that we would be better off just discard-

ing the unlabeled data and employing a supervised method, rather than taking a

semi-supervised route. Thus we worry about the embarrassing situation where the

addition of unlabeled data degrades the performance of a classifier.

How can this be? Typically we do not expect to be better off by discarding data;

how can we understand this aspect of semi-supervised learning? In this chapter we

focus on the effect of modeling errors in semi-supervised learning, and show how

modeling errors can lead to performance degradation.

4.1 Do Unlabeled Data Improve or Degrade Classification Performance?

Perhaps it would be reasonable to expect an average improvement in classification

performance for any increase in the number of samples (labeled or unlabeled):

the more data, the better. In fact, existing literature presents empirical findings

that attribute positive value to unlabeled data; other chapters present some of

these results. O’Neill’s statement that “unclassified observations should certainly

not be discarded” (O’Neill, 1978) seems to be confirmed by theoretical studies,

most notably by Castelli (1994), Castelli and Cover (1995, 1996), and Ratsaby and

58 Risks of Semi-Supervised Learning

Venkatesh (1995).

The gist of these previous theoretical investigations is this. Suppose samples

(xi, yi) are realizations of random variables Xv and Yv that are distributed according

to distribution p(Xv, Yv). Suppose one learns a parametric model p(Xv, Yv|θ) such

that p(Xv, Yv|θ) is equal to p(Xv, Yv) for some value of θ — that is, the “model is

correct” in the sense that it can exactly represent p(Xv, Yv).1 Then one is assuredpositive results:

“correct” model to have an expected reduction in classification error as more and more data are

collected (labeled or unlabeled). Moreover, labeled data are exponentially more

effective in reducing classification error than unlabeled data. In these optimistic

results, unlabeled data can be profitably used whenever available.

However, a more detailed analysis of current empirical results does reveal some

puzzling aspects of unlabeled data. For example, Shahshahani and Landgrebeexamples of

performance

degradation

(1994) report experiments where unlabeled data degraded the performance of naive

Bayes classifiers with Gaussian variables. They attribute such cases to deviations

from modeling assumptions, such as outliers and “samples of unknown classes”

— they even suggest that unlabeled samples should be used with care, and only

when the labeled data alone produce a poor classifier. Another representative

example is the work by Nigam et al. (2000) on text classification, where classifiers

sometimes display performance degradation. They suggest several possible sources

of difficulties: numerical problems in the learning algorithm, mismatches between

the natural clusters in feature space and the actual labels. Additional examples

are easy to find. Baluja (1999) used naive Bayes and tree-augmented naive Bayes

(TAN) classifiers (Friedman et al., 1997) to detect faces in images, but there were

cases where unlabeled data degraded performance. Bruce (2001) used labeled and

unlabeled data to learn Bayesian network classifiers, from naive Bayes classifiers

to fully connected networks; the naive Bayes classifiers displayed bad classification

performance, and in fact the performance degraded as more unlabeled data were

used (more complex networks also displayed performance degradation as unlabeled

samples were added). A final example: Grandvalet and Bengio (2004) describe

experiments where outliers are added to a Gaussian model, causing generative

classifiers to degrade with unlabeled data.

Figure 4.1 shows a number of experiments that corroborate this anecdotal

evidence. All of them involve binary classification with categorical variables; in all

of them Xv is actually a vector containing several attributes Xvi. In all experiments

the generative classifiers were learned by maximum likelihood using the expectation-

maximization (EM) algorithm (chapters 2, 3). Figure 4.1(a) shows the performance

of naive Bayes classifiers learned with increasing amounts of unlabeled data (for

several fixed amounts of labeled data), where the data are distributed according to

naive Bayes assumptions. That is, the data were generated by randomly generated

1. Note that here and in the remainder of the chapter we employ p to denote distributions
and densities (for discrete/continuous variables using appropriate measures); we indicate
the type of object we deal with whenever it is not clear from the context.

4.2 Understanding Unlabeled Data: Asymptotic Bias 59

statistical models that comply with the independence assumptions of naive Bayes

classifiers. In the naive Bayes model, all attributes Xv are independent of each

other given the class Yv: p(Xv, Yv) = p(Yv)
∏

p(Xvi). The result is simple: the more

unlabeled data, the better. Figure 4.1(b) shows an entirely different picture. Here

a series of naive Bayes classifiers were learned with data distributed according to

TAN assumptions: each attribute is directly dependent on the class and on at most

another attribute — the attributes form a “tree” of dependencies, hence the name

tree-augmented naive Bayes (Friedman et al., 1997). That is, in figure 4.1(b) the

“model is incorrect.” The graphs in figure 4.1(b) indicate performance degradation

with increasing amounts of unlabeled data.

Figure 4.1(c) depicts a more complex scenario. Again a series of naive Bayes

classifiers were learned with data distributed according to TAN assumptions, so

the “model is incorrect.” Note that two of the graphs show a trend of decreasing

error (as the number of unlabeled samples increases), while the other graph shows a

trend of increasing error. Here unlabeled data improve performance in the presence

of a few labeled samples, but unlabeled data degrade performance when added to

a larger number of labeled samples. A larger set of experiments with artificial data

is described by Cozman and Cohen (2002).

Figure 4.1(d) shows the result of learning naive Bayes classifiers using different

combinations of labeled and unlabeled data sets for the adult classification problem

(using the training and testing data sets available in the UCI repository 2). We see

that adding unlabeled data can improve classification when the labeled data set is

small (30 labeled data), but degrade performance as the labeled data set becomes

larger. Thus the properties of this real data set lead to behavior similar to figure

4.1(c).

Finally, figure 4.1(e) and 4.1(f) shows the result of learning naive Bayes and TAN

classifiers using data set 8 in the benchmark data (chapter 21). Both show similar

trends as those displayed in previous graphs.

4.2 Understanding Unlabeled Data: Asymptotic Bias

We can summarize the previous section as follows. First, there are results that

guarantee benefits from unlabeled data when the learned generative classifier

is based on a “correct” model. Second, there is strong empirical evidence that

unlabeled data may degrade performance of classifiers. Performance degradation

may occur whenever the modeling assumptions adopted for a particular classifier

do not match the characteristics of the distribution generating the data.3 This is

2. ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult
3. As we show in this and subsequent sections, performance degradation occurs even in
the absence of numerical errors or existence of local optima for parameter estimation.
In fact our presentation is independent of numerical techniques, so that results are not
clouded by the intricacies of numerical analysis.

60 Risks of Semi-Supervised Learning

10
0

10
1

10
2

10
3

10
4

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Number of Unlabeled records

P
ro

b
a

b
il

it
y

 o
f

e
rr

o
r 30 Labeled

300 Labeled

3000 Labeled

10
0

10
1

10
2

10
3

10
4

0.15

0.2

0.25

0.3

0.35

0.4

Number of Unlabeled records

30 Labeled

300 Labeled

3000 Labeled

P
ro

b
a

b
il

it
y

 o
f

e
rr

o
r

(a) (b)

10
0

10
1

10
2

10
3

10
4

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of Unlabeled records

P
ro

b
a

b
il

it
y

 o
f

e
rr

o
r

300 Labeled

3000 Labeled

10
0

10
1

10
2

10
3

10
4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Unlabeled records

P
ro

b
a

b
il

it
y

 o
f

e
rr

o
r

30 Labeled

300 Labeled

3000 Labeled

(c) (d)

(e) (f)

Figure 4.1 (a) Naive Bayes classifiers learned from data distributed according to naive
Bayes assumptions with ten attributes; attributes with two to four values. (b) Naive Bayes
classifiers learned from data distributed according to TAN assumptions with ten attributes.
(c) Naive Bayes classifiers learned from data distributed according to TAN assumptions
with 49 attributes. (d) Naive Bayes classifiers generated from the adult database. (e) Naive
Bayes classifiers generated from the data set SecStr, benchmark data (chapter 21). (f)
TAN classifiers generated from the data set SecStr, benchmark data (chapter 21). In all
graphs, points summarize ten runs of each classifier on testing data (bars cover 30th to
70th percentiles).

4.2 Understanding Unlabeled Data: Asymptotic Bias 61

troubling because it is usually difficult, if not impossible, to guarantee a priori that

a particular statistical model is a “correct” one.

The key to understanding the vagaries of semi-supervised learning is to study

asymptotic bias. In this section we present an intuitive discussion, leaving morekey: asymptotic

bias formal analysis to section 4.3. Our arguments here and in the remainder of this

chapter focus on generative classifiers learned by maximum-likelihood methods. As

most of our arguments are asymptotic, the same rationale will apply to maximum a

posteriori and other Bayesian estimators, as their asymptotic behavior is dominated

by the likelihood function (DeGroot, 1970).

The gist of the argument is as follows. As we formally show in section 4.3, the

asymptotic bias of the maximum-likelihood estimator produced with labeled data

can be different from the asymptotic bias of the maximum- likelihood estimator

produced with unlabeled data, for the same classifier. Suppose then that one learns

a classifier with a reasonable amount of labeled data. The resulting classifier may

be relatively close to its asymptotic limit, yielding some classification error. Now

suppose one takes a much larger amount of unlabeled data, and learns the same

classifier with all available data. Now the classifier may be tending to the asymptotic

limit for unlabeled data — and the performance for this limiting classifier may

be worse than the performance for the first “labeled” limiting classifier. The net

result is that by adding a large number of unlabeled samples one produces a worse

classifier.

However puzzling, this situation can be found even in seemingly innocent situa-

tions, and does not require sophisticated modeling errors. We now discuss a simple

example where unlabeled data degrade the performance of a generative classifier;

this (fictitious) example may help the reader grasp the sometimes unexpected effects

of unlabeled data.

Consider the following classification problem. We are interested in predicting a

baby’s gender (G = Boy or G = Girl) at the 20th week of pregnancy based on twoclassifying baby’s

gender attributes: whether the mother craved chocolate in the first trimester (Ch = Yes

or Ch = No), and whether the mother’s weight gain was more or less than 15 lb

(W = More or W = Less). Suppose that W and G are independent conditional

on Ch; that is, the direct dependencies in the domain are expressed by the graph

G → Ch → W , leading to the following decomposition of the joint distribution:

P(G, Ch, W) = P(G)P(Ch|G)P(W |Ch). Suppose also that data are distributed

according to

P(G = Boy) = 0.5,

P(Ch = No|G = Boy) = 0.1,

P(Ch = No|G = Girl) = 0.8,

P(W = Less|Ch = No) = 0.7,

P(W = Less|Ch = Yes) = 0.2.

Note that from the above distribution we can compute the probabilities of W given

62 Risks of Semi-Supervised Learning

G to get

P(W = Less|G = Boy) = 0.25,

P(W = Less|G = Girl) = 0.6.

To classify the baby’s gender given weight gain and chocolate craving, we compute

the a posteriori probability of G given W and Ch (which, from the independence

stated above, depends only on Ch):

P(G = Girl|Ch = No) = 0.89,

P(G = Boy|Ch = No) = 0.11,

P(G = Girl|Ch = Yes) = 0.18,

P(G = Boy|Ch = Yes) = 0.82.

From the a posteriori probabilities, the optimal classification rule (the Bayes rule,

discussed in the next section) isBayes rule

if Ch = No, choose G = Girl; if Ch = Yes, choose G = Boy. (4.1)

The Bayes error rate (i.e., the probability of error under the Bayes rule) for this

problem can be easily computed and found to be at about 15%.

Suppose that we incorrectly assume a naive Bayes model for the problem; that is,

we assume that dependencies are expressed by the graph Ch ← G → W . Thus weassuming naive

Bayes incorrectly assume that weight gain is independent of chocolate craving given the

gender; thus we incorrectly assume that the factorization of the joint probability

distribution can be written as P(G, Ch, W) = P(G)P(Ch|G)P(W |G). Suppose that

a friend gave us the “true” values of P(Ch|G), so we do not have to estimate

these quantities. We wish to estimate P(G) and P(W |G) using maximum-likelihood

techniques.

In the case where only labeled data are available, estimators are obtained by

relative frequencies, with zero bias and variance inversely proportional to the

size of the database. Thus even a relatively small database will produce excellent

estimates of probability values. The estimate for P(G) will most likely be close to

0.5; likewise, estimates of P(W = Less|G = Girl) will be close to 0.6 and estimates

of P(W = Less|G = Boy) will be close to 0.25. With these estimated parameters

and the assumed decomposition of the joint probability distribution, the a posteriori

probabilities for G will likely be close to

P(G = Girl|Ch, W) P(G = Boy|Ch, W)

Ch = No, W = Less 0.95 0.05,

Ch = No, W = More 0.81 0.19,

Ch = Yes, W = Less 0.35 0.65,

Ch = Yes, W = More 0.11 0.89.

Suppose we take these estimates and classify incoming observations using the

4.3 The Asymptotic Analysis of Generative Semi-Supervised Learning 63

maximum a posteriori value of G. Even though the bias from the “true” a posteriorithe “labeled”

classifier probabilities is not zero, this will produce the same optimal Bayes rule 4.1; that is,

the “labeled” classifier is likely to yield the minimum classification error.

Now suppose that unlabeled data are available. As more and more unlabeled

samples are collected, the ratio between the number of labeled samples and the

total number of samples goes to zero. In section 4.3 we show how to compute the

asymptotic estimates in this case. The computation, which is performed in closed

form for this case, yields the following asymptotic estimates: P(G = Boy) = 0.5,

P(W = Less|G = Girl) = 0.78, P(W = Less|G = Boy) = 0.07. The a posteriori

probabilities for G will therefore tend to

P(G = Girl|Ch, W) P(G = Boy|Ch, W)

Ch = No, W = Less 0.99 0.01,

Ch = No, W = More 0.55 0.45,

Ch = Yes, W = Less 0.71 0.29,

Ch = Yes, W = More 0.05 0.95.

Classification using the maximum a posteriori value of G yields

if {Ch = No, W = Less}, choose G = Girl;

if {Ch = No, W = More}, choose G = Girl;

if {Ch = Yes, W = Less}, choose G = Girl;

if {Ch = Yes, W = More}, choose G = Boy.

Here we see that the prediction has changed from the optimal in the case {Ch =

Yes, W = Less}; instead of predicting {G = Boy}, we predict {G = Girl}. We canthe “unlabeled”

classifier easily find the expected error rate to be at 22%, an increase of 7% in error.

What happened? The labeled data take us to a particular asymptotic limit, and

the unlabeled data take us to a distinct limit. In section 4.3 we will see that this

transition is smooth as unlabeled samples are collected. Because the latter limit is

worse (from the point of view of classification) than the former, the gradual addition

of unlabeled samples degrades performance.

Consider again figure 4.1(a). The graphs there illustrate the situation where

the “model is correct”: labeled and unlabeled data lead to identical asymptotic

estimates. The other graphs in figure 4.1 illustrate situations where the “model is

incorrect.” In these cases the asymptotic estimates tend to the “unlabeled” classifier

as more and more unlabeled data are available — depending on the amount of

labeled data, the graphs start above or below this “unlabeled” limit.

4.3 The Asymptotic Analysis of Generative Semi-Supervised Learning

We start by collecting a few assumptions in this section, at the cost of repeating

definitions already stated in previous chapters. The goal here is to classify a vector

64 Risks of Semi-Supervised Learning

of attributes Xv. Each instantiation x of Xv is a sample. There exists a class variable

Yv that takes values in a set of labels. To simplify the discussion, we assume that

Yv is a binary variable with values −1 and +1. We assume 0-1 loss, hence our

objective is to minimize the probability of classification errors. If we knew exactly

the joint distribution p(Xv, Yv), the optimal rule would be to select the label with

highest posterior probability; this is the Bayes rule, and it produces the smallest

classification error, referred to as the Bayes error (Devroye et al., 1996). A classifier

is learned using n independent samples in a database; there are l labeled samples

and u labeled samples (n = l + u), and without loss of generality we assume that

the samples are ordered with labeled ones coming first. We assume that a sample

has probability (1 − λ) of having its label hidden (the same distribution p(Xv|Yv)

generates the labeled and the unlabeled samples).

Consider that a generative model is adopted as a representation for the joint

distribution p(Xv, Yv). Suppose that a parametric representation p(Xv, Yv|θ) withparametric model

and assumptions parameters θ is employed, and a database containing training samples is available

to produce estimates θ̂. All samples xi are collected in a database denoted by X ,

and all samples yi are collected in a database denoted by Y . We consider “plug-in”

classification: compute the optimal rule pretending that p(Yv|Xv, θ̂) is the correct

posterior density of Yv.

Throughout the chapter we denote the distributions/densities generating the

data by p(·) and the statistical models that are employed to learn the distribution

by p(·|θ). Several smoothness and measurability assumptions on these distribu-

tions/densities are necessary to proceed with asymptotic analysis and are adopted

throghout.4

Two principles often used to generate estimates are maximum likelihood and

maximization of posterior loss (DeGroot, 1970); the computation of estimates using

these principles generally requires iterative methods, the most popular of which is

the EM algorithm (Dempster et al., 1977). Generative models are well suited for

semi-supervised learning by maximum likelihood, because the likelihood is directly

affected by unlabeled data — as opposed to discriminative models, where the

associated likelihood is not affected by unlabeled data (Zhang and Oles, 2000).

We take that estimates θ̂ are produced by maximizing the likelihood

L(θ) =
∏l

i=1 p(xi, yi|θ)
∏n

j=l+1 p(xj |θ). When a sample is unlabeled, its likeli-likelihood

hood can be written as a mixture p(Xv|Yv = +1, θ)p(Yv = +1|θ) + p(Xv|Yv =

−1, θ)p(Yv = −1|θ); we assume that such mixtures are identifiable (Redner and

Walker, 1984).

We use the following known result (Berk, 1966; Huber, 1967; White, 1982). Con-

4. Distributions must be defined on measurable Euclidean spaces, with measurable Radon-
Nikodym densities. The dependence of p(Xv, Yv|θ) on θ must be continuous so that second
derivatives exist (and first derivatives must be measurable). Likelihoods, their derivatives
and second derivatives, must be dominated by integrable functions. Finally, expected
values Ep(Z) [log p(Z|θ)] must exist for Z equal to Xv, Yv and (Xv, Yv). These conditions
are listed in detail by Cozman et al. (2003b).

4.3 The Asymptotic Analysis of Generative Semi-Supervised Learning 65

sider a parametric model p(Z|θ) and a sequence of maximum-likelihood estimates

θ̂n, obtained by maximization of
∑n

i=1 log p(zi|θ), with an increasing number n of in-

dependent samples zi, all identically distributed according to p(Z). Then θ̂n → θ∗ as

n → ∞ for θ in an open neighborhood of θ∗, where θ∗ maximizes Ep(Z) [log p(Z|θ)].
If θ∗ is interior to the parameter space, then estimates are asymptotically Gaussian.

Extending the result above to semi-supervised learning we have:central result

Theorem 4.1 The limiting value θ∗ of maximum-likelihood estimates is

arg max
θ

(
λEp(Xv ,Yv) [log p(Xv, Yv|θ)] + (1 − λ)Ep(Xv ,Yv) [log p(Xv|θ)]

)
. (4.2)

Proof In semi-supervised learning, the samples are realizations of (Xv, Yv) with

probability λ, and of Xv with probability (1− λ). Denote by Ỹv a random variable

that assumes the same values of Yv plus the “unlabeled” value 0. We have p(Ỹv
=
0) = λ. The actually observed samples are realizations of (Xv, Ỹv), thus

p̃(Xv, Ỹv = y) = (λp(Xv, Yv = y))
I{Ỹv �=0}(y)

((1 − λ)p(Xv))
I{Ỹv=0}(y)

,

where p(Xv) is a mixture density. Accordingly, the parametric model adopted for

(Xv, Ỹv) has the same form:

p̃(Xv, Ỹv = y|θ) = (λp(Xv, Yv = y|θ))I{Ỹv �=0}(y) ((1 − λ)p(Xv|θ))I{Ỹv=0}(y) .

The value θ∗ that maximizes Ep̃(Xv ,Ỹv)

[
log p̃(Xv, Ỹv|θ)

]
is

argmax
θ

Ep̃(Xv ,Ỹv)

[
I{Ỹv �=0}(Ỹv) (log λp(Xv, Yv|θ)) + I{Ỹv=0}(Ỹv) (log(1 − λ)p(Xv|θ))

]
.

Hence θ∗ maximizes

β+Ep̃(Xv ,Ỹv)

[
I{Ỹv �=0}(Ỹv) log p(Xv, Yv|θ)

]
+Ep̃(Xv ,Ỹv)

[
I{Ỹv=0}(Ỹv) log p(Xv|θ)

]
,

where β = λ log λ+(1−λ) log(1−λ). As β does not depend on θ, we must only max-

imize the last two terms, which are equal to λEp̃(Xv ,Ỹv)

[
log p(Xv, Yv|θ)|Ỹv
= 0

]
+

(1−λ)Ep̃(Xv ,Ỹv)

[
log p(Xv|θ)|Ỹv = 0

]
. As we have p̃(Xv, Ỹv|Ỹv
= 0) = p(Xv, Yv) and

p̃(Xv|Ỹv = 0) = p(Xv), the last expression is equal to λEp(Xv ,Yv) [log p(Xv, Yv|θ)] +
(1 − λ)Ep(Xv ,Yv) [log p(Xv|θ)]. Thus we obtain expression 4.2.

Results by White (1982) can also be adapted to the context of semi-supervised

learning to prove that generally the variance of estimates decreases with increasing

n. The asymptotic variance depends on the inverse of the Fisher information; the

Fisher information is typically larger for larger proportions of labeled data (Castelli,

1994; Castelli and Cover, 1995, 1996).

Expression 4.2 indicates that the objective function in semi-supervised learn-

ing can be viewed asymptotically as a “convex” combination of objective func-semi-supervised

learning as

“convex”

combination

tions for supervised learning (E [log p(Xv, Yv|θ)]) and for unsupervised learning

(E [log p(Xv|θ)]). Denote by θ∗λ the value of θ that maximizes expression 4.2 for

66 Risks of Semi-Supervised Learning

a given λ. Denote by θ∗l the “labeled” limit θ∗1 and by θ∗u the “unlabeled” limit

θ∗0 .
5 We note that, with a few additional assumptions on the modeling densities,

theorem 4.1 and the implicit function theorem can be used to prove that θ∗λ is a con-

tinuous function of λ — that is, the “path” followed by the solution is a continuous

one.

We can now present more formal versions of the arguments sketched in section 4.2.

Suppose first that the family of distributions p(Xv, Yv|θ) contains the distributionmodel is correct

p(Xv, Yv); that is, p(Xv, Yv|θ⊤) = p(Xv, Yv) for some θ⊤, so the “model is correct.”

When such a condition is satisfied, θ∗l = θ∗u = θ⊤ given identifiability, and then

θ∗λ = θ⊤, for any 0 < λ ≤ 1, is a maximum-likelihood estimate. In this case,

maximum likelihood is consistent, the asymptotic bias is zero, and classification

error converges to the Bayes error. As variance decreases with increasing numbers

of labeled and unlabeled data, the addition of both kinds of data eventually reaches

the “correct” distribution and the Bayes error.

We now study the scenario that is more relevant to our purposes, where the

distribution p(Xv, Yv) does not belong to the family of distributions p(Xv, Yv|θ).
Denote by e(θ) the classification error with parameter θ, and suppose e(θ∗

u) > e(θ∗l)model is incorrect

(as in the Boy-Girl example and in the other examples presented later). If we observe

a large number of labeled samples, the classification error is approximately e(θ∗
l).

If we then collect more samples, most of which are unlabeled, we eventually reach

a point where the classification error approaches e(θ∗u). So, the net result is that

we started with a classification error close to e(θ∗l), and by adding a great number

of unlabeled samples, classification performance degraded towards e(θ∗u). A labeled

data set can be dwarfed by a much larger unlabeled data set: the classification

error using the whole data set can be larger than the classification error using only

labeled data.

To summarize, we have the following conclusions. First, labeled and unlabeledsummary

data contribute to a reduction in variance in semi-supervised learning under

maximum-likelihood estimation. Second, when the model is “correct,” maximum-

likelihood methods are asymptotically unbiased both with labeled and unlabeled

data. Third, when the model is “incorrect,” there may be different asymptotic bi-

ases for different values of λ. Asymptotic classification error may also vary with λ

— an increase in the number of unlabeled samples may lead to a larger estimation

asymptotic bias and to a larger classification error. If the performance obtained

with a given set of labeled data is better than the performance with infinitely many

unlabeled samples, then at some point the addition of unlabeled data must decrease

performance.

5. We have to handle a difficulty with the classification error for θ∗
u: given only unlabeled

data, there is no information to decide the labels for decision regions, and the classification
error is 1/2 (Castelli, 1994). Thus we always reason with λ → 0 instead of λ = 0.

4.4 The Value of Labeled and Unlabeled Data 67

4.4 The Value of Labeled and Unlabeled Data

The previous discussion alluded to the possibility that e(θ∗u) > e(θ∗l) when the model

is “incorrect.” To understand a few important details about this phenomenon,

consider another example.

Suppose we have attributes Xv1 and Xv2 from two classes −1 and +1. We knowGaussian

example that (Xv1, Xv2) is a Gaussian vector with mean (0, 3/2) conditional on {Yv = −1},
and mean (3/2, 0) conditional on {Yv = +1}; variances for Xv1 and for Xv2

conditional on Yv are equal to 1. We believe that Xv1 and Xv2 are independent

given Yv, but actually Xv1 and Xv2 are dependent conditional on {Yv = +1}:
the correlation ρ = E [(Xv1 − E [Xv1|Yv = +1])(Xv2 − E [Xv2|Yv = +1])|Yv = +1]

is equal to 4/5 (Xv1 and Xv2 are independent conditional on {Yv = −1}). Data

are sampled from a distribution such that η = P(Yv = −1) = 3/5, but we do not

know this probability. If we knew the value of ρ and η, we would easily compute the

optimal classification boundary on the plane Xv1 ×Xv2 (this optimal classification

boundary is quadratic). By mistakenly assuming that ρ is zero we are generating a

naive Bayes classifier that approximates P(Yv|Xv1, Xv2).

Under the incorrect assumption that ρ = 0, the “optimal” classification boundary

is linear: xv2 = xv1 + 2 log((1 − η̂)/η̂)/3. With labeled data we can easily obtain

η̂ (a sequence of Bernoulli trials); then η∗
l = 3/5 and the classification boundary

is given by xv2 = xv1 − 0.27031. Note that this (linear) boundary obtained withthe “labeled”

classifier labeled data and the generative naive Bayes classifier assumption is not the best

possible linear boundary minimizing the classification error. We can in fact find the

best possible linear boundary of the form xv2 = xv1 + γ. The classification error

can be written as a function of γ that has positive second derivative; consequently

the function has a single minimum that can be found numerically (the minimizing

γ is −0.45786). If we consider the set of lines of the form xv2 = xv1 +γ, we see thatthe best linear

classifier the farther we go from the best line, the larger the classification error. Figure 4.2

shows the linear boundary obtained with labeled data and the best possible linear

boundary. The boundary from labeled data is “above” the best linear boundary.

Now consider the computation of η∗
u, the asymptotic estimate with unlabeled

data. By theorem 4.1, we must obtain:

arg max
η∈[0,1]

∫ ∞

−∞

∫ ∞

−∞
g0(xv1, xv2) log(ηg1(xv1, xv2)+(1−η)g3(xv1, xv2))dxv2dxv1,

where

g0(xv1, xv2) = (3/5)g1(xv1, xv2) + (2/5)g2(xv1, xv2),

g1(xv1, xv2) = N([0, 3/2]T , diag[1, 1]),

g2(xv1, xv2) = N

(
[3/2, 0]T ,

[
1 4/5

4/5 1

])
,

g3(xv1, xv2) = N([3/2, 0]T , diag[1, 1]).

68 Risks of Semi-Supervised Learning

-3 -2 -1 0 1 2 3 4

-2

0

2

4

-3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

4

Figure 4.2 Graphs for the Gaussian example. On the left, contour plots of the mixture
p(Xv1, Xv2), the optimal classification boundary (quadratic curve), and the best possible
classification boundary of the form xv2 = xv1 + γ. On the right, the same contour plots,
and the best linear boundary (lower line), the linear boundary obtained from labeled data
(middle line), and the linear boundary obtained from unlabeled data (upper line).

The second derivative of this double integral is always negative (as can be seen by

interchanging differentiation with integration), so the function is concave and there

is a single maximum. We can search for the zero of the derivative of the double

integral with respect to η. We obtain this value numerically, η∗
u = 0.54495. Usingthe “unlabeled”

classifier this estimate, the linear boundary from unlabeled data is xv2 = xv1 − 0.12019.

This line is “above” the linear boundary from labeled data, and, given the previous

discussion, leads to a larger classification error than the boundary from labeled

data. The boundary obtained from unlabeled data is also shown in figure 4.2. The

classification error for the best linear boundary is 0.06975, while e(η∗
l) = 0.07356

and e(η∗
u) = 0.08141.

This example suggests the following situation. Suppose we collect a large number

l of labeled samples from P(Yv, Xv1, Xv2), with η = 3/5 and ρ = 4/5. The labeled

estimates form a sequence of Bernoulli trials with probability 3/5, so the estimates

quickly approach η∗
l (the variance of η̂ decreases as 6/(25l)). If we then add a very

large amount of unlabeled data to our data, η̂ approaches η∗
u and the classification

error increases.

By changing the values of η and ρ, we can produce other interesting situations. Forchanging η and ρ

example, if η = 3/5 and ρ = −4/5, the best linear boundary is xv2 = xv1 −0.37199,

the boundary from labeled data is xv2 = xv1 − 0.27031, and the boundary from

unlabeled data is xv2 = xv1 − 0.34532; the latter boundary is “between” the other

two — additional unlabeled data lead to improvement in classification performance!

As another example, if η = 3/5 and ρ = −1/5, the best linear boundary is

xv2 = xv1 − 0.29044, the boundary from labeled data is xv2 = xv1 − 0.27031,

and the boundary from unlabeled data is xv2 = xv1 − 0.29371. The best linear

boundary is “between” the other two. In this case we attain the best possible linear

boundary by mixing labeled and unlabeled data with λ = 0.08075.

4.5 Finite Sample Effects 69

We have so far found that taking larger and larger amounts of unlabeled data

changes not only the variance of estimates but also their average behavior. The

Gaussian example shows that we cannot always expect labeled data to produce a

better classifier than the unlabeled data. Still, one would intuitively expect labeled

data to provide more guidance to a learning procedure than unlabeled data. Is there

anything that can be said about the (intuitively plausible and empirically visible)

more valuable status of labeled data?

One informal argument is this. Suppose we have an estimate θ̂. It is typically the“labeled” limit

better than the

“unlabeled” one?

case that the smaller the value of the expected Kullback-Leibler divergence between

p(Yv|Xv) and p(Yv|Xv, θ̂), the smaller the classification error, where the Kullback-

Leibler divergence is EKL(θ) = E [log(p(Yv|Xv)/p(Yv|Xv, θ)] (Garg and Roth,

2001; Cover and Thomas, 1991). Direct minimization of expected Kullback-Leibler

divergence yields EKL(θ∗t) where θ∗t = argmaxθ E [log p(Yv|Xv, θ)]. Now unlabeled

data asymptotically yield EKL(θ∗u) where θ∗u = arg maxθ E [log p(Xv|θ)], and la-

beled data asymptotically yield EKL(θ∗l) where θ∗l = arg maxθ E [log p(Yv|Xv, θ)]+

E [log p(Xv|θ)]. Note the following pattern. We are interested in minimizing

E [log p(Yv|Xv, θ)]. While labeled data allow us to minimize a combination of

this quantity plus E [log p(Xv|θ)], unlabeled data only allow us to minimize

E [log p(Xv|θ)]. When the “model is incorrect,” this last quantity may in fact be

far from the “true” E [log p(Xv)], and we may be getting less help from unlabeled

data than we might get from labeled data. This informal argument seems to be at

the core of the perception that labeled data should be more valuable than unla-

beled data when the “model is incorrect.” The analysis presented in this chapter

adds to this perception the following comment: by trying to (asymptotically) min-

imize an expected value E [log p(Xv)|θ] that may even be unrelated to the “true”

E [log p(Xv)], we may in fact be led astray by the unlabeled data.

4.5 Finite Sample Effects

Asymptotic analysis can provide insight into complex phenomena, but finite sample

effects are also important. In practice one may have very little labeled data, and the

estimates θ̂ from labeled data may be so poor that the addition of unlabeled data is

a positive move. This can be explained as follows. A small number of labeled samples

may lead to estimators with high variance, thus likely to yield high classification

error (Friedman, 1997). In those circumstances the inclusion of unlabeled data may

lead to a substantial decrease in variance and a decrease in classification error, even

as the bias is negatively affected by the unlabeled data.

In general, the more parameters one has to estimate, the larger the variance of

estimators for the same amount of data. If we have a classifier with a large number

of attributes and we have only a few labeled samples, the variance of estimators is

likely to be large, and classification performance is likely to be poor — the addition

of unlabeled data is then a reasonable action to take. Consider again figure 4.1(c).many attributes

Here we have a naive Bayes classifier with 49 attributes. If we have a relatively large

70 Risks of Semi-Supervised Learning

amount of labeled data, we start close to the “labeled” limit e(θ∗l), and then we

observe performance degradation as we move toward e(θ∗u). However, if we have few

labeled samples, we start with very poor performance, and we decrease classification

error by moving toward e(θ∗u).

We note that text classification is an important problem where many attributes

are often available (often thousands of attributes), and where generative semi-text classification

supervised learning has been successful (Nigam et al., 2000).

4.6 Model Search and Robustness

In semi-supervised learning we must always consider the possibility that a more

accurate statistical model will lead to significant gains from unlabeled data. That

is, we should look for the “correct” model whenever possible. In fact, the literature

has described situations where a fixed-structure classifier, like the naive Bayes,looking for

correct models performs poorly, while model search schemes can lead to excellent classifiers (Bruce,

2001; Cohen et al., 2003, 2004). In particular, Cohen et al. (2004) discuss and

compare different model search strategies with labeled and unlabeled data for

Bayesian network classifiers. Results show that TAN classifiers, learned with the

EM algorithm (Meila, 1999), can sometimes improve classification and eliminate

performance degradation with unlabeled data compared to the simpler naive Bayes.

In contrast, structure learning algorithms that maximize the likelihood of class

and attributes, such as those proposed by Friedman (1998) and van Allen and

Greiner (2000), are not likely to find structures yielding good classifiers in a

semi-supervised manner, because of their focus on fitting the joint distribution

rather than the a posteriori distribution (as also argued by Friedman et al. (1997)

for the purely supervised case). The class of independence-based methods for

structure learning, also known as constraint-based or test-based methods, is another

alternative for attempting to learn the correct model. However, these methods do

not easily adapt to the use of unlabeled data. Such a modification of algorithms

by Cheng et al. (1997) is presented in Cohen et al. (2004), showing either none

or marginal improvement compared to the EM version of TAN, while requiring

much greater computational complexity. A third alternative is to perform structure

search, attempting to maximize classification accuracy directly. Cohen et al. (2004)

proposed using a stochastic structure search algorithm (Markov chain Monte Carlo),

accepting or rejecting models based on their classification accuracy (estimated

using the labeled training data), while learning the parameters of each model

using maximum-likelihood estimation with both labeled and unlabeled data. This

strategy yielded very good results for data sets with a moderate number of labeled

samples (and a much larger number of unlabeled samples), but did not work well for

data sets with a very small number of labeled samples, because of its dependence

on estimation of the classification error during the search.

Given the results in this chapter, unlabeled data can also be useful in testing

modeling assumptions. If the addition of unlabeled data to an existing pool of

4.7 Conclusion 71

labeled data degrades performance, then there is clear indication that modeling

assumptions are incorrect. In fact one can test whether differences in performancedetecting

incorrect models are statistically significant, using results by O’Neill (1978); once one finds that a

particular set of modeling assumptions is flawed, a healthy process of model revision

may be started. In fact, one might argue that model search/revision should always

be an important component in the tool set of semi-supervised learning (Cozman

et al., 2003a).

4.7 Conclusion

Given the possibility of performance degradation, it seems that some care must be

taken in generative semi-supervised learning. Statements that are intuitively and

provably true when models are “correct” may fail (sometimes miserably!) when

models are “incorrect.” Apparently mild modeling errors may cause unlabeled data

to degrade performance, even in the absence of numerical errors, and even in sit-

uations where more labeled data would be beneficial. Examples of performance

degradation from outliers and other common modeling errors can be easily con-

cocted (Cozman et al., 2003b).

In the absence of modeling errors, labeled data differ from unlabeled data only

on the “information they carry about the decisions associated with the decision

regions” (Castelli and Cover, 1995). However, as we consider the possibility of

modeling errors, labeled data and unlabeled data also differ in the biases they induce

on estimates. The analysis in sections 4.2, 4.3, and 4.4 focused on asymptotic bias,

a strategy that avoids distractions from finite sample effects and numerical errors.

However, we note that finite sample effects may be important in practice, as we

discuss in section 4.5.

At this point it is perhaps useful to add a few comments of methodological

character. Given a pool of labeled and unlabeled data, generative semi-supervisedmethodology

learning is an attractive strategy. However, one should always start by learning a

supervised classifier with the labeled data. This “baseline” classifier can then be

compared to other semi-supervised classifiers through cross-validation or similar

techniques. Whenever modeling assumptions seem inaccurate, unlabeled data can

be used to test modeling assumptions. If time and resources are available, a model

search should be conducted, attempting to reach a “correct” model — that is, a

model where unlabeled data will be truly beneficial. Techniques discussed in section

4.6 can be employed in this setting. An additional step is to compare the baseline

classifier to nongenerative methods. There are many semi-supervised nongenerative

classifiers, as discussed in other chapters of this book. There are also a significant

number of methods that use labeled and unlabeled data for different purposes — for

example, methods where the unlabeled data are used only to conduct dimensionality

reduction (chapter 12). However we should warn that a few empirical results in the

literature suggest the possibility of performance degradation in nongenerative semi-

supervised learning paradigms, such as transductive support vector machine (SVM)

72 Risks of Semi-Supervised Learning

(Zhang and Oles, 2000) and co-training (Ghani, 2002).

A final methodological comment concerns active learning — that is, the option of

labeling selected samples among the unlabeled data. This option should be seriouslyactive learning

considered whenever possible. It may be that the most profitable use of unlabeled

data in a particular problem is exactly as a pool of samples from which some

samples can be carefully selected and labeled. In general, we should take the value

of a labeled sample to be considerably higher than the value of an unlabeled sample.

5 Probabilistic Semi-Supervised Clustering

with Constraints

Sugato Basu sugato@cs.utexas.edu

Mikhail Bilenko mbilenko@cs.utexas.edu

Arindam Banerjee abanerje@ece.utexas.edu

Raymond Mooney mooney@cs.utexas.edu

In certain clustering tasks it is possible to obtain limited supervision in the form of

pairwise constraints, i.e., pairs of instances labeled as belonging to same or different

clusters. The resulting problem is known as semi-supervised clustering, an instance

of semi-supervised learning stemming from a traditional unsupervised learning set-

ting. Several algorithms exist for enhancing clustering quality by using supervision

in the form of constraints. These algorithms typically utilize the pairwise constraints

to either modify the clustering objective function or to learn the clustering distor-

tion measure. This chapter describes an approach that employs hidden Markov

random fields (HMRFs) as a probabilistic generative model for semi-supervised

clustering, thereby providing a principled framework for incorporating constraint-

based supervision into prototype-based clustering. The HMRF-based model allows

the use of a broad range of clustering distortion measures, including Bregman diver-

gences (e.g., squared Euclidean distance, Kullback-Leibler divergence) and direc-

tional distance measures (e.g., cosine distance), making it applicable to a number

of domains. The model leads to the HMRF-KMeans algorithm which minimizes

an objective function derived from the joint probability of the model, and allows

unification of constraint-based and distance-based semi-supervised clustering meth-

ods. Additionally, a two-phase active learning algorithm for selecting informative

pairwise constraints in a query-driven framework is derived from the HMRF model,

facilitating improved clustering performance with relatively small amounts of su-

pervision from the user.

74 Probabilistic Semi-Supervised Clustering with Constraints

5.1 Introduction

This chapter focuses on semi-supervised clustering with constraints, the problem ofsemi-supervised

clustering with

constraints

partitioning a set of data points into a specified number of clusters when limited

supervision is provided in the form of pairwise constraints. While clustering is

traditionally considered to be a form of unsupervised learning since no class labels

are given, inclusion of pairwise constraints makes it a semi-supervised learning task,

where the performance of unsupervised clustering algorithms can be improved using

the limited training data.

Pairwise supervision is typically provided as must-link and cannot-link constraintsmust-link and

cannot-link

constraints

on data points: a must-link constraint indicates that both points in the pair should

be placed in the same cluster, while a cannot-link constraint indicates that two

points in the pair should belong to different clusters. Alternatively, must-link

and cannot-link constraints are sometimes called equivalence and nonequivalence

constraints respectively. Typically, the constraints are “soft”, that is, clusterings

that violate them are undesirable but not prohibited.

In certain applications, supervision in the form of class labels may be unavailable,

while pairwise constraints are easily obtained, creating the need for methods that

exploit such supervision. For example, complete class labels may be unknown in

the context of clustering for speaker identification in a conversation (Bar-Hillel

et al., 2003), or clustering GPS data for lane-finding (Wagstaff et al., 2001). In

some domains, pairwise constraints occur naturally, e.g., the database of interacting

proteins (DIP) data set in biology contains information about proteins co-occurring

in processes, which can be viewed as must-link constraints during clustering.

Moreover, in an interactive learning setting, a user who is not a domain expert can

sometimes provide feedback in the form of must-link and cannot-link constraints

more easily than class labels, since providing constraints does not require the user

to have significant prior knowledge about the categories in the data set.

Proposed methods for semi-supervised clustering fall into two general categories

that we call constraint-based and distance-based. Constraint-based methods use theconstraint-based

and

distance-based

methods

provided supervision to guide the algorithm toward a data partitioning that avoids

violating the constraints (Demiriz et al., 1999; Wagstaff et al., 2001; Basu et al.,

2002). In distance-based approaches, an existing clustering algorithm that uses

a particular distance function between points is employed; however, the distance

function is parameterized and the parameter values are learned to bring must-linked

points together and take cannot-linked points further apart (Bilenko and Mooney,

2003; Cohn et al., 2003; Klein et al., 2002; Xing et al., 2003).

This chapter describes an approach to semi-supervised clustering based on hidden

Markov random fields (HMRFs) that combines the constraint-based and distance-

based approaches in a unified probabilistic model. The probabilistic formulation

leads to a clustering objective function derived from the joint probability of ob-

served data points, their cluster assignments, and generative model parameters.

This objective function can be optimized using an expectation-maximimzation

5.2 HMRF Model for Semi-Supervised Clustering 75

(EM)-style clustering algorithm, HMRF-KMeans, that finds a local minimum of

the objective function. HMRF-KMeans can be used to perform semi-supervised

clustering using a broad class of distortion (distance) functions,1 namely Bregman

divergences (Banerjee et al., 2005b), which include a wide variety of useful dis-

tances, e.g., KL divergence, squared Euclidean distance, I divergence, and Itakuro-

Saito distance. In a number of applications, such as text clustering based on a

vector-space model, a directional distance measure based on the cosine of the angle

between vectors is more appropriate (Baeza-Yates and Ribeiro-Neto, 1999). Clus-

tering algorithms have been developed that utilize distortion measures appropriate

for directional data (Dhillon and Modha, 2001; Banerjee et al., 2005a), and the

HMRF-KMeans framework naturally extends them.

A practical aspect of semi-supervised clustering with constraints is how maxi-

mally informative constraints can be acquired in a real-life setting, where a limited

set of queries can be made to a user in an interactive learning setting (McCallum

and Nigam, 1998b). In that case, fewer queries should be posed to the user to obtain

constraints that can significantly enhance the clustering accuracy. To this end, a

new method for active learning is presented—it selects good pairwise constraints for

semi-supervised clustering by asking queries to the user of the form “Are these two

examples in same or different classes?” leading to improved clustering performance.

5.2 HMRF Model for Semi-Supervised Clustering

Partitional prototype-based clustering is the underlying unsupervised clustering set-

ting under consideration. In such a setting, a set of data points is partitioned into a

prespecified number of clusters, where each cluster has a representative (or “proto-

type”), so that a well-defined cost function, involving a distortion measure between

the points and the cluster representatives, is minimized. A well-known unsupervised

clustering algorithm that follows this framework is K-Means (MacQueen, 1967).

Our semi-supervised clustering model considers a sample of n data points X =problem setting

(x1, . . . , xn), each xi ∈ R
d being a d-dimensional vector, with xim representing

its mth component. The model relies on a distortion measure dA used to compute

distance between points: dA : R
d×R

d → R, where A is the set of distortion measure

parameters. Supervision is provided as two sets of pairwise constraints: must-link

constraints CML = {(xi, xj)} and cannot-link constraints CCL = {(xi, xj)}, where

(xi, xj) ∈ CML implies that xi and xj are labeled as belonging to the same cluster,

while (xi, xj) ∈ CCL implies that xi and xj are labeled as belonging to different

clusters. The constraints may be accompanied by associated violation costs W ,

where wij represents the cost of violating the constraint between points xi and xj

if such a constraint exists, that is, either (xi, xj) ∈ CML or (xi, xj) ∈ CCL. The task

1. In this chapter, “distance measure” is used synonymously with “distortion measure”:
both terms refer to the distance function used for clustering.

76 Probabilistic Semi-Supervised Clustering with Constraints

is to partition the data points X into K disjoint clusters (X1, . . . , XK) so that the

total distortion between the points and the corresponding cluster representatives is

minimized according to the given distortion measure dA, while constraint violations

are kept to a minimum.

5.2.1 HMRF Model Components

The HMRF probabilistic framework (Zhang et al., 2001) for semi-supervised con-

strained clustering consists of the following components:

An observable set X = (x1, . . . , xn) corresponding to the given data points X .

Note that we overload notation and use X to refer to both the given set of data

points and their corresponding random variables.

An unobservable (hidden) set Y = (y1, . . . , yn) corresponding to cluster assign-

ments of points in X . Each hidden variable yi encodes the cluster label of the point

xi and takes values from the set of cluster indices (1, . . . , K).

An unobservable (hidden) set of generative model parameters Θ, which consists

of distortion measure parameters A and cluster representatives M = (μ1, . . . , μK):

Θ = {A, M}.
An observable set of constraint variables C = (c12, c13, . . . , cn−1,n). Each cij

is a tertiary variable taking on a value from the set (−1, 0, 1), where cij = 1

indicates that (xi, xj) ∈ CML, cij = −1 indicates that (xi, xj) ∈ CCL, and cij = 0

corresponds to pairs (xi, xj) that are not constrained.

Since constraints are fully observed and the described model does not attempt

to model them generatively, the joint probability of X , Y , and Θ is conditioned on

the constraints encoded by C.

Figure 5.1 shows a simple example of an HMRF. X consists of five data pointsHMRF example

with corresponding variables (x1, . . . , x5) that have cluster labels Y = (y1, . . . , y5),

which may each take on values (1, 2, 3) denoting the three clusters. Three pairwise

constraints are provided: two must-link constraints (x1, x2) and (x1, x4), and one

cannot-link constraint (x2, x3). Corresponding constraint variables are c12 = 1,

c14 = 1, and c23 = −1; all other variables in C are set to zero. The task is to

partition the five points into three clusters. Figure 5.1 demonstrates one possible

clustering configuration which does not violate any constraints. The must-linked

points x1, x2, and x4 belong to cluster 1; the point x3, which is cannot-linked with

x2, is assigned to cluster 2; x5, which is not involved in any constraints, belongs to

cluster 3.

5.2.2 Markov Random Field over Labels

Each hidden random variable yi ∈ Y representing the cluster label of xi ∈ X is

associated with a set of neighbors Ni. The set of neighbors is defined as all points

to which xi is must-linked or cannot-linked: Ni = {yj|(xi, xj) ∈ CML or (xi, xj) ∈

5.2 HMRF Model for Semi-Supervised Clustering 77

Hidden MRF

Observed data

Cannot−link

x3

x2x1

x5

y2 = 1

y4 = 1

y5 = 3

y3 = 2

x4

Must-link (c14 = 1)

Must-link (c12 = 1)

y1 = 1

(c23 = −1)

Figure 5.1 A hidden Markov random field.

CCL}. The resulting random field defined over the hidden variables Y is a Markov

random field (MRF), where the conditional probability distribution over the hidden

variables obeys the Markov property:Markov field over

labels

∀i, P(yi|Y − {yi}, Θ, C) = P(yi|Ni, Θ, C). (5.1)

Thus the conditional probability of yi for each xi, given the model parameters and

the set of constraints, depends only on the cluster labels of the observed variables

that are must-linked or cannot-linked to xi. Then, by the Hammersley-Clifford

theorem (Hammersley and Clifford, 1971), the prior probability of a particular

label configuration Y can be expressed as a Gibbs distribution (Geman and Geman,

1984), so that

P(Y |Θ, C) =
1

Z
exp (−v(Y)) =

1

Z
exp

(
−

∑

Ni∈N

vNi
(Y)

)
, (5.2)

where N is the set of all neighborhoods, Z is the partition function (normalizing

term), and v(Y) is the overall label configuration potential function, which can

be decomposed into a sum of functions vNi
(Y), each denoting the potential for

every neighborhood Ni in the label configuration Y . Since the potentials for every

neighborhood are based on pairwise constraints in C (and model parameters Θ),

78 Probabilistic Semi-Supervised Clustering with Constraints

XY

C Θ

Figure 5.2 Graphical plate model of variable dependence.

the label configuration can be further decomposed as

P(Y |Θ, C) =
1

Z
exp

⎛

⎝−
∑

i,j

v(i, j)

⎞

⎠ , (5.3)

where each constraint potential function v(i, j) has the following form:constraint

potential function

v(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

wijfML(i, j) if cij = 1 and yi
= yj ,

wijfCL(i, j) if cij = −1 and yi = yj,

0 otherwise.

(5.4)

The penalty functions fML and fCL encode the lowered probability of observing

configurations of Y where constraints encoded by C are violated. To this end,

function fML penalizes violated must-link constraints and function fCL penalizes

violated cannot-link constraints. These functions are chosen to correspond with the

distortion measure by employing same model parameters Θ, and will be described

in detail in section 5.3. Overall, this formulation for observing the label assignment

Y results in higher probabilities being assigned to configurations in which cluster

assignments do not violate the provided constraints.

5.2.3 Joint Probability in HMRF

The joint probability of X , Y , and Θ, given C, in the described HMRF model can

be factorized as follows:

P(X, Y, Θ|C) = P(Θ|C) P(Y |Θ, C) P(X |Y,Θ, C). (5.5)

The graphical plate model (Buntine, 1994) of the dependence between the random

variables in the HMRF is shown in figure 5.2, where the unshaded nodes representgraphical plate

model the hidden variables, the shaded nodes are the observed variables, the directed links

show dependencies between the variables, while the lack of an edge between two

5.2 HMRF Model for Semi-Supervised Clustering 79

variables implies conditional independence. The prior probability of Θ is assumed to

be independent of C. The probability of observing the label configuration Y depends

on the constraints C and current generative model parameters Θ. Observed data

points corresponding to variables X are generated using the model parameters

Θ based on cluster labels Y , independent of the constraints C. The variables X

are assumed to be mutually independent: each xi is generated individually from

a conditional probability distribution P(x|y, Θ). Then, the conditional probability

P(X |Y,Θ, C) can be written as

P(X |Y,Θ, C) = P(X |Y,Θ) =

n∏

i=1

p(xi|yi, Θ), (5.6)

where p(·|yi, Θ) is the parameterized probability density function for the yith

cluster, from which xi is generated. This probability density is related to the

clustering distortion measure dA, as described below in section 5.2.4.

From Eqs. 5.3, 5.5, and 5.6, it follows that maximizing the joint probability on

the HMRF is equivalent to maximizing

P(X, Y, Θ|C) = P(Θ)

(
1

Z
exp

⎛

⎝−
∑

cij∈C

v(i, j)

⎞

⎠
)(n∏

i=1

p(xi|yi, Θ)

)
. (5.7)

The joint probability in Eq. (5.7) has three factors. The first factor describes ajoint probability

factorization probability distribution over the model parameters preventing them from converg-

ing to degenerate values, thereby providing regularization. The second factor is the

conditional probability of observing a particular label configuration given the pro-

vided constraints, effectively assigning a higher probability to configurations where

the cluster assignments do not violate the constraints. Finally, the third factor is

the conditional probability of generating the observed data points given the labels

and the parameters: if maximum-likelihood (ML) estimation was performed on the

HMRF, the goal would have been to maximize this term in isolation.

Overall, maximizing the joint HMRF probability in (5.7) is equivalent to jointly

maximizing the likelihood of generating data points from the model and the

probability of label assignments that respect the constraints, while regularizing

the model parameters.

5.2.4 Semi-Supervised Clustering Objective Function on HMRF

Formulation 5.7 suggests a general framework for incorporating constraints into

clustering. The choice of the conditional probability p(x|y, Θ) in a particular

instantiation of the framework is directly connected to the choice of the distortion

measure appropriate for the clustering task.

When considering the conditional probability p(xi|yi, Θ)—the probability ofgenerative

probability for X generating a data point xi from the yith cluster—our attention is restricted to

probability densities from the exponential family, where the expectation parameter

80 Probabilistic Semi-Supervised Clustering with Constraints

corresponding to the yith cluster is μyi
, the mean of the points of that cluster.

Using this assumption and the bijection between regular exponential distributions

and regular Bregman divergences (Banerjee et al., 2005b), the conditional density

for observed data can be represented as

p(xi|yi, Θ) =
1

ZΘ
exp

(
−dA(xi, μh)

)
, (5.8)

where dA(xi, μyi
) is the Bregman divergence between xi and μyi

, corresponding to

the exponential density p, and ZΘ is the normalizer.2 Different clustering models

fall into this exponential form:

If xi and μyi
are vectors in Euclidean space, and dA is the square of the L2

distance parameterized by a positive semidefinite weight matrix A (dA(xi, μyi
) =

‖xi − μyi
‖2

A), then the cluster conditional probability is a Gaussian with covariance

encoded by A−1 (Kearns et al., 1997);

If xi and μyi
are probability distributions and dA is the KL divergence

(dA(xi, μyi
) =

∑d
m=1 xim log xim

μyim
), then the cluster conditional probability is a

multinomial distribution (Dhillon and Guan, 2003).

The relation in Eq. 5.8 holds even if dA is not a Bregman divergence but

a directional distance measure like cosine distance. For example, if xi and μyi

are vectors of unit length and dA is one minus the dot-product of the vectors(
dA(xi, μyi

) = 1 −
Pd

m=1 ximμyim

‖xi‖‖μyi‖
)
, then the cluster conditional probability is a

von Mises Fisher (vMF) distribution with unit concentration parameter (Banerjee

et al., 2005a), which is essentially the spherical analog of a Gaussian. The connection

between specific distortion measures studied in this chapter and their corresponding

cluster conditional probabilities is discussed in more detail in section 5.3.3.

Putting Eq. 5.8 into 5.7 and taking logarithms gives the following cluster objective

function, minimizing which is equivalent to maximizing the joint probability over

the HMRF in Eq. 5.7:

Jobj =
∑

xi∈X

dA(xi, μyi
) +

∑

cij∈C

v(i, j) − log P(Θ) + log Z + n log ZΘ. (5.9)

Thus, the task is to minimize Jobj over the hidden variables Y and Θ (note that

given Y , the means M = (μ1, . . . , μK) are uniquely determined).

2. When A = I (identity matrix), the bijection result (Banerjee et al., 2005b) ensures that
the normalizer ZΘ is 1. In general, there are additional multiplicative terms that depend
only on x, and hence can be safely ignored for parameter estimation purposes.

5.3 HMRF-KMeans Algorithm 81

5.3 HMRF-KMeans Algorithm

Since the cluster assignments and the generative model parameters are unknown in

a clustering setting, minimizing Eq. 5.9 is an “incomplete-data problem”. A popular

solution technique for such problems is the expectation-maximization (EM) algo-

rithm (Dempster et al., 1977). The K-Means algorithm (MacQueen, 1967) is known

to be equivalent to the EM algorithm with hard clustering assignments, under cer-

tain assumptions (Kearns et al., 1997; Basu et al., 2002; Banerjee et al., 2005b). This

section describes a K-Means-type hard partitional clustering algorithm, HMRF-

KMeans, that finds a local minimum of the semi-supervised clustering objective

function Jobj in Eq. 5.9.

5.3.1 Normalizing Component Estimation

Before describing the details of the clustering algorithm, it is important to consider

the normalizing components: the MRF partition function logZ and the distortion

function normalizer logZΘ in Eq. 5.9. Estimation of the partition function cannot

be performed in closed form for most nontrivial dependency structures, and ap-

proximate inference methods must be employed for computing it (Wainwright and

Jordan, 2003).

Estimation of the distortion normalizer logZΘ depends on the distortion measurenormalizer

approximation dA used by the model. This chapter considers three parameterized distortion mea-

sures: parameterized squared Euclidean distance, parameterized cosine distance,

and parameterized Kullback-Leibler (KL) divergence. For Euclidean distance, ZΘ

can be estimated in closed form, and this estimation is performed while minimizing

the clustering objective function Jobj in Eq. 5.9. For the other distortion measures,

estimating the distortion normalizer ZΘ cannot be performed in closed form, and

approximate inference must be again used (Banerjee et al., 2005a).

Since approximate inference methods can be very expensive computationally,

two simplifying assumptions can be made: the MRF partition function may be

considered to be constant in the clustering process, and the distortion normalizer

may be assumed constant for all distortion measures that do not provide its closed-

form estimate. With these assumptions, the objective function Jobj in Eq. 5.9 no

longer exactly corresponds to a joint probability on an HMRF. However, minimizing

this simplified objective has been shown to work well empirically (Bilenko et al.,

2004; Basu et al., 2004b). However, if in some applications it is important to preserve

the semantics of the underlying joint probability model, then the normalizers Z and

ZΘ must be estimated by approximate inference methods.

82 Probabilistic Semi-Supervised Clustering with Constraints

5.3.2 Parameter Priors

Following the definition of Θ in section 5.2.1, the prior term log P(Θ) in (5.9) and

the subsequent equations can be factored as follows:

log P(Θ) = log
(
P(A)P(M)

)
= log P(A) + PM ,

where the distortion parameters A are assumed to be independant of the cluster

centroids M = (μ1, . . . , μK), and uniform priors are considered over the cluster

centroids (leading to the constant term PM). For different distortion measures,

parameter values may exist that lead to degenerate solutions of the optimization

problem. For example, for squared Euclidean distance, the zero matrix A = 0 is

one such solution. To prevent degenerate solutions, P(A) is used to regularize the

parameter values using a prior distribution.

If the standard Gaussian prior was used on the parameters of the distortion

function, it would allow the parameters to take negative values. Since it is desirableRayleigh prior

to constrain the parameter values to be non-negative, it is more appropriate to use

the Rayleigh distribution (Papoulis and Pillai, 2001). Assuming independence of

the parameters aij ∈ A, the prior term based on the Rayleigh distribution is the

following:

P(A) =
∏

aij∈A

aij exp
(
−a2

ij

s2

)

s2
, (5.10)

where s is the width parameter.

5.3.3 Adaptive Distortion Measures

Selecting an appropriate distortion measure dA for a clustering task typically

involves knowledge about properties of the particular domain and data set. For

example, squared Euclidean distance is most appropriate for low-dimensional data

with distribution close to Gaussian, while cosine distance best captures distance

between data described by vectors in high-dimensional space where differences in

angles are important but vector lengths are not.

Distortion measures from two families are considered in this chapter: Bregman

divergences (Banerjee et al., 2005b), which include parameterized squared Euclideandistortion

measure selection distance and KL divergence, and distortion measures based on directional similarity

functions, which include cosine similarity and Pearson’s correlation (Mardia and

Jupp, 2000). The distortion measure for directional functions is chosen to be the

directional similarity measure subtracted from a constant sufficiently large so that

the resulting value is non-negative. For both Bregman divergences and cosine

distance, there exist efficient K-Means-type iterative relocation algorithms that

minimize the corresponding clustering objective (Banerjee et al., 2005a,b), which

the HMRF-KMeans naturally extends to incorporate pairwise supervision.

5.3 HMRF-KMeans Algorithm 83

For many realistic data sets, off-the-shelf distortion measures may fail to capture

the correct notion of similarity in a clustering setting. While some unsupervised

measures like squared Euclidean distance and Pearson’s distance attempt to correct

distortion estimates using the global mean and variance of the data set, these mea-

sures may still fail to estimate distances accurately if the attributes’ true contribu-

tions to the distance are not correlated with their variance. Several semi-supervised

clustering approaches exist that incorporate adaptive distortion measures, including

parameterizations of Jensen-Shannon divergence (Cohn et al., 2003) and squared

Euclidean distance (Bar-Hillel et al., 2003; Xing et al., 2003). However, these tech-

niques use only constraints to learn the distortion measure parameters and exclude

unlabeled data from the parameter learning step, as well as separate the parameter

learning step from the clustering process.

Going a step further, the HMRF model provides an integrated framework

which incorporates both learning the distortion measure parameters and constraint-adaptive

distortion

measure

sensitive cluster assignments. In HMRF-KMeans, the parameters of the distortion

measure are learned iteratively as the clustering progresses, utilizing both unlabeled

data and pairwise constraints. The parameters are modified to decrease the param-

eterized distance between violated must-linked constraints and increase it between

violated cannot-link constraints, while allowing constraint violations if they accom-

pany a more cohesive clustering.

This section presents three examples of distortion functions and their parame-

terizations for use with HMRF-KMeans: squared Euclidean distance, cosine dis-

tance, and KL divergence. Through parameterization, each of these functions be-

comes adaptive in a semi-supervised clustering setting, permitting clusters of vary-

ing shapes.

Once a distortion measure is chosen for a given domain, the functions fML

and fCL, introduced in section 5.2.2 for penalizing must-link and cannot-linkconstraint

potential function constraint violations, respectively, must be defined. These functions typically follow

a functional form identical or similar to the corresponding distortion measure, and

are chosen as follows:

fML(i, j) = ϕ(i, j), (5.11)

fCL(i, j) = ϕmax − ϕ(i, j), (5.12)

where ϕ : X × X → R
+ is a non-negative function that penalizes constraint

violation, and ϕmax is an upper bound on the maximum value of ϕ over any pair

of points in the data set; examples of such bounds for specific distortion functions

are shown below. The function ϕ is chosen to correlate with the distortion measure,

assigning higher penalties to violations of must-link constraints between points that

are distant with respect to the current parameter values of the distortion measure.

Conversely, penalties for violated cannot-link constraints are higher for points that

have low distance between them. With this formulation of the penalty functions,

constraint violations lead to changes in the distortion measure parameters that

84 Probabilistic Semi-Supervised Clustering with Constraints

attempt to mend the violations. The ϕ function for different clustering distortion

measures is discussed in the following sections.

Accordingly, the potential function v(i, j) in (5.4) becomes

v(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

wijϕ(xi, xj) if cij = 1 and yi
= yj

wij

(
ϕmax − ϕ(xi, xj)

)
if cij = −1 and yi = yj

0 otherwise

, (5.13)

and the objective function for semi-supervised clustering in (5.9) can be expressed

as

Jobj =
∑

xi∈X

dA(xi, μ(i)) +
∑

(xi,xj)∈CML

s.t. yi �=yj

wijϕ(xi, xj)

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

(
ϕmax − ϕ(xi, xj)

)
− log P(A) + n log ZΘ. (5.14)

Note that as discussed in section 5.3.1, the MRF partition function term log Z has

been dropped from the objective function.

5.3.3.1 Parameterized Squared Euclidean Distance

Squared Euclidean distance is parameterized using a symmetric positive-definite

matrix A as follows:

deucA
(xi, xj) = ‖xi − xj‖2

A = (xi − xj)
T A(xi − xj). (5.15)

This form of the parameterized squared Euclidean distance is equivalent to Maha-

lanobis distance with an arbitrary positive semidefinite weight matrix A in place

of the inverse covariance matrix, and it was previously used for semi-supervised

clustering by (Xing et al., 2003) and (Bar-Hillel et al., 2003). Such formulation can

also be viewed as a projection of every instance x onto a space spanned by A1/2:

x→A1/2x.

To use parameterized squared Euclidean distance as the adaptive distortion mea-

sure for clustering, the ϕ function that penalizes constraint violations is defined

as ϕ(xi, xj) = deucA
(xi, xj). One possible initialization of the upper bound for

cannot-link penalties is ϕmax
eucA

=
∑

(xi,xj)∈CCL
deucA

(xi, xj), which guarantees that

the penalty is always positive. Using these definitions along with (5.14), the fol-

lowing objective function is obtained for semi-supervised clustering with adaptive

squared Euclidean distance:

5.3 HMRF-KMeans Algorithm 85

JeucA
=

∑

xi∈X

deucA
(xi, μ(i)) +

∑

(xi,xj)∈CML

s.t. yi �=yj

wijdeucA
(xi, xj)

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

(
ϕmax

eucA
− deucA

(xi, xj)
)
− log P(A) − n log det(A).

(5.16)

Note that as discussed in section 5.3.1, the log ZΘ term is computable in closed-

form for a Gaussian distribution with covariance matrix A−1, which is the underly-

ing cluster conditional probability distribution for parameterized squared Euclidean

distance. The log det(A) term (5.16) corresponds to the log ZΘ term in this case.

5.3.3.2 Parameterized Cosine Distance

Cosine distance can be parameterized using a symmetric positive-definite matrix

A, which leads to the following distortion measure:

dcosA
(xi, xj) = 1 − xT

i Axj

‖xi‖A‖xj‖A
. (5.17)

Because for realistic high-dimensional domains computing the full matrix A would

be computationally expensive, a diagonal matrix is considered in this case, such

that a = diag(A) is a vector of positive weights.

To use parameterized squared Euclidean distance as the adaptive distortion

measure for clustering, the ϕ function is defined as ϕ(xi, xj) = dcosA
(xi, xj). Using

this definition along with Eq. 5.14, and setting ϕmax = 1 as an upper bound on

ϕ(xi, xj), the following objective function is obtained for semi-supervised clustering

with adaptive cosine distance:

JcosA
=

∑

xi∈X

dcosA
(xi, μ(i)) +

∑

(xi,xj)∈CML

s.t. yi �=yj

wijdcosA
(xi, xj)

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

(
1 − dcosA

(xi, xj)
)
− log P(A). (5.18)

Note that as discussed in section 5.3.1, it is difficult to compute the log ZΘ term

in closed form for parameterized cosine distance. So, the simplifying assumption is

made that log ZΘ is constant during the clustering process and the normalizer term

is dropped from (5.18).

86 Probabilistic Semi-Supervised Clustering with Constraints

5.3.3.3 Parameterized KL Divergence

In certain domains, data are described by probability distributions, e.g., text

documents can be represented as probability distributions over words generated

by a multinomial model (Pereira et al., 1993). KL divergence is a widely used

distance measure for such data: dKL(xi, xj) =
∑d

m=1 xim log xim

xjm
, where xi and

xj are probability distributions over d events:
∑d

m=1 xim =
∑d

m=1 xjm = 1. In

previous work, Cohn et al. (2003) parameterized KL divergence by multiplying the

mth component by a weight γm: d′KL(xi, xj) =
∑d

m=1 γmxim log xim

xjm
.

In our framework, KL distance is parameterized using a diagonal matrix A, where

a = diag(A) is a vector of positive weights. This parameterization of KL by AI divergence

converts it to I divergence, a function that also belongs to the class of Bregman

divergences (Banerjee et al., 2005b). I divergence has the form: dI(xi, xj) =∑d
m=1 xim log xim

xjm
− ∑d

m=1(xim − xjm), where xi and xj no longer need to be

probability distributions but can be any non-negative vectors.3 The following

parameterization of KL is used:

dIA
(xi, xj) =

d∑

m=1

amxim log
xim

xjm
−

d∑

m=1

am(xim − xjm), (5.19)

which can be interpreted as scaling every component of the original probability

distribution by a weight contained in the corresponding component of A, and then

taking I divergence between the transformed distributions.

For every distortion measure, the clustering framework described in section 5.2.4

requires defining an appropriate constraint potential function that is symmetric,

since the constraint pairs are unordered. To meet this requirement, a sum of

weighted I divergences from xi and xj to the mean vector
xi+xj

2 is used. This

parameterized I divergence to the mean, dIMA
, is analogous to Jensen-Shannon

divergence (Cover and Thomas, 1991), the symmetric KL divergence to the mean,

and is defined as follows:

dIMA
(xi, xj) =

d∑

m=1

am

(
xim log

2xim

xim + xjm
+ xjm log

2xjm

xim + xjm

)
. (5.20)

To use parameterized squared Euclidean distance as the adaptive distortion

measure for clustering, the ϕ function is defined as ϕ(xi, xj) = dIMA
(xi, xj). Using

this definition along with Eq. 5.14, the following objective function is obtained for

semi-supervised clustering with adaptive KL distance:

3. For probability distributions, I divergence and KL divergence are equivalent.

5.3 HMRF-KMeans Algorithm 87

JIA
=

∑

xi∈X

dIA
(xi, μ(i)) +

∑

(xi,xj)∈CML

s.t. yi �=yj

wijdIMA
(xi, xj)

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

(
dmax

IMA
− dIMA

(xi, xj)
)
− log P(A). (5.21)

The upper bound dmax
IMA

can be initialized as dmax
IMA

=
∑d

m=1 am, which follows

from the fact that unweighted Jensen-Shannon divergence is bounded above by

1 (Lin, 1991).

Note that as discussed in section 5.3.1, it is difficult to compute the log ZΘ term in

closed form for parameterized KL distance. So, analogously to the parameterized

cosine distance case, the simplifying assumption is made that log ZΘ is constant

during the clustering process and that term is dropped from Eq. 5.21.

5.3.4 EM Framework

As discussed earlier in this section, Jobj can be minimized by a K-Means-type

iterative algorithm HMRF-KMeans. The outline of the algorithm is presented in

algorithm 5.1. The basic idea of HMRF-KMeans is as follows: the constraints

are used to get a good initialization of the clustering. Then in the E step, given

the current cluster representatives, every data point is reassigned to the cluster

which minimizes its contribution to Jobj. In the M step, the cluster representatives

M = (μ1, . . . , μK) are re-estimated from the cluster assignments to minimize Jobj

for the current assignment. The clustering distortion measure dA is subsequently

updated in the M step to reduce the objective function by modifying the parameters

A of the distortion measure.

Note that this corresponds to the generalized EM algorithm (Neal and Hinton,generalized EM

1998; Dempster et al., 1977), where the objective function is reduced but not

necessarily minimized in the M step. Effectively, the E step minimizes Jobj over

cluster assignments Y , the M step (A) minimizes Jobj over cluster representatives

M , and the M step (B) reduces Jobj over the parameters A of the distortion measure

dA. The E step and the M step are repeated till a specified convergence criterion is

reached. The specific details of the E step and M step are discussed in the following

sections.

5.3.5 Initialization

Good initial centroids are essential for the success of partitional clustering algo-

rithms such as K-Means. Good centroids are inferred from both the constraints

and unlabeled data during initialization. For this, a two-stage initialization process

is used.

88 Probabilistic Semi-Supervised Clustering with Constraints

Algorithm 5.1 HMRF-KMeans algorithm.

Neighborhood Inference At first, the transitive closure of the must-link con-

straints is taken to get connected components consisting of points connected by

must-links. Let there be λ connected components, which are used to create λ neigh-

borhoods. These correspond to the must-link neighborhoods in the MRF over the

hidden cluster variables.

Cluster Selection The λ neighborhood sets produced in the first stage are used

to initialize the HMRF-Means algorithm. If λ = K, λ cluster centers are initialized

with the centroids of all the λ neighborhood sets. If λ < K, λ clusters are initialized

from the neighborhoods, and the remaining K−λ clusters are initialized with points

obtained by random perturbations of the global centroid of X . If λ > K, a weighted

variant of farthest-first traversal (Hochbaum and Shmoys, 1985) is applied to the

centroids of the λ neighborhoods, where the weight of each centroid is proportional

to the size of the corresponding neighborhood. Weighted farthest-first traversal

selects neighborhoods that are relatively far apart as well as large in size, and

the chosen neighborhoods are set as the K initial cluster centroids for HMRF-

KMeans.

Overall, this two-stage initialization procedure is able to take into account both

unlabeled and labeled data to obtain cluster representatives that provide a good

initial partitioning of the data set.

5.3.6 E Step

In the E step, assignments of data points to clusters are updated using the current

estimates of the cluster representatives. In the general unsupervised K-Means

algorithm, there is no interaction between the cluster labels, and the E step is

a simple assignment of every point to the cluster representative that is nearest to

5.3 HMRF-KMeans Algorithm 89

it according to the clustering distortion measure. In contrast, the HMRF model

incorporates interaction between the cluster labels defined by the random field

over the hidden variables. As a result, computing the assignment of data points to

cluster representatives to find the global minimum of the objective function, given

the cluster centroids, is NP-hard in any nontrivial HMRF model, similar to other

graphical models such as MRFs and belief networks (Roth, 1996).

There exist several techniques for computing cluster assignments that approx-

imate the optimal solution in this framework, e.g., iterated conditional modesgreedy ICM

assignment (ICM) (Besag, 1986; Zhang et al., 2001), belief propagation (Pearl, 1988; Segal

et al., 2003b), and linear programming relaxation (Kleinberg and Tardos, 1999).

ICM is a greedy strategy that sequentially updates the cluster assignment of each

point, keeping the assignments for the other points fixed. In many settings it has

comparable performance to more expensive global approximation techniques, but is

computationally more efficient; it has been compared with several other approaches

by Bilenko and Basu (2004), while in more recent work Lange et al. (2005) have

described an alternative efficient method based on the mean-field approximation.

ICM performs sequential cluster assignment for all the points in random order. Each

point xi is assigned to the cluster representative μh that minimizes the point’s con-

tribution to the objective function Jobj(xi, μh):

Jobj(xi, μh) = dA(xi, μh) +
∑

(xi,xj)∈Ci
ML

s.t. yi �=yj

wijϕ(xi, xj)

+
∑

(xi,xj)∈Ci
CL

s.t. yi=yj

wij

(
ϕmax − ϕ(xi, xj)

)
− log P(A), (5.22)

where Ci
ML and Ci

CL are the subsets of CML and CCL respectively in which xi

appears in the constraints. The optimal assignment for every point minimizes the

distortion between the point and its cluster representative (first term of Jobj) along

with incurring a minimal penalty for constraint violations caused by this assignment

(second and third terms of Jobj). After all points are assigned, they are randomly

reordered, and the assignment process is repeated. This process proceeds until no

point changes its cluster assignment between two successive iterations.

Overall, the assignment of points to clusters incorporates pairwise supervision by

discouraging constraint violations proportionally to their severity, which guides the

algorithm toward a desirable partitioning of the data.

5.3.7 M Step

The M step of the algorithm consists of two parts: centroid re-estimation and

distortion measure parameter update.

90 Probabilistic Semi-Supervised Clustering with Constraints

5.3.7.1 M Step (A): Centroid Re-estimation

In the first part of the M step, the cluster centroids M are re-estimated from points

currently assigned to them, to decrease the objective function Jobj in Eq. 5.9. For

Bregman divergences and cosine distance, the cluster representative calculated in

the M step of the EM algorithm is equivalent to the expectation value over the

points in that cluster, which is equal to their arithmetic mean (Banerjee et al.,

2005a,b). Additionally, it has been experimentally demonstrated that for clustering

with distribution-based measures, e.g., KL divergence, smoothing cluster represen-

tatives by a prior using a deterministic annealing schedule leads to considerable

improvements (Dhillon and Guan, 2003). With smoothing controlled by a positive

parameter α, each cluster representative μh is estimated as follows when dIA
is the

distortion measure:

μ
(IA)
h =

1

1 + α

(∑
xi∈Xh

xi

|Xh|
+

α

n
1

)
. (5.23)

For directional measures, each cluster representative is the arithmetic mean

projected onto unit sphere (Banerjee et al., 2005a). Taking the distortion parameters

into account, centroids are estimated as follows when dcosA
is the distortion measure:

μ
(cosA)
h

‖μ(cosA)
h ‖A

=

∑
xi∈Xh

xi

‖∑xi∈Xh
xi‖A

. (5.24)

5.3.7.2 M Step (B): Update of Distortion Parameters

In the second part of the M step, the parameters of the parameterized distortion

measure are updated to decrease the objective function. In general, for parameter-

ized Bregman divergences or directional distances with general parameter priors,

it is difficult to attain a closed-form update for the parameters of the distortion

measure that can minimize the objective function.4 Gradient descent provides an

alternative avenue for learning the distortion measure parameters.

For squared Euclidean distance, a full parameter matrix A is updated during

gradient descent using the rule: A = A + η
∂JeucA

∂A (where η is the learning rate).gradient update

for full A Using (5.16),
∂JeucA

∂A can be expressed as

4. For the specific case of parameterized squared Euclidean distance, a closed-form update
of the parameters can be obtained (Bilenko et al., 2004).

5.3 HMRF-KMeans Algorithm 91

∂JeucA

∂A
=

∑

xi∈X

∂deucA
(xi, μ(i))

∂A
+

∑

(xi,xj)∈CML

s.t. yi �=yj

wij
∂deucA

(xi, xj)

∂A

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

[
∂ϕmax

eucA

∂A
− ∂deucA

(xi, xj)

∂A

]
− ∂ log P(A)

∂A
− n

∂ log det(A)

∂A
.

(5.25)

The gradient of the parameterized squared Euclidean distance is given by

∂deucA
(xi, xj)

∂A
= (xi − xj)(xi − xj)

T .

The derivative of the upper bound ϕmax
eucA

is
∂ϕmax

eucA

∂A =
∑

(xi,xj)∈CCL
(xi −xj)(xi −

xj)
T if ϕmax

eucA
is computed as described in section 5.3.3.1.5

When Rayleigh priors are used on the set of parameters A, the partial derivative

of the log-prior with respect to every individual parameter am ∈ A, ∂ log P(A)
∂am

, is

given by

∂ log P(A)

∂am
=

1

am
− am

s2
. (5.26)

The gradient of the distortion normalizer log det(A) term is as follows:

∂ log det(A)

∂A
= 2A−1 − diag(A−1). (5.27)

For parameterized cosine distance and KL divergence, a diagonal parameter

matrix A is considered, where a = diag(A) is a vector of positive weights. Duringgradient update

for diagonal A gradient descent, each weight am is individually updated as am = am + η
∂Jobj

∂am
(η

is the learning rate). Using (5.14),
∂Jobj

∂am
can be expressed as

∂Jobj

∂am
=

∑

xi∈X

∂dA(xi, μ(i))

∂am
+

∑

(xi,xj)∈CML

s.t. yi �=yj

wij
∂ϕ(xi, xj)

∂am

+
∑

(xi,xj)∈CCL

s.t. yi=yj

wij

[
∂ϕmax

∂am
− ∂ϕ(xi, xj)

∂am

]
− ∂ log P(A)

∂am
. (5.28)

5. In practice, one can initialize ϕmax
eucA

with a sufficiently large constant, which would
make its derivative zero. Accordingly, an extra condition must be then inserted into
the algorithm to guarantee that penalties for violated cannot-link constraints are never
negative, in which case the constant must be increased.

92 Probabilistic Semi-Supervised Clustering with Constraints

Calculation of the gradient
∂Jobj

∂am
for cosine distance and KL divergence, which

are parameterized by a diagonal matrix A, needs the gradients of the corresponding

distortion measures and constraint potential functions, which are

∂dcosA
(xi, xj)

∂am
=

ximxjm‖xi‖A‖xj‖A − xT
i Axj

x2
im‖xj‖2

A+x2
jm‖xi‖2

A

2‖xi‖A‖xj‖A

‖xi‖2
A‖xj‖2

A

,

∂dIA
(xi, xj)

∂am
= xim log

xim

xjm
− (xim − xjm),

∂dIMA
(xi, xj)

∂am
= xim log

2xim

xim + xjm
+ xjm log

2xjm

xim + xjm
, (5.29)

while the gradient of the upper bound ∂ϕmax

∂am
is 0 for parameterized cosine and 1 for

parameterized KL divergence, as follows from the expressions for these constants

in sections 5.3.3.2 and 5.3.3.3.

Overall, the distance learning step results in modifying the distortion measure

so that data points in violated must-link constraints are brought closer together,

while points in violated cannot-link constraints are pulled apart. This process leads

to a transformed data space that facilitates partitioning of the unlabeled data,

by attempting to mend the constraint violations as well as reflecting the natural

variance in the data. See part IV (chapters 15–17) for several alternative techniques

that change the data representation leading to better estimates of similarity between

data points.

5.3.8 Convergence of HMRF-KMeans

The HMRF-KMeans algorithm alternates between updating the assignment of

points to clusters, and updating the parameters. Since all updates ensure a de-

crease in the objective function, each iteration of HRMF-KMeans monotonically

decreases the objective function. Let us inspect each step in the update to ensure

that this is indeed the case.

For analyzing the cluster assignment step, let us consider Eq. 5.14. Each point xi

moves to a new cluster h only if the following component, contributed by the point

xi, is decreased with the move:

dA(xi, μ(i))+
∑

(xi,xj)∈Ci
ML

s.t. yi �=yj

wijϕ(xi, xj)+
∑

(xi,xj)∈Ci
CL

s.t. yi=yj

wij

(
ϕmax−ϕ(xi, xj)

)
−log P(A).

Given a set of centroids and distortion parameters, the new cluster assignment of

points will decrease Jobj or keep it unchanged.

For analyzing the centroid re-estimation step, let us consider an equivalent form

of Eq. 5.14:

5.4 Active Learning for Constraint Acquisition 93

Jobj =

K∑

h=1

∑

xi∈Xh

dA(xi, μh) +
∑

(xi,xj)∈Ci
ML

s.t. yi �=yj

wijϕ(xi, xj)

+
∑

(xi,xj)∈Ci
CL

s.t. yi=yj

wij

(
ϕmax − ϕ(xi, xj)

)
− log P(A). (5.30)

Each cluster centroid μh is re-estimated by taking the mean of the points in the

partition Xh, which minimizes the component
∑

xi∈Xh
dA(xi, μh) of Jobj in Eq. 5.30

contributed by the partition Xh. The constraint potential and the prior term in the

objective function do not take a part in centroid re-estimation, because they are

not explicit functions of the centroid. So, given the cluster assignments and the

distortion parameters, Jobj will decrease or remain the same in this step.

For the parameter estimation step, the gradient-descent update of the parameters

in M step (B) decreases Jobj or keeps it unchanged. Hence the objective function

decreases after every cluster assignment, centroid re-estimation, and parameter

re-estimation step. Now, note that the objective function is bounded below by

a constant: being the negative log likelihood of a probabilistic model with the

normalizer terms, Jobj is bounded below by zero. Even without the normalizers,

the objective function is bounded below by zero, since the distortion and potential

terms are non-negative due to the fact that A is positive definite. Since Jobj is

bounded below, and HMRF-KMeans results in a decreasing sequence of objective

function values, the value sequence must have a limit. The limit in this case will

be a fixed point of Jobj since neither updating the assignments nor the parameters

can further decrease the value of the objective function. As a result, the HMRF-

KMeans algorithm will converge to a fixed point of the objective. In practice,

convergence can be determined if subsequent iterations of HMRF-KMeans result

in insignificant changes in Jobj.

5.4 Active Learning for Constraint Acquisition

In the semi-supervised setting where training data are not already available, getting

constraints on pairs of data points may be expensive. In this section an active

learning scheme for the HMRF model is presented, which can improve clustering

performance with as few queries as possible. Formally, the scheme has access to a

(noiseless) oracle that can assign a must-link or cannot-link label to a given pair

(xi, xj), and it can pose a constant number of queries to the oracle.6

In order to get pairwise constraints that are more informative than random in

6. The oracle can also give a don’t-know response to a query, in which case that response
is ignored (pair not considered as a constraint) and that query is not posed again later.

94 Probabilistic Semi-Supervised Clustering with Constraints

the HMRF model, an active learning scheme for selecting pairwise constraints using

the farthest-first traversal scheme is developed. In farthest-first traversal, a startingfarthest-first

traversal point is first selected at random. Then, the next point farthest from it is chosen and

added to the traversed set. After that, the next point farthest from the traversed

set (using the standard notion of distance from a set: d(x, S) = minx′∈S d(x, x′))
is selected, and so on. Farthest-first traversal gives an efficient approximation of

the K-center problem (Hochbaum and Shmoys, 1985), and has also been used to

construct hierarchical clusterings with performance guarantees at each level of the

hierarchy (Dasgupta, 2002).

Basu et al. (2002) observed that initializing K-Means with centroids esti-

mated from a set of labeled examples for each cluster gives significant perfor-

mance improvements. Under certain generative model-based assumptions, one cangood

initialization for

K-Means

connect the mixture of Gaussians model to K-Means with squared Euclidean dis-

tance (Kearns et al., 1997). A direct calculation using Chernoff bounds shows that

if a particular cluster with an underlying Gaussian model is seeded with points

drawn independently at random from the corresponding Gaussian distribution, the

deviation of the centroid estimates falls exponentially with the number of seeds;

hence seeding results in good initial centroids. Since good initial centroids are very

critical for the success of greedy algorithms such as K-Means, the same principle

is followed for the pairwise case: the goal is to get as many points as possible per

cluster (proportional to the actual cluster size) by asking pairwise queries, so that

HMRF-KMeans is initialized from a very good set of centroids. The proposed

active learning scheme has two phases, Explore and Consolidate, which are

discussed next.

5.4.1 Exploration

The Explore phase explores the given data using farthest-first traversal to get K

pairwise disjoint non-null neighborhoods as fast as possible, with each neighborhood

belonging to a different cluster in the underlying clustering of the data. Note that

even if there is only one point per neighborhood, this neighborhood structure

defines a correct skeleton of the underlying clustering. Our algorithm Exploreform skeleton of

neighborhoods (algorithm 5.2) uses farthest-first traversal for getting a skeleton structure of the

neighborhoods, and terminates when it has run out of queries, or when at least

one point from all the clusters has been labeled. In the latter case, active learning

enters the consolidation phase.

5.4.2 Consolidation

The basic idea in Consolidate (algorithm 5.3) is as follows: since there is at least

one labeled point from all the clusters, the proper neighborhood of any unlabeled

point x can be determined within a maximum of (K − 1) queries. The queries willconsolidate

neighborhoods be formed by taking a point y from each of the neighborhoods in turn and asking

for the label on the pair (x, y) until a must-link is obtained. Either a must-link reply

5.4 Active Learning for Constraint Acquisition 95

Algorithm 5.2 Explore

is obtained in (K − 1) queries, or it can be inferred that the point is must-linked

to the remaining neighborhood. Note that it is practical to sort the neighborhoods

in increasing order of the distance of their centroids from x so that the correct

must-link neighborhood for x is encountered sooner in the querying process.

Algorithm 5.3 Consolidate

Input: Set of data points X = (x1, . . . , xn), access to an oracle that
answers pairwise queries, number of clusters K, total number
of queries Q, K disjoint neighborhoods corresponding to true
clustering of X with at least one point per neighborhood.

Output: K disjoint neighborhoods corresponding to the true
clustering of X with higher number of points per neighborhood.

Method:

1. Estimate centroids (µ1, . . . , µK) of each of the neighborhoods
2. While queries are allowed
2a. randomly pick a point x not in the existing neighborhoods
2b. sort the indices h with increasing distances ‖x − µh‖

2

2c. for h = 1 to K

query x with each of the neighborhoods in sorted order
till a must-link is obtained, add x to that neighborhood

When the right number of clusters K is not known to the clustering algorithm,

K is also unknown to the active learning scheme. In this case, only Explore is

used while queries are allowed. Explore will keep discovering new clusters as fast

as it can. When it has obtained all the clusters, it will not have any way of knowing

this. However, from this point onward, for every farthest-first x it draws from the

data set, it will always find a neighborhood that is must-linked to it. Hence, after

96 Probabilistic Semi-Supervised Clustering with Constraints

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

N
M

I

Number of Constraints

KMeans-C-D-R
KMeans-C-D

KMeans-C
KMeans

Figure 5.3 Clustering results for Dcosa

on News-Different-3 data set.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500

N
M

I

Number of Constraints

KMeans-C-D-R
KMeans-C-D

KMeans-C
KMeans

Figure 5.4 Clustering results for DIa on
News-Different-3 data set.

discovering all of the clusters, Explore will essentially consolidate the clusters too.

However, when K is known, it makes sense to invoke Consolidate since (1) it adds

points to clusters at a faster rate than Explore, and (2) it picks random samples

following the underlying data distribution, which is advantageous for estimating

good centroids (e.g., Chernoff bounds on the centroid estimates exist), while samples

obtained using farthest-first traversal may not have such properties.

5.5 Experimental Results

5.5.1 Data Sets

To demonstrate the effectiveness of our semi-supervised clustering framework,

we consider three data sets that have the characteristics of being sparse, high-

dimensional, and having a small number of points compared to the dimensionality

of the space. This is done for two reasons:

When clustering sparse high-dimensional data, e.g., text documents represented

using the vector space model, it is particularly difficult to cluster small data sets,

as observed by clustering researchers (Dhillon and Guan, 2003). The purpose of

performing experiments on these subsets is to scale down the sizes of the data sets

for computational reasons but at the same time not scale down the difficulty of the

tasks.

Clustering small number of sparse high-dimensional data points is a likely scenario

in realistic applications. For example, when clustering the search results in a

websearch engine like Viv́ısimo,7 typically the number of webpages that are being

clustered is on the order of hundreds. However the dimensionality of the feature

space, corresponding to the number of unique words in all the webpages, is on

the order of thousands. Moreover, each webpage is sparse, since it contains only a

7. http://www.vivisimo.com

5.5 Experimental Results 97

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500

N
M

I

Number of Constraints

KMeans-C-D-R
KMeans-C-D

KMeans-C
KMeans

Figure 5.5 Clustering results for Dcosa

on News-Related-3 data set.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500

N
M

I

Number of Constraints

KMeans-C-D-R
KMeans-C-D

KMeans-C
KMeans

Figure 5.6 Clustering results for DIa on
News-Related-3 data set.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500

N
M

I

Number of Constraints

KMeans-C-D-R
KMeans-C-D

KMeans-C
KMeans

Figure 5.7 Clustering results for Dcosa

on News-Similar-3 data set.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100 200 300 400 500

N
M

I

Number of Constraints

KMeans-C-D-R
KMeans-C-D

KMeans-C
KMeans

Figure 5.8 Clustering results for DIa on
News-Similar-3 data set.

small number of all the possible words. On such data sets, clustering algorithms

can easily get stuck in local optima: in such cases it has been observed that there is

little relocation of documents between clusters for most initializations, which leads

to poor clustering quality after convergence of the algorithm (Dhillon and Guan,

2003). Supervision in the form of pairwise constraints is most beneficial in such

cases and may significantly improve clustering quality.

We derived three data sets from the 20-Newsgroups collection.8 This collection

has messages harvested from 20 different Usenet newsgroups, 1000 messages from

each newsgroup. From the original data set, a reduced data set was created by tak-

ing a random subsample of 100 documents from each of the 20 newsgroups. Three

data sets were created by selecting three categories from the reduced collection.

News-Similar-3 consists of three newsgroups on similar topics (comp.graphics,

comp.os.ms-windows, comp.windows.x) with significant overlap between clusters

due to cross-posting. News-Related-3 consists of three newsgroups on related top-

ics (talk.politics.misc, talk.politics.guns, and talk.politics.mideast).

News-Different-3 consists of articles posted in three newsgroups that cover differ-

ent topics (alt.atheism, rec.sport.baseball, sci.space) with well-separated

8. http://www.ai.mit.edu/people/jrennie/20Newsgroups

98 Probabilistic Semi-Supervised Clustering with Constraints

clusters. The vector-space model of News-Similar-3 has 300 points in 1864 dimen-

sions, News-Related-3 has 300 points in 3225 dimensions, and News-Different-3 had

300 points in 3251 dimensions. Since the overlap between topics in News-Similar-3

and News-Related-3 is significant, they are more challenging data sets than News-

Different-3.

All the data sets were preprocessed by stopword removal, TF-IDF weighting, re-

moval of very high-frequency and low-frequency words, etc., following the method-

ology of Dhillon et al. (Dhillon and Modha, 2001).

5.5.2 Clustering Evaluation

We used normalized mutual information (NMI) as our clustering evaluation mea-

sure. NMI is an external clustering validation metric that estimates the quality of

the clustering with respect to a given underlying class labeling of the data: it mea-

sures how closely the clustering algorithm could reconstruct the underlying label

distribution in the data (Strehl et al., 2000; Dom, 2001). If C is the random vari-

able denoting the cluster assignments of the points and K is the random variable

denoting the underlying class labels on the points (Banerjee et al., 2005a), then the

NMI measure is defined as

NMI =
I(C; K)

(H(C) + H(K))/2
, (5.31)

where I(X ; Y) = H(X) − H(X |Y) is the mutual information between the random

variables X and Y , H(X) is the Shannon entropy of X , and H(X |Y) is the

conditional entropy of X given Y (Cover and Thomas, 1991). NMI effectively

measures the amount of statistical information shared by the random variables

representing the cluster assignments and the user-labeled class assignments of the

data points.

5.5.3 Methodology

We generated learning curves using 20 runs of twofold cross-validation for each

data set. For studying the effect of constraints in clustering, 50% of the data

set is set aside as the test set at any particular fold. The different points along

the learning curve correspond to constraints that are given as input to the semi-

supervised clustering algorithm. These constraints are obtained from the training

set corresponding to the remaining 50% of the data by randomly selecting pairs

of points from the training set, and creating must-link or cannot-link constraints

depending on whether the underlying classes of the two points are same or different.

Unit constraint costs W and W were used for all constraints, original and inferred,

since the data sets did not provide individual weights for the constraints. Based

on a few pilot studies, gradient step size η was chosen to have values η = 1.75 for

clustering with Dcosa
and η = 1.0−8 for clustering with DIa

; weights were restricted

to be non-negative. In a realistic setting, these parameters could be tuned using

5.5 Experimental Results 99

cross-validation with a holdout set. The clustering algorithm was run on the whole

data set, but NMI was calculated only on the test set. The learning curve results

were averaged over the 20 runs.

5.5.4 Results and Discussion

We compared the proposed HMRF-KMeans algorithm with two ablations as well

as unsupervised K-Means clustering. The following variants were compared for

distortion measures Dcosa
and DIa

as representatives for Bregman divergences and

directional measures respectively:

KMeans-I-C-D is the complete HMRF-KMeans algorithm that includes use

of supervised data in initialization (I) as described in section 5.3.5, incorporates

constraints in cluster assignments (C) as described in section 5.3.6, and performs

distance learning (D) as described in section 5.3.7;

KMeans-I-C is an ablation of HMRF-KMeans that uses pairwise supervision

for initialization and cluster assignments, but does not perform distance learning;

KMeans-I is a further ablation that only uses the constraints to initialize cluster

representatives;

KMeans is the unsupervised K-Means algorithm.

Figures 5.3, 5.5, and 5.7 demonstrate the results for experiments where weighted

cosine similarity Dcosa
was used as the distortion measure, while figures 5.4, 5.6,

and 5.8 summarize experiments where weighted I divergence DIa
was used.

As the results demonstrate, the full HMRF-KMeans algorithm outperforms the

unsupervised K-Means baseline as well as the ablated versions of HMRF-KMeans

for both Dcosa
and DIa

. Relative performance of KMeans-I-C and KMeans-

I indicates that using supervision for initializing cluster representatives is highly

beneficial, while the constraint-sensitive cluster assignment step does not lead to

significant additional improvements for Dcosa
. For DIa

, KMeans-I-C outperforms

KMeans-I on News-Different-3 (figure 5.4) and News-Similar-3 (figure 5.8) which

indicates that incorporating constraints in the cluster assignment process is useful

for these data sets. This result is reversed for News-Related-3 (figure 5.6), implying

that in some cases using constraints in the E step may be unnecessary, which agrees

with previous results on other domains (Basu et al., 2002). However, incorporating

supervised data in all the three stages of the algorithm in KMeans-I-C-D, namely

initialization, cluster assignment, and distance update, always leads to substantial

performance improvement.

As can be seen from results for 0 pairwise constraints in figures 5.3 through

5.8, distance learning is beneficial even in the absence of any pairwise constraints,

since it is able to capture the relative importance of the different attributes in the

unsupervised data. In the absence of supervised data or when no constraints are

violated, distance learning attempts to minimize the objective function by adjusting

the weights given the distortion between the unsupervised data points and their

100 Probabilistic Semi-Supervised Clustering with Constraints

corresponding cluster representatives.

In realistic application domains, supervision in the form of constraints would be in

most cases provided by human experts, in which case it is important that any semi-

supervised clustering algorithm performs well with a small number of constraints.

KMeans-I-C-D starts outperforming its variants and the unsupervised clustering

baseline early on in the learning curve, and is therefore a very appropriate algorithm

to use in actual semi-supervised data clustering systems.

Overall, our results show that the HMRF-KMeans algorithm effectively incor-

porates labeled and unlabeled data in three stages, each of which improves the

clustering quality.

5.6 Related Work

The problem of integrating limited supervision in clustering algorithms has been

studied by a number of authors in recent work. Early approaches to semi-supervised

clustering relied on incorporating penalties for violating constraints into the objec-

tive function, leading to algorithms that avoid clusterings in which constraints are

not satisfied. COP-KMeans is one such method where constraint violations are ex-

plicitly avoided in the assignment step of the K-Means algorithm (Wagstaff et al.,

2001; Wagstaff, 2002). Another method, proposed by Demiriz et al. (1999), uti-

lizes genetic algorithms to optimize an objective function that combines cluster

compactness and cluster purity and that decreases with constraint violations.

In subsequent work, several approaches have been proposed that consider semi-

supervised clustering within a probabilistic framework. Segal et al. (2003b) describe

a model for semi-supervised clustering with constraints that combines a binary

Markov network derived from pairwise protein interaction data and a naive Bayes

Markov network modeling gene expression data. Another probabilistic approach

described by Shental et al. (2004) incorporates must-link constraints via modeling

them as chunklets, sets of points known to belong to the same class, while cannot-

link constraints are utilized via potentials in a binary Markov network. HMRFs have

previously been used for image segmentation by Zhang et al. (2001), who have also

described an EM-based clustering algorithm. More recently, Lange et al. (2005)

proposed an approach that incorporates labeled and unlabeled data within an

HMRF-like model, while a mean field approximation method for posterior inference

is used in the E step of the algorithm. The HMRF framework described in this

chapter differs from these approaches in that it explicitly incorporates learning of

the distortion measure parameters within the clustering algorithm and facilitates

the use of diverse distance measures; however, a number of the proposed methods

could be integrated within the HMRF framework.

Spectral clustering methods—algorithms that perform clustering by decompos-

ing the pairwise affinity matrix derived from data—have been increasingly popular

recently (Weiss, 1999; Ng et al., 2002), and several semi-supervised approaches have

been developed within the spectral clustering framework. Kamvar et al. (2003) have

5.7 Conclusions 101

proposed directly injecting the constraints into the affinity matrix before subse-

quent clustering, while De Bie et al. (2004) reformulated the optimization problem

corresponding to spectral clustering by incorporating a separate label constraint

matrix. Additionally, spectral clustering methods can be viewed as variants of the

graph-cut approaches to clustering (Shi and Malik, 2000), a connection that mo-

tivated the correlation clustering method proposed by (Bansal et al., 2002), where

the constraints correspond to edge labels between vertices representing data points.

Another family of semi-supervised clustering methods has focused on modifying

the distance function employed by the clustering algorithm. In early work, Cohn

et al. (2003) proposed using a weighted variant of Jensen-Shannon divergence within

the EM clustering algorithm, with the weights learned using gradient descent based

on constraint violations. Within the family of hierarchical agglomerative clustering

algorithms, Klein et al. (2002) proposed modifying the squared Euclidean distance

using the shortest-path algorithm. Several researchers have proposed methods for

learning the parameters of the weighted Mahalanobis distance, a generalization of

Euclidean distance, within the context of semi-supervised clustering. Xing et al.

(2003) utilized convex optimization and iterative projections to learn the weight

matrix of Mahalanobis distance within K-Means clustering. Another approach

focused on parameterized Mahalanobis distance is the relevant component analysis

(RCA) algorithm proposed by Bar-Hillel et al. (2003), where convex optimization

is also used to learn the weight matrix.

Learning distance metrics within semi-supervised clustering relates to a large set

of approaches for transforming the data representation to make it more suitable

to a particular learning task. Within this book, part IV (chapters 15–17) describes

several advanced techniques for changing the geometry of the data space to obtain

better estimates of similarity between data points; integrating these methods with

clustering algorithms provides a number of promising avenues for future work.

5.7 Conclusions

In this chapter, a generative probabilistic framework for semi-supervised clustering

has been introduced. It relies on hidden random Markov fields (HMRFs) to utilize

both unlabeled data and supervision in the form of pairwise constraints during

the clustering process. The framework can be used with a number of distortion

(distance) measures, including Bregman divergences and directional measures, and

it facilitates training the distance parameters to adapt to specific data sets.

An algorithm HMRF-KMeans for performing clustering in this framework

has been presented that incorporates pairwise supervision in different stages of

the clustering: initialization, cluster assignment, and parameter estimation. Three

particular instantiations of the algorithm, based on different distortion measures,

have been discussed: squared Euclidean distance, which is common for clustering

low-dimensional data, and KL divergence and cosine distance, which are popular

for clustering high-dimensional directional data. Finally, a new method has been

102 Probabilistic Semi-Supervised Clustering with Constraints

presented for acquiring supervision from a user in the form of effective pairwise

constraints for semi-supervised clustering – such an active learning algorithm would

be useful in an interactive query-driven clustering framework.

The HMRF model can be viewed as a unification of constraint-based and

distance-based semi-supervised clustering approaches. It can be expanded to a

more general setting where every cluster has a corresponding distinct distortion

measure (Bilenko et al., 2004), leading to a clustering algorithm that can identify

clusters of different shapes. Empirical evaluation of the framework described in

this chapter can be found in several previous publications: active learning experi-

ments are discussed in (Basu et al., 2004a), while (Bilenko et al., 2004) and (Basu

et al., 2004b) contain results for low-dimensional and high-dimensional data sets

respectively, and (Bilenko and Basu, 2004) compares several approximate inference

methods for E Step discussed in section 5.3.6.

An important practical issue in using generative models for semi-supervised

learning is model selection. For semi-supervised clustering with constraints, the

key model selection issue is one of choosing the right number of clusters. One can

consider using a traditional model selection criterion suitable for the supervised

setting, or perform model selection by cross-validation. An alternative is to perform

model-selection using bounds on the test-set error rate such that valuable supervised

data are saved for learning. The PAC-MDL bounds (Blum and Langford, 2003)

provide such a tool that has been successfully applied to model selection for

clustering (Banerjee et al., 2005a), and can be readily extended to the semi-

supervised clustering setting. In fact, the semi-supervised clustering setting is

more natural since PAC-MDL bounds are applicable for transductive learning.

Alternative methods of model selection are a good topic for future research.

II Low-Density Separation

6 Transductive Support Vector Machines

Thorsten Joachims tj@cs.cornell.edu

In contrast to learning a general prediction rule, V. Vapnik proposed the transduc-

tive learning setting where predictions are made only at a fixed number of known

test points. This allows the learning algorithm to exploit the location of the test

points, making it a particular type of semi-supervised learning problem. Transduc-

tive support vector machines (TSVMs) implement the idea of transductive learning

by including test points in the computation of the margin. This chapter will pro-

vide some examples for why the margin on the test examples can provide useful

prior information for learning, in particular for the problem of text classification.

The resulting optimization problems, however, are difficult to solve. The chapter re-

views exact and approximate optimization methods and discusses their properties.

Finally, the chapter discusses connections to other related semi-supervised learning

approaches like co-training and methods based on graph cuts, which can be seen

as solving variants of the TSVM optimization problem.

6.1 Introduction

The setting of transductive inference was introduced by Vapnik (e.g. (Vapnik,

1998)). As an example of a transductive learning task, consider the problem of

learning from relevance feedback in information retrieval (see (Baeza-Yates and

Ribeiro-Neto, 1999)). The user marks some documents returned by a search engine

in response to an initial query as relevant or irrelevant. These documents then serve

as a training set for a binary text classification problem. The goal is to learn a rule

that accurately classifies all remaining documents in the database according to their

relevance. Clearly, this problem can be thought of as a supervised learning problem.

But it is different from many other (inductive) learning problems in at least two

respects.

First, the learning algorithm does not necessarily have to learn a general rule,

but it only needs to predict accurately for a finite number of test examples (i.e.,

106 Transductive Support Vector Machines

the documents in the database). Second, the test examples are known a priori and

can be observed by the learning algorithm during training. This allows the learning

algorithm to exploit any information that might be contained in the location of

the test examples. Transductive learning is therefore a particular case of semi-

supervised learning, since it allows the learning algorithm to exploit the unlabeled

examples in the test set. The following focuses on this second point, while chapter 24

elaborates on the first point.

More formally, the transductive learning setting can be formalized as follows.1transductive

learning setting Given is a set

S = {1, 2, ..., n} (6.1)

that enumerates all n possible examples. In our relevance feedback example from

above, there would be one index i for each document in the collection. We assume

that each example i is represented by a feature vector xi ∈ R
d. For text documents,

this could be a TFIDF vector representation (see e.g. (Joachims, 2002)), where

each document is represented by a scaled and normalized histogram of the words

it contains. The collection of feature vectors for all examples in S is denoted as

X = (x1,x2, ...,xn). (6.2)

For the examples in S, labels

Y = (y1,y2, ...,yn) (6.3)

are generated independently according to a distribution P (y1, ...,yn) =
∏n

i=1 P (yi).

For simplicity, we assume binary labels yi ∈ {−1, +1}.
As the training set, the learning algorithm can observe the labels of l randomly

selected examples Strain ⊂ S. The remaining u = n − l examples form the test set

Stest = S \ Strain.

Strain = {l1, ..., ll} Stest = {u1, ..., uu} (6.4)

When training a transductive learning algorithm L, it not only has access to the

training vectors Xtrain and the training labels Ytrain,

Xtrain = (xl1 ,xl2 , ...,xll) Ytrain = (yl1 ,yl2 , ...,yll), (6.5)

but also to the unlabeled test vectors

Xtest = (xu1 ,xu2 , ...,xul
). (6.6)

The transductive learner uses Xtrain, Ytrain, and Xtest (but not the labels Ytest of

1. While several other, more general, definitions of transductive learning exist (Vapnik,
1998; Joachims, 2002; Derbeko et al., 2003), this one was chosen for the sake of simplicity.

6.1 Introduction 107

the test examples) to produce predictions,

Y ∗
test = (y∗

u1
,y∗

u2
, ...,y∗

uu
), (6.7)

for the labels of the test examples. The learner’s goal is to minimize the fraction of

erroneous predictions,

Errtest(Y
∗
test) =

1

u

∑

i∈Stest

δ0/1(y
∗
i ,yi), (6.8)

on the test set. δ0/1(a, b) is zero if a = b, otherwise it is one.

At first glance, the problem of transductive learning may not seem profoundly

different from the usual inductive setting. One could learn a classification rule based

on the training data and then apply it to the test data afterward. However, a crucial

difference is that the inductive strategy would ignore any information potentially

conveyed in Xtest.

What information do we get from studying the test sample Xtest and how could

we use it? The fact that we deal with only a finite set of points means that the

hypothesis space H of a transductive learner is necessarily finite — namely, all

vectors {−1, +1}n. Following the principle of structural risk minimization (Vapnik,structural risk

minimization 1998), we can structure H into a nested structure

H1 ⊂ H2 ⊂ · · · ⊂ H = {−1, +1}n. (6.9)

The structure should reflect prior knowledge about the learning task. In particular,

the structure should be constructed so that, with high probability, the correct

labeling of S (or labelings that make few errors) is contained in an element Hi

of small cardinality. This structuring of the hypothesis space H can be motivated

using generalization error bounds from statistical learning theory. In particular, for

a learner L that searches for a hypothesis (Y ∗
train, Y ∗

test) ∈ Hi with small training

error,

Errtest(Y
∗
train) =

1

l

∑

i∈Strain

δ0/1(y
∗
i ,yi), (6.10)

it is possible to upper-bound the fraction of test errors Errtest(Y
∗
test) (Vapnik, 1998;

Derbeko et al., 2003). With probability 1− ηtransductive

generalization

error bound Errtest(Y
∗
test) ≤ Errtrain(Y ∗

train) + Ω(l, u, |Hi|, η) (6.11)

where the confidence interval Ω(l, u, |Hi|, η) depends on the number of training

examples l, the number of test examples u, and the cardinality |Hi| of Hi (see

(Vapnik, 1998) for details). The smaller the cardinality |Hi|, the smaller is the

confidence interval Ω(l, u, |Hi|, η) on the deviation between training and test error.

The bound indicates that a good structure ensures accurate prediction of the

test labels. And here lies a crucial difference between transductive and inductive

learners. Unlike in the inductive setting, we can study the location Xtest of the test

108 Transductive Support Vector Machines

Figure 6.1 The two graphs illustrate the labelings that margin hyperplanes can realize
dependent on the margin size. Example points are indicated as dots: the margin of each
hyperplane is illustrated by the gray area. The left graph shows the separators Hρ for a
small margin threshold ρ. The number of possible labelings Nρ decreases as the margin
threshold is increased, as in the graph on the right.

examples when defining the structure. In particular, in the transductive setting it

is possible to encode prior knowledge we might have about the relationship between

the geometry of X = (x1, ...,xn) and P (y1, ...,yn). If such a relationship exists, we

can build a more appropriate structure and reduce the number of training examples

necessary for achieving a desired level of prediction accuracy. This line of reasoning

is detailed in chapter 24.

6.2 Transductive Support Vector Machines

Transductive support vector machines (TSVMs) assume a particular geometrictrain and test set

margin relationship between X = (x1, ...,xn) and P (y1, ...,yn). They build a structure

on H based on the margin of hyperplanes {x : w · x + b = 0} on the complete

sample X = (x1,x2, ...,xn), including both the training and the test vectors. The

margin of a hyperplane on X is the minimum distance to the closest example vectors

in X .

min
i∈[1..n]

[
yi

‖w‖ (w · xi + b)

]
(6.12)

The structure element Hρ contains all labelings of X which can be achieved with

hyperplane classifiers h(x) = sign{x · w + b} that have a margin of at least ρ

on X . The dependence of Hρ on ρ is illustrated in figure 6.1. Intuitively, building

the structure based on the margin gives preference to labelings that follow cluster

boundaries over labelings that cut through clusters. Vapnik shows that the size of

the margin ρ can be used to control the cardinality of the corresponding set of

6.2 Transductive Support Vector Machines 109

Figure 6.2 For the same data as in figure 6.1, some examples are now labeled. Posi-
tive/negative examples are marked as +/−. The dashed line is the solution of an inductive
SVM, which finds the hyperplane that separates the training data with largest margin, but
ignores the test vectors. The solid line shows the hard-margin transductive classification,
which is the labeling that has zero training error and the largest margin with respect to
both the training and the test vectors. The TSVM solution aligns the labeling with the
cluster structure in the training and test vectors.

labelings Hρ. More formally, the following theorem provides an upper bound on

the number of labelings |Hρ| that can be achieved with hyperplanes that have a

margin of at least ρ.

Theorem 6.1 ((Vapnik, 1998))

For any n vectors x1, ...,xn ∈ R
d that are contained in a ball of diameter R, the

number |Hρ| of possible binary labelings y1, ...,yn ∈ {−1, +1} that can be realized

with hyperplane classifiers h(x) = sign{x · w + b} of margin at least ρ,

∀n
i=1 :

yi

‖w‖ [w · xi + b] ≥ ρ (6.13)

is bounded by

|Hρ| ≤ ed(ln n+k
d

+1), d =
R2

ρ2
+ 1. (6.14)

Note that the number of labelings |Hρ| does not necessarily depend on the

number of features d. As suggested by the theorem, TSVMs sort all labelings by

their margin ρ on X to build the structure on H. Structural risk minimization

argues that a learning algorithm should select the labeling Y ∗ ∈ Hρ for which

training error Errtrain(Y ∗
train) and cardinality of Hρ minimize the generalization

error bound (6.11). For the special case of requiring zero training error (i. e.

Errtrain(Y ∗
train) = 0), optimizing the bound means finding the labeling with

the largest margin on the complete set of vectors. This leads to the following

optimization problem (OP) (Vapnik, 1998).

110 Transductive Support Vector Machines

OP1 (Transductive SVM (hard-margin))hard-margin

TSVM
minimize: V (y∗

u1
, ...,y∗

uu
,w, b) =

1

2
w ·w (6.15)

subject to: ∀l
i=1 : yli [�w · xli + b] ≥ 1 (6.16)

∀u
j=1 : y∗

uj
[�w · x∗

uj
+ b] ≥ 1 (6.17)

∀u
j=1 : y∗

uj
∈ {−1, +1} (6.18)

Solving this problem means finding the labeling y∗
u1

, ...,y∗
uk

of the test data for

which the hyperplane that separates both training and test data has maximum

margin. Figure 6.2 illustrates this. The figure also shows the solution that an

inductive SVM (Cortes and Vapnik, 1995; Vapnik, 1998) computes. An inductiveinductive SVM

SVM also finds a large-margin hyperplane, but it considers only the training

vectors while ignoring all test vectors. In particular, a hard-margin inductive SVM

computes the separating hyperplane that has zero training error and the largest

margin with respect to the training examples.

To be able to handle nonseparable data, one can introduce slack variables ξi

(Joachims, 1999) similar to inductive SVMs (Cortes and Vapnik, 1995).

OP2 (Transductive SVM (soft-margin))
soft-margin

TSVM

min: W (y∗
u1

, ...,y∗
uu

,w, b, ξ1, ..., ξl, ξ
∗
1 , ..., ξ∗u)=

1

2
w·w + C

l∑

i=1

ξi + C∗
u∑

j=1

ξ∗j (6.19)

s.t.: ∀l
i=1 : yli [w · xli + b] ≥ 1 − ξi (6.20)

∀u
j=1 : y∗

uj
[w · x∗

uj
+ b] ≥ 1 − ξ∗j (6.21)

∀u
j=1 : y∗

uj
∈ {−1, +1} (6.22)

∀l
i=1 : ξi ≥ 0 (6.23)

∀u
j=1 : ξ∗j ≥ 0 (6.24)

C and C∗ are parameters set by the user. They allow trading off margin size

against misclassifying training examples or excluding test examples. C∗ can be

used reduce sensitivity toward outliers (i.e., single examples falsely reducing the

margin on the test data).

Both inductive and transductive SVMs can be extended to include kernels (Boserkernels

et al., 1992; Vapnik, 1998). Making use of duality techniques from optimization

theory, kernels allow learning nonlinear rules as well as classification rules over

nonvectorial data (see e.g. (Schölkopf and Smola, 2002)) without substantially

changing the optimization problems.

Note that in both the hard-margin formulation (OP1) and the soft-margin formu-

lation (OP2) of the TSVM, the labels of the test examples enter as integer variables.

Due to the constraints in Eqs. 6.18 and 6.22 respectively, both OP1 and OP2 are

no longer convex quadratic programs like the analogous optimization problems for

inductive SVMs. Before discussing methods for (approximately) solving the TSVM

6.3 Why Use Margin on the Test Set? 111

salt andbasilparsleyatomphysicsnuclear

D1

D2

D3

D4

D5

D6

1 1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

Figure 6.3 Example of a text-classification problem with co-occurrence pattern. Rows
correspond to documents, columns to words. A table entry of 1 denotes the occurrence of
a word in a document.

optimization problems, let’s first discuss some intuition about why structuring the

hypothesis space based on the margin on the test examples might be reasonable.

6.3 Why Use Margin on the Test Set?

Why should it be reasonable to prefer a labeling with a large margin over a labeling

with a smaller margin, even if both have the same training error? Clearly, this

question can only be addressed in the context of a particular learning problem. In

the following, we will consider text classification as an example. In particular, for

topic-based text classification it is known that good classification rules typically

have a large margin (Joachims, 2002). The following example gives some intuition

for why this is the case.

In the field of information retrieval it is well known that words in natural language

occur in co-occurrence patterns (see e.g. (van Rijsbergen, 1977)). Some words are

likely to occur together in one document; others are not. For examples, when

asking Google about all documents containing the words pepper and salt, it

returns 3,500,000 webpages. When asking for the documents with the words pepper

and physics, we get only 248,000 hits, although physics (162,000,000 hits) is a

more popular word on the web than salt (63,200,000 hits). Many approaches in

information retrieval try to exploit this cluster structure of text (see e.g. (Baeza-

Yates and Ribeiro-Neto, 1999, chapter 5)). It is this co-occurrence information that

TSVMs exploit as prior knowledge about the learning task.

Consider the example in figure 6.3. Imagine document D1 was given as a training

example for class A and document D6 was given as a training example for class

B. How should we classify documents D2 to D5 (the test set)? Even if we did

not understand the meaning of the words, we would classify D2 and D3 into class

A, and D4 and D5 into class B. We would do so even though D1 and D3 do

not share any informative words. The reason we choose this classification of the

test data over the others stems from our prior knowledge about the properties of

text and common text-classification tasks. Often we want to classify documents by

112 Transductive Support Vector Machines

0

20

40

60

80

100

960348012400120064032617088462617

A
v
e

ra
g

e
 P

/R
-b

re
a

k
e

v
e

n
 p

o
in

t

Number of Examples in training set

Transductive SVM
SVM

Naive Bayes

Figure 6.4 Macro-averaged PRBEP on the Reuters data set for different training set
sizes and a test set size of 3299.

topic, source, or style. For these types of classification tasks we find stronger co-

occurrence patterns within classes than between different classes. In our example

we analyzed the co-occurrence information in the test data and found two clusters.

These clusters indicate different topics of {D1, D2, D3} versus {D4, D5, D6}, and

we choose the cluster separator as our classification. Note again that we got to this

classification by studying the location of the test examples, which is not possible

for an inductive learner.

The TSVM outputs the same classification as we suggested above, although all

16 labelings of D2 to D5 can be achieved with linear separators. Assigning D2

and D3 to class A and D4 and D5 to class B is the maximum-margin solution

(i.e., the solution of OP1). The maximum-margin bias appears to reflect our prior

knowledge about text classification well. By measuring margin on the test set, the

TSVM exploits co-occurrence patterns that indicate boundaries between topics.

6.4 Experiments and Applications of TSVMs

Structuring the hypothesis space using margin was obviously beneficial in the toy

example above. Experiments have confirmed that this also holds in practice.

Figures 6.4 and 6.5 (from Joachims (1999)) give empirical evidence thatTSVMs in text

classification TSVMs improve prediction performance on real text-classification tasks, namely

the Reuters-21578 text-classification benchmark. The standard “ModApte” train-

ing/test split is used, leading to a corpus of 9603 training documents and 3299

test documents. The results are averaged over the ten most frequent topics, while

keeping all documents. Each topic leads to a binary classification problem, where

documents about the topic are positive examples, and all other documents are neg-

6.4 Experiments and Applications of TSVMs 113

0

10

20

30

40

50

60

70

80

90

100

32991650825412206

A
v
e

ra
g

e
 P

/R
-b

re
a

k
e

v
e

n
 p

o
in

t

Number of Examples in test set

Transductive SVM
SVM

Naive Bayes

Figure 6.5 Macro-averaged PRBEP on the Reuters data set for 17 training documents
and varying test set size for the TSVM.

ative examples. The performance of each binary classifier is measured in terms of

the precision/recall breakeven point (PRBEP). The PRBEP is the percentage of

positive test examples that are classified correctly, if the classifier is allowed to pre-

dict as many test examples as positive as there are true positives in the test set

(see e.g. (Joachims, 2002)). The precise setup is described in (Joachims, 1999).

Figures 6.4 and 6.5 show the effect of using TSVM instead of inductive methods.

To provide a baseline for comparison, the results of the inductive SVM and a

multinomial naive Bayesnaive Bayes classifier are added. The SVM and the TSVM

are trained using SVMlight, available at svmlight.joachims.org. Figure 6.4 shows

the effect of varying the size of the training set. The advantage of using the

transductive approach is largest for small training sets. For increasing training

set size, the performance of the SVM approaches that of the TSVM. This is to be

expected, since labeled examples eventually convey the same information about the

distribution of the example vectors as the unlabeled data.

The influence of the test set size on the performance of the TSVM is displayed

in figure 6.5. The bigger the test set, the larger the performance gap between

SVM and TSVM. Adding more test examples beyond 3299 is not likely to increase

performance by much, since the graph appears to flatten out. The curves are fairly

typical and similar behavior was also observed on other problems. The results for

other text classification data sets can be found in (Joachims, 2002).

Similar gains in performance of the TSVM over an inductive SVM were reported

by Chapelle et al. (2003). For classifying net news articles they report that the

TSVM almost halves the prediction error for small training sets of 16 examples.

For an email classification problem, the results of Kockelkorn et al. (2003) also

indicate that TSVMs substantially outperform inductive SVMs for small training

sets. Small improvements on text classification problems are also reported by

Tong and Koller (2001). However, they conclude that the effect of active learning,

114 Transductive Support Vector Machines

where the algorithm can ask for the labels of particular examples, dominates the

improvement seen from the TSVM. This is in contrast to the findings of Wang et al.TSVMs for image

retrieval (2003). They find that incorporating TSVMs into their active learning procedure

for image retrieval based on relevance feedback substantially improves performance.

For more text-classification experiments see chapter 3.

Beyond text classification, Bennett and Demiriz (1999) have applied their L1-TSVMs for UCI

benchmarks norm variant of transductive SVMs to several UCI benchmark problems. They find

small but fairly consistent improvements over these tasks. A key difference from

most other experiments with transductive learning are the small test sets that

were used. Due to efficiency limitations of the mixed-integer programming code

they used for training, all test sets contained no more than 70 examples. Their

evaluation of regular TSVMs on a subset of these UCI benchmarks shows mixed

results (Demiriz and Bennett, 2000). Similar findings on UCI benchmarks are also

reported by Joachims (2003), where the differences between inductive SVMs and

TSVMs were found to be small.

Several applications of TSVMs in bioinformatics have been explored. For exam-TSVMs in

bioinformatics ple, they have been used to recognize promoter sequences in genes. Kasabov and

Pang (2004) report that TSVMs substantially outperform inductive SVMs in their

experiments. However, for the problem of predicting the functional properties of

proteins, Krogel and Scheffer (2004) find that TSVMs significantly decrease perfor-

mance compared to inductive SVMs.

Goutte et al. (2002) apply TSVMs to a problem of recognizing entities (e.g., geneTSVMs for

named entity

recognition

names, protein names) in medical text. They find that TSVMs substantially im-

prove performance for medium-sized training sets, and perform at least comparably

to an alternative transductive learning method based on Fisher kernels.

Summarizing the results, it appears that TSVMs are particularly well suited for

text classification and several other (typically high-dimensional) learning problems.

However, on some problems the TSVM performs roughly equivalently to an induc-

tive SVM, or sometimes even worse. This is to be expected, since it is likely that

structuring the hypothesis space according to margin size is inappropriate for some

applications. Furthermore, it is likely that the difficulty of finding the optimum of

the TSVM optimization problem has led to suboptimal results in some cases. We

discuss algorithms for solving the TSVM optimization problem next.

6.5 Solving the TSVM Optimization Problem

Both the hard soft-margin TSVM optimization problems can be written as mixed-

integer problems with a quadratic objective and linear constraints. Unfortunately,

currently no algorithm is known to efficiently find a globally optimal solution.

Vapnik and colleagues (Vapnik and Sterin, 1977; Wapnik and Tscherwonenkis,mixed-integer

programming 1979) proposed the use of branch-and-bound search to find the global optimium of

the TSVM optimization problem. Similarly, Bennett and Demiriz (1999) consider

standard mixed-integer programming software like CPLEX to solve a variant of

6.5 Solving the TSVM Optimization Problem 115

the TSVM optimization problem. To be able to use such software, they replace

the term w · w = ‖w‖2
2 in the objective with ‖w‖1 so that the objective becomes

linear. However, while both approaches produce globally optimal solutions, they

can solve only small problems with less than 100 test examples in reasonable time.

Unfortunately, figure 6.5 suggests that the biggest benefits of transductive learning

occur only for larger test sets.

The algorithm implemented in SVMlight does not necessarily produce a globallySVMlight

optimal solution, but can handle test sets with up to 100,000 examples in reasonable

time (Joachims, 1999, 2002). Most of the empirical results in the previous section

were produced using this algorithm. The algorithm performs a kind of coordinate-

descent local search starting from an initial labeling of the test examples derived

from an inductive SVM. The ratio of test examples that are classified as positive

(by adjusting the hyperplane threshold b) in this initial labeling is specified by the

user or estimated from the ratio of positive to negative examples in the training set.

This ratio is maintained throughout the optimization process to avoid degenerate

solutions that assign all test examples to the same class.2 In every step of the

local search, the algorithm selects two examples (one positive and one negative)

and swaps their labels. The way the examples are selected guarantees a strict

improvement of the objective function (i.e., the soft margin) in every such step.

In addition, the algorithm starts with a small value of C∗ and raises it throughout

the optimization process. This means that most ξ∗ are non-zero in the initial phase

of the search, resulting in a smoother objective function. Toward the end of the

search, incrementally increasing the value of C∗ toward the desired target value

makes the problem closer to the desired objective. A more detailed explanation of

the algorithm is given in (Joachims, 2002).

A related block coordinate descent method was proposed by Demiriz and Bennettgradient descent

(2000). The algorithm also alternates between changing the labels of the test exam-

ples and recomputing the margin. Differences compared to the SVMlightalgorithm

lie in the selection of the labels to change, the number of labels that are changed

in each iteration, and in the heuristics that are aimed to avoid local optima. A

similar algorithm for the L1-norm variant of the TSVM is described by Fung and

Mangasarian (2001).

De Bie and Cristianini (2004a) explore a convex approximation of the TSVMsemi-definite

relaxation optimization problem (also see chapter 7). They present a relaxation that takes the

form of a semi-definite program. While this program can be solved in polynomial

time, it becomes too inefficient for test sets with more than 100 examples. However,

assuming a low-rank structure of the test labels derived from a spectral decomposi-

tion technique, De Bie and Cristianini push the efficieny limit to several thousands

of test examples.

2. In text classification, assigning all test examples to the same class typically gives larger
margins than any other labeling. Clearly, this is an undesirable solution and indicates
a problem with the TSVM approach. A method that does not exhibit this problem is
presented in Joachims (2003).

116 Transductive Support Vector Machines

6.6 Connection to Related Approaches

The difficulty in solving the TSVM optimization problem has led to much interestgraph cuts

in other formulations of transductive learning algorithms. The goal is to exploit the

same type of relationship between the geometry of the test examples — or unlabeled

examples more generally — and their labels, but that have computationally more

convenient properties. Graph partitioning approaches based on st-min-cuts (Blum

and Chawla, 2001) and spectral graph partitioning explicitly or implicitly pursued

this goal (Belkin and Niyogi, 2002; Chapelle et al., 2003; Joachims, 2003; Zhu

et al., 2003b) (see also chapters 11, 12, 13, 14, and 15). For example, the method

in (Joachims, 2003) is explicitly derived analogous to a TSVM as a transductive

version of the k-nearest neighbor classifier.

Ridge regression is a method closely related to regression SVMs. Chapelle et al.ridge regression

(1999) derive a tranductive variant of ridge regression. Since the class labels do

not need to be discrete for regression problems, they show that the solution of the

associated optimization problem can be computed efficiently.

Co-training (Blum and Mitchell, 1998) exploits two redundant representations ofco-training

a learning problem for semi-supervised learning. A connection to general trans-

ductive learning comes from the insight that co-training produces transductive

learning problems that have large margin (Joachims, 2003, 2002). In fact, TSVMs

and spectral partitioning methods appear to perform well on co-training problems

(Joachims, 2003).

Connecting to concepts of algorithmic randomness, Gammerman et al. (1998),confidence

estimation Vovk et al. (1999), and Saunders et al. (1999) presented approaches to estimating

the confidence of a prediction based on a transductive setting. A similar goal using

a Bayesian approach is pursued by Graepel et al. (2000). Since their primary aim

is not a reduced error rate in general, but a measure of confidence for a particular

prediction, they consider only test sets with exactly one example.

6.7 Summary and Conclusions

Transductive support vector machines exploit the geometric (cluster) structure in

the feature vectors of the test examples, which makes them a particular kind of

semi-supervised learning method. In particular, TSVMs find the labeling of the

test examples that maximizes margin jointly on the training and the test data.

Intuitively, this produces labeling of the test examples so that class boundaries

follow cluster boundaries. Empirical findings suggest that TSVMs are particularly

well suited for text classification and several other (typically high-dimensional)

learning problems, often showing large accuracy gains for small training sets and

large test sets. However, on some problems the TSVM performs roughly equivalently

to an inductive SVM, or sometimes even worse. Partially, failure on some tasks may

be due to the difficulty of finding the optimum of the TSVM optimization problem.

6.7 Summary and Conclusions 117

Finding the globally optimal solution is intractable for interestingly sized test sets.

Existing algorithms resort to local search or to relaxing the optimization problem.

More work is needed on tractable formulations and algorithms for transductive

learning, as well as a deeper theoretical and empirical understanding of its potential.

7 Semi-Supervised Learning Using Semi-

Definite Programming

Tijl De Bie tijl.debie@gmail.com

Nello Cristianini nello@support-vector.net

We discuss the problem of support vector machine (SVM) transduction, which is a

combinatorial problem with exponential computational complexity in the number

of unlabeled samples. Different approaches to such combinatorial problems exist,

among which are exact integer programming approaches (only feasible for very small

sample sizes, e.g. (Bennett and Demiriz, 1999)) and local search heuristics starting

from a suitably chosen start value such as the approach explained in chapter 6,

transductive support vector machines, and introduced in (Joachims, 1999) (scalable

to large problem sizes, but sensitive to local optima).

In this chapter, we discuss an alternative approach introduced in (De Bie and

Cristianini, 2004a), which is based on a convex relaxation of the optimization

problem associated with support vector machine transduction. The result is a semi-

definite programming (SDP) problem which can be optimized in polynomial time,

the solution of which is an approximation of the optimal labeling as well as a bound

on the true optimum of the original transduction objective function. To further

decrease the computational complexity, we propose an approximation that allows

solving transduction problems of up to 1000 unlabeled samples.

Lastly, we extend the formulation to more general settings of semi-supervised

learning, where equivalence and inequivalence constraints are given on labels of

some of the samples.

7.1 Relaxing SVM Transduction

In transduction problems, we are provided with a set of labeled data points (training

set), as well as a set of unlabeled data points (test set). Our interest is to find

suitable labels for the second set, with no immediate ambition to make predictions

120 Semi-Supervised Learning Using Semi-Definite Programming

for yet unseen data points that may become available later on. The way the SVM

transduction problems handle this is by finding those test set labels for which, after

training an SVM on the combined training and test set, the margin on the full data

set is maximal. This involves optimizing over all labelings of the test set an integer

programming problem with exponential cost.

Primal Let us recall the primal soft-margin SVM problem (see e.g. (Cristianini

and Shawe-Taylor, 2000) and (Shawe-Taylor and Cristianini, 2004) for an introduc-

tion to SVMs and kernel methods):

minξi,w
1

2
wT w + C

l∑

i=1

ξi

s.t. yiw
T xi ≥ 1 − ξi

ξi ≥ 0.

We omitted the bias term here, as we will do throughout the entire chapter. This is

not a problem, as argued in (Poggio et al., 2001). Only the labeled data points are

involved in this optimization problem. Then, the transductive SVM can be written

asprimal

transductive

SVM formulation minξi,w,Yu

1

2
wT w + C

n∑

i=1

ξi

s.t. yiw
T xi ≥ 1 − ξi

ξi ≥ 0

Yu ∈ {−1, 1}u, (7.1)

where we used the notation Yu = (yl+1, . . . yn) for the set of test set labels, a column

vector containing the labels for the test points, and n = l + u for the total number

of training and test points. It is the combinatorial constraint 7.1 that makes this

optimization problem very hard to solve exactly.

Dual Very often it is more interesting to focus on the dual problem, as it

allows us to use the kernel trick for nonlinear classification and for classification

of nonvectorial data. The standard soft-margin SVM problem is given by

maxαl
2αT

l 1− αT
l (Kl ⊙ YlY

T
l)αl

s.t. C ≥ αi ≥ 0,

where αl = (α1, . . . αl) is a column vector of dual variables αi, and Kl is the kernel

matrix for the training set. With ⊙, the element-wise matrix product is meant.

The optimum of this optimization problem is equal to the inverse square of the

margin (plus an additional cost term in the soft margin formulation). Hence, since

we want to maximize the margin, the dual formulation of the transductive SVM

can be written asdual transductive

SVM formulation

7.1 Relaxing SVM Transduction 121

minY maxα 2αT 1− αT (K ⊙ Y Y T)α

s.t. C ≥ αi ≥ 0

Y =

(
Yl

Yu

)

Yu ∈ {−1, 1}u.

Here, α = (α1, . . . , αl, αl+1, . . . αn) is a vector containing the dual variables for

both the training and the test set, K is the complete kernel matrix, and Y is the

complete label vector. Without loss of generality, we assume that the first l rows

and columns of K correspond to training points, the last u to test points. Again, it

is the same combinatorial constraint that makes finding an exact solution infeasible

for reasonably sized problems.

Without affecting the solution, we slightly reformulate the optimization problem

by introducing the matrix variable Γ = Y Y T which we will refer to as the label

matrix. The dual formulation then becomeslabel matrix Γ

minΓ maxα 2αT 1− αT (K ⊙ Γ)α

s.t. C ≥ αi ≥ 0

Γ = Y Y T =

(
YlY

T
l YlY

T
u

YuY T
l YuY T

u

)
(7.2)

Yu ∈ {−1, 1}u. (7.3)

All constraints are now linear (matrix) inequalities, and the objective is linear in Γ

and concave in α. However, the problem is still an integer program due to constraint

7.3 and hence the overall problem is not convex.

7.1.1 Relaxation to an SDP Problem

We will write the label matrix Γ as a block matrix using the notation

Γ =

(
Γll Γlu

Γul Γuu

)
=

(
YlY

T
l YlY

T
u

YuY T
l YuY T

u

)
.

Symmetry constraints such as Γuu = ΓT
uu and Γlu = ΓT

ul are understood and we will

never mention them explicitly. Now, observe that any matrix of rank 1 with ones

on the diagonal can be written as an outer product of a vector with itself where

this vector only contains 1 and −1 as its elements. Thus, the following proposition

holds:

Proposition 7.1 We can reformulate the constraints (7.2) and (7.3) by the equiv-

122 Semi-Supervised Learning Using Semi-Definite Programming

alent set of constraints:

diag (Γ) = 1

rank (Γ) = 1

Γ =

(
YlY

T
l Γlu

Γul Γuu

)
.

These constraints are linear in the parameters, except for the rank constraint, which

is clearly nonconvex (indeed, a convex combination of two matrices of rank 1 will

generally be of rank 2). To deal with this problem, in this chapter we propose to

relax the constraint set by extending the feasible region to a convex set over which

optimization can be accomplished in a reasonable computation time. To retain a

good performance, it should not be much larger than the nonconvex set specified

by the constraints above.

Note that the constraints imply that the matrix Γ is positive semi-definite (PSD).

So, we can add Γ � 0 as an additional constraint without modifying the problem.

The relaxation then consists in simply dropping the rank constraint.1 The resulting

relaxed optimization problem is

minΓ maxα 2αT 1− αT (K ⊙ Γ)α

s.t. C ≥ αi ≥ 0

diag (Γ) = 1

Γ � 0

Γ =

(
YlY

T
l Γlu

Γul Γuu

)
.

Of course, the rank of the resulting optimal matrix Γ will not necessarily be equal

to 1 anymore, and its entries not equal to 1 and −1. However, we can see that each

entry of Γ will still lie in the interval [−1, 1]. Indeed, since all principal submatrices

of a PSD matrix have to be PSD as well, every 2× 2 principal submatrix has to be

PSD, which for a matrix containing ones on its diagonal can only be achieved for

off-diagonal elements in [−1, 1]. Furthermore:

1. Ideally, we should relax the constraints so as to extend the feasible region to just the
convex hull of the constraints, which is the smallest convex set containing the feasible
region of the original problem. For a label matrix Y Y T with Y ∈ {−1, 1}n, this convex
hull is referred to as the cut polytope. However, no efficient description of the cut polytope is
known. Hence, one has to resort to convex relaxations of the cut polytope itself, such as the
elliptope, which is essentially the relaxation used in this chapter. Other relaxations of the
cut polytope are known (such as the metric polytope), and they can be used alternatively
or in addition. Tighter relaxations tend to be computationally more challenging, though,
and for brevity we will not consider these here. For more information we refer the reader
to (Helmberg, 2000; Anjos, 2001).

7.1 Relaxing SVM Transduction 123

Theorem 7.2 The above optimization problem is convex. More specifically, it is an

SDP problem.

Proof By introducing the notation

f(Γ) = maxα 2αT 1− αT (K ⊙ Γ)α

s.t. C ≥ αi ≥ 0,

we can rewrite this optimization problem as

minΓ f(Γ)

s.t. diag (Γ) = 1

Γ � 0

Γ =

(
YlY

T
l Γlu

Γul Γuu

)
.

Let us first concentrate on f(Γ). For a given Γ � 0, the objective is concave and

the constraints are all linear, i.e., we have a convex optimization problem. One can

easily verify Slater’s constraint qualification (the existence of a strictly feasible point

in the constraint set, see e.g. (Anjos, 2001)), showing that strong duality holds. Let

us now write the dual optimization problem by using Lagrange multipliers 2µ ≥ 0

and 2ν ≥ 0 for the inequality constraints C ≥ αi and αi ≥ 0 respectively (the

factor 2 in front of µ and ν is used for notational convenience). By invoking strong

duality, which states that the dual optimum is equal to the primal optimum, we

can now write f(Γ) as

f(Γ) = minµ,ν maxα 2αT (1− µ + ν) − αT (K ⊙ Γ)α + 2CµT 1

s.t. µ ≥ 0

ν ≥ 0.

We note in passing that the optimal value for 1 − µ + ν will be orthogonal

to the null space of K ⊙ Γ, since otherwise the solution could grow to infinity

by increasing the component of α along this null space. Now, the maximization

with respect to α can be carried out explicitly: the optimum is reached for

α = (K ⊙Γ)†(1−µ+ν)+α0, where α0 is a term in the null space of K ⊙Γ. Here
† is used to denote the Moore-Penrose inverse. Plugging this in gives

f(Γ) = minµ,ν (1 − µ + ν)T (K ⊙ Γ)†(1 − µ + ν) + 2CµT 1

s.t. µ ≥ 0

ν ≥ 0.

124 Semi-Supervised Learning Using Semi-Definite Programming

Note that α0 has vanished. After introducing an additional variable t,

f(Γ) = minµ,ν,t t

s.t. µ ≥ 0

ν ≥ 0

t ≥ (1 − µ + ν)T (K ⊙ Γ)†(1− µ + ν) + 2CµT 1.

Using the extended Schur complement lemma (see appendix), we can rewrite the

latter constraint as

(
K ⊙ Γ (1 − µ + ν)

(1 − µ + ν)T t − 2CµT 1

)
� 0,

which is a PSD constraint on a matrix that is a linear function of the variables. We

can thus rewrite the entire optimization problem as a linear optimization problem

subject to linear (matrix) inequalities:

minΓ,µ,ν,t t (7.4)

s.t. µ ≥ 0

ν ≥ 0

diag (Γ) = 1

Γ � 0(
K ⊙ Γ (1− µ + ν)

(1− µ + ν)T t − 2CµT 1

)
� 0

Γ =

(
YlY

T
l Γlu

Γul Γuu

)
. (7.5)

This is a convex optimization problem that is solvable in polynomial time (see e.g.

(Nesterov and Nemirovsky, 1994; Vandenberghe and Boyd, 1996)).

7.1.2 Some Simplifications

We can simplify the problem using the following two propositions:

Proposition 7.3 The optimal value for Γ will be of the form

Γ =

(
YlY

T
l Ylγ

T
u

γuY T
l Γuu

)
.

Proof From the extended Schur complement lemma it follows that the column

space of Γlu should be orthogonal to the null space of YlY
T
l . This can only be if

Γlu = Ylγ
T
u for some vector γu.

7.1 Relaxing SVM Transduction 125

Proposition 7.4 The constraint Γ � 0 is equivalent with

(
1 γT

u

γu Γuu

)
� 0.

Proof We use the fact that a principal submatrix of a PSD matrix is PSD as well

(Horn and Johnson, 1985). By taking a principal submatrix of Γ containing exactly

one row and the corresponding column among the first l, and all of the last u rows

and columns, we can see that Γ � 0 implies

(
1 γT

u

γu Γuu

)
� 0. On the other hand,

from

(
1 γT

u

γu Γuu

)
� 0 we get

(
Yl 0

0 I

)(
1 γT

u

γu Γuu

)(
Yl 0

0 I

)T

=

(
YlY

T
l Ylγ

T
u

γuY T
l Γuu

)
= Γ � 0.

Thus, the final formulation of the relaxed SVM transduction problem is given by

minΓuu,γu,µ,ν,t t

s.t. µ ≥ 0

ν ≥ 0

diag (Γuu) = 1(
1 γT

u

γu Γuu

)
� 0

⎛
⎜⎜⎝

K ⊙
(

YlY
T
l Ylγ

T
u

γuY T
l Γuu

)
(1 − µ + ν)

(1 − µ + ν)T t − 2CµT 1

⎞
⎟⎟⎠ � 0.

Here we would like to point out that the equality constraint on the diagonal

can also be turned into an inequality constraint without affecting the solution:

diag (Γuu) ≤ 1. Indeed, if the diagonal were lower than 1, we could simply increase

it without affecting the constraints or increasing the objective. We will use this fact

later in this chapter.

Computational Complexity The total number of variables is equal to O(l +

u2), the number of linear inequality constraints being O(l + u), and we have an

SDP constraint of size O(l + u) and one of size O(u). This implies a worst-case

computational complexity of O
(
(l + u2)2(l + u)2.5

)
(see (Vandenberghe and Boyd,

1996) for a computational study of SDP problems).

7.1.3 Estimation of the Label Vector

As noted earlier, the optimal value for Γ may have a rank different from 1. So it

does not provide us with a direct estimate for the label vector Yu. However, the

126 Semi-Supervised Learning Using Semi-Definite Programming

previous section gives us a hint of what a suitable estimate for it can be: it is given

by simply one of the columns of Γ corresponding to a positively labeled training

point. In other words, we propose to take the (thresholded) vector γu as an estimate

for the optimal test label vector.

Other approaches are possible, such as taking the dominant eigenvector of Γ,

or using a randomized approach. For more information on such methods, see

(Helmberg, 2000).

7.1.4 A Bound on the Performance of the Transductive SVM

The minimum of a relaxed minimization problem is always smaller than the

minimum of the unrelaxed problem. Therefore, our method immediately provides

a lower bound on the squared inverse margin (plus a cost term for the soft-margin

formulation), and hence an upper bound on the (soft) margin that can be achieved.

On the other hand, the (soft) margin of the SVM trained on the training and test

set with estimated test labels provides us with a lower bound. If both bounds are

close to each other, we can be confident that the global optimum has been found.

7.2 An Approximation for Speedup

In most practical cases, the computational complexity of this relaxation is still too

high. In this section we present an approximation technique that will allow for a

considerable speedup of the method at the cost of a reasonable performance loss.

It is notable that this technique may have wider applicability to speed up convex

relaxations of combinatorial problems, such as for the max-cut problem (see e.g.

(Helmberg, 2000)).

7.2.1 The Subspace Trick

Let us assume for a moment that we can come up with a d-dimensional subspace

of R
n that contains the optimal label vector Y . We represent this subspace by

the columns of the matrix V ∈ R
n×d which form a basis for it. Then the optimal

label matrix Γ = Y Y T can be represented as Γ = VMVT , with M ∈ R
d×d, a

symmetric matrix of rank 1. Our relaxation of the rank constraint on Γ to an

SDP constraint then translates in an analogous relaxation on M. The resulting

optimization problem can be obtained by simply replacing all occurrences of Γ

with VMVT in Eqs. 7.4 and 7.5 and optimizing over M instead of over Γ:

7.2 An Approximation for Speedup 127

minM,µ,ν,t t

s.t. µ ≥ 0

ν ≥ 0

diag
(
VMVT

)
= 1

M � 0(
K ⊙

(
VMVT

)
(1 − µ + ν)

(1 − µ + ν)T t − 2CµT 1

)
� 0.

7.2.2 Finding a Subspace Close to the Label Vector

In practice, it seems impossible to come up with exactly such a subspace V.

However, there are several techniques to approximate it, which are based on fast

eigenvalue problems (De Bie et al., 2004; Kamvar et al., 2003; Joachims, 2003). Here

we choose to use the method proposed in (De Bie et al., 2004), which is based on a

spectral relaxation of the normalized graph cut cost function (see e.g. (De Bie et al.,

2005) for an introduction to spectral clustering and other eigenvalue problems in

pattern recognition). Let us first briefly recapitulate the basic spectral clustering

method (without label constraints). Subsequently we will show how it is possible

to constrain the result to satisfy the training label information.

The basic spectral clustering problem is solved by the following generalized

eigenvalue problem:

(diag (K1) − K)v = λdiag (K1)v,

and the generalized eigenvectors belonging to the small eigenvalues capture the

cluster structure in the data (which means that a label vector corresponding to

a good clustering of the data is likely to be close to the space spanned by these

generalized eigenvectors).

In order to ensure that the given training label information is respected by this

solution, additional constraints should be imposed on v. This can be achieved

constructively by making use what we call the label constraint matrix L, defined

by

L =

⎛
⎜⎜⎝

1l+ 1l+ 0

1l− −1l− 0

1u 0 I

⎞
⎟⎟⎠ ,

where 1l+ and 1l− are vectors containing as many ones as there are positively and,

respectively, negatively, labeled training points, and 1u contains u ones. Using L,

we can constrain v to respect the training label information by parameterizing it

128 Semi-Supervised Learning Using Semi-Definite Programming

as v = Lz. Then the generalized eigenvalue problem to be solved is

L′((diag (K1) − K)Lz = λL′diag (K1)Lz, (7.6)

and the corresponding constrained solution is v = Lz. For more details about this

method we encourage the reader to consult (De Bie et al., 2004).

A good subspace to which the label vector is likely to be close is then spanned

by the vectors vi = Lzi with zi the generalized eigenvectors of (7.6) corresponding

to the d smallest eigenvalues (except for the one equal to zero). Hence, we can

construct a good matrix V by stacking these vi next to each other.

We are interested in solutions Γ = VMVT for which oppositely labeled training

points xi and xj have entries Γ(i, j) = Γ(j, i) = −Γ(i, i) = −Γ(j, j) in the

label matrix Γ. This could be ensured by imposing additional constraints on

our optimization problem. However, it is easy to see that it can be ensured

constructively as well, by ignoring the contribution of the constant column in L to

vi, the ith column of V (i.e., by equating the first entry of zi to 0 before computing

vi as vi = Lzi.

The constraint on the diagonal diag (Γ) = 1 will in general be infeasible when

using the subspace trick. However, as noted above, we can turn it into an inequality

constraint diag (Γ) ≤ 1 without fundamentally changing the problem. In fact, if the

dimensionality d (i.e., the number of columns) of V were equal to u, there would be

no difference between the optimal solutions obtained with or without the subspace

approximation, as then the entire feasible region of Γ is the same. The diagonal

would then be equal to 1, even if only an inequality constraint is specified.

Computational Complexity The number of constraints remains roughly the

same as in the unapproximated optimization problem. However, we potentially gain

a lot in terms of number of free variables, which is now O(d2 + n). Therefore, for

fixed d, the worst-case computational complexity is O(n4.5). The actual value for d

can be chosen as large as can be handled by the available computational resources.

7.3 General Semi-Supervised Learning Settings

Thus far we have discussed the transductive setting, which is just one of the semi-

supervised learning tasks described in chapter 1. We will briefly point out, however,

how the technology in this chapter can straightforwardly be extended to deal with

more general settings.

7.3.1 Equivalence and Inequivalence Label Constraints

As in (De Bie et al., 2004) and in chapter 5 of this book, we are able to handle

more general semi-supervised learning settings (see also (De Bie et al., 2003) and

7.4 Empirical Results 129

(Shental et al., 2004) where similar constraints are exploited for doing dimension-

ality reduction and in computing a Gaussian mixture model respectively). Imagine

the situation where we are given grouplets of points for which a label vector Yi is

specified. If we allow such grouplets to contain only one data point, we can assume

without loss of generality that each point belongs to exactly one grouplet. The label

vector Yi indicates which points within the grouplet are given to be in the same

class (an equivalence constraint), namely those with the same entry 1 or −1 in Yi,

and which ones are given to belong to opposite classes (when their entry in Yi is

different, an inequivalence constraint). In between different grouplets no informa-equivalence and

inequivalence

constraints

tion is given. This means that the overall sign of such a grouplet label vector Yi is

arbitrary.

Then, using similar techniques as we used above, one can show that the label

matrix Γ should be a block matrix, with the diagonal blocks equal to YiY
T
i , and

the off-diagonal blocks (i, j) equal to γi,jYjY
T
i :

Γ =

⎛
⎜⎜⎜⎜⎜⎝

Y1Y
T
1 γ1,2Y1Y

T
2 · · · γ1,kY1Y

T
k

γ2,1Y2Y
T
1 Y2Y

T
2 · · · γ2,kY2Y

T
k

...
...

. . .
...

γk,1YkY T
1 γk,2YkY T

2 · · · YkY T
k

⎞
⎟⎟⎟⎟⎟⎠

.

where γi,j = γj,i are the variables over which we have to optimize. Clearly, the label

matrix as in the transduction scenario explained at the beginning of this chapter

is a special case thereof. Now we can also see that the sign of the label vectors Yi

is irrelevant: upon changing the sign of Yi; the optimal solution will simply change

accordingly by reversing the signs of γi,j and γj,i for all j.

We want to point out that this method makes it possible to tackle the transductive

SVM problem in a hierarchical way. First one can perform a crude clustering of the

data points into many small clusters (grouplets) that respect the training data.

Then, at a second stage, the semi-supervised SVM approach outlined above can be

employed. This may greatly reduce the computational cost of the overall algorithm.

7.3.2 The Subspace Trick

Also here the subspace trick can be applied in a very analogous way. Again we can

rely on the method described in (De Bie et al., 2004), which is also able to deal

with equivalence and inequivalence constraints.

7.4 Empirical Results

For all implementations we used SeDuMi, a general purpose primal-dual interior

point solver (Sturm, 1999) for Matlab. We only used the hard-margin SVM ver-

130 Semi-Supervised Learning Using Semi-Definite Programming

sions, which are obtained from the soft-margin formulations by equating µ to 0.

Comparisons with SVMlight (Joachims, 1999) are reported, with default parameter

settings.

7.4.1 The Basic SDP Relaxation

The kernel used in all experiments in this subection is the radial basis function

(RBF) kernel, and the width is set to the average over all data points of the distance

to their closest neighbor. Figure 7.1 shows an artificially constructed example of a

transduction problem solved by the basic SDP relaxation of the transductive SVM.

Only two data points were labeled, one for each of both classes. Clearly, a standard

inductive SVM would fail in this extreme case.

Furthermore, the transductive optimum is so far from the inductive optimum

that a greedy strategy such as SVMlight is bound to get stuck in a local optimum.

Indeed, the norm of the SVM weight vector at the optimal labeling found by the

SDP relaxation is 5.7, and for the SVMlight local optimum it is 7.3. Thus, the

labeling found by the SDP relaxation achieves a larger margin.2 Furthermore, it is

notable that the optimum of the relaxed optimization problem is 35.318608 while

the (inductive) SVM optimum when using the predicted labels for the unlabeled

data points is only slightly larger: 35.318613. This indicates that most likely the

optimal labeling has been found, since the optimal labeling of the SVM optimum

has to lie between these values (see section 7.1.4).

In figure 7.2 we show another artificial example, where the data seem to consist

of five clusters. We labeled six samples, at least one in each of the clusters. Both

the SDP relaxation and SVMlight clearly succeed in assigning the same label to

all data points that are within the same cluster, and consistent with the training

label in that cluster. Figure 7.3 shows the same data set with a different labeling

of the training points. The transductive optimum found by the SDP relaxation is

slightly imbalanced: 38 data points in one class, and 42 in the other. For this reason

SVMlight seems to classify two data points differently, as, by default, it tries to find

a solution with the same proportion of positively versus negatively labeled test

points as in the training set. The norm of the SVM weight vector for the optimal

labeling as found by the SDP relaxation is equal to 5.92, which is slightly smaller

than 5.96, the weight vector norm for the SVMlight solution. Hence also here the

SDP approach achieves a larger margin.

Again, in both cases the lower bound provided by the optimum of the SDP

relaxation supports the conclusion that the optimal labeling has been found. For

the first problem, the optimum of the SDP relaxation is 35.338, while the SVM

optimum for the predicted labels is 35.341. For the second problem, those optima

2. There is a catch in the comparison of both optima: the SDP method does not use an
offset parameter b, whereas SVMlight does include such an offset. The numbers reported
are the weight vector norms when including an offset, hence favoring SVMlight.

7.4 Empirical Results 131

1 0. 5 0 0.5 1
1

0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

0.8

1

1 0. 5 0 0.5 1
1

0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

0.8

1

Figure 7.1 The result of the basic SDP relaxation (left) and of SVMlight (right) on an
artificially constructed transduction problem. The ’o’ and ’x’ signs represent the negatively
and positively labeled training points. The other data points are labeled by the algorithms.
The contour lines are drawn for the SVM as trained on the complete set of data points
with labels as determined by the transduction algorithms. The SDP relaxation yields the
desired result, while apparently SVMlight got stuck in a local optimum.

are 32.3934 and 32.3937 respectively.

7.4.2 The Subspace Approximation

We conducted a few experiments on the constitution data set used in (De Bie and

Cristianini, 2004c). This data set contains 780 articles, an equal number in German,

French, Italian, and English, that are translations of each other. Furthermore, the

articles are organized in so-called Titles. In our experiments, we solved two different

problems: one is the classification of English + French texts versus Italian + English

texts, and the other is the classification of the largest Title (roughly containing half

of all articles) versus the smaller Titles. We tested the SDP relaxation as well as

SVMlight on both problems for different training set sizes, and plot the results in

figure 7.4. The kernel used is the normalized bag of words kernel, and d = 4.

Apparently, SVMlight outperforms the approximated SDP relaxation on the

difficult problem of classifying articles according to the Title they belong to. This

is most likely due to the fact that the four-dimensional subspace is too small to

capture the fine cluster structure due to the different Titles. Only a subspace

dimensionality d larger than four would solve the problem. However, even though

the computational cost is polynomial in d, this quickly becomes computationally

demanding.

On the other hand, the approximated SDP relaxation outperforms an already

good performance of SVMlight for the easier problem, indicating that here the

spectral transduction method finds a subspace sufficiently close to the correct label

vector.

132 Semi-Supervised Learning Using Semi-Definite Programming

1 0. 5 0 0.5 1
1

0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

0.8

1

1 0. 5 0 0.5 1
1

0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

0.8

1

Figure 7.2 The result of the basic SDP relaxation on an artificially constructed trans-
duction problem (left), and the result of SVMlight (right). Here we organized the data
points in a few small clusters. In each of the clusters, one or two samples are labeled (in
total there are six training points). For both methods, the training label determines the
test labels of all data points within the cluster, as is desirable in most applications.

1 0. 5 0 0.5 1
1

0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

0.8

1

1 0. 5 0 0.5 1
1

0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

0.8

1

Figure 7.3 SDP transduction (left) and SVMlight (right) are applied to the same data
set as in figure 7.2, now with a different labeling of the training points. If we label the
data points according to the labeled point in the cluster they (visually) belong to, this
transduction problem is slightly unbalanced: one class of 38 points, the other of 42 points.
Since SVMlight fixes the fraction of positively and negatively labeled data points to their
fraction in the training set (by default), two data points are split off the cluster left above
to satisfy this constraint.

7.5 Summary and Outlook 133

0 0.2 0.4 0.6 0.8 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 7.4 The receiver operating characteristics (ROC) score evaluated on the test
set, as a function of the size of the training set for both classification problems. The
bold lines are for the easy classification problem classifying languages, and the faint
lines are for the harder classification problem classifying articles according to their
“Title”. The performance of the approximated SDP relaxation is shown in solid lines,
the SVMlight performance in dotted lines. Bars indicate the standard deviation over three
randomizations.

7.5 Summary and Outlook

In this chapter we have presented an alternative approach to the transductive SVM

as a combinatorial problem. Whereas early approaches to transduction are based on

learning a suitable metric (Cristianini et al., 2002b,a), and other methods tackled

the problem using exact integer programming approaches (Bennett and Demiriz,

1999) (with very limited scalability) or using a local search heuristic (Joachims,

1999), our approach consists of a relaxation of the combinatorial problem to a

convex optimization problem. More specifically, the resulting optimization problem

is an SDP, which can be solved in a worst-case polynomial time. The application

of SDP and other convex optimization techniques seems a very promising line of

current research in machine learning (see e.g. also (Lanckriet et al., 2004b,a)).

While the empirical results for the relaxation are generally better than with

SVMlight, unfortunately the scalability is still limited. To solve this problem, we

introduced an approximation technique of general applicability in relaxations of

combinatorial problems. The performance of this approximation strongly depends

on the quality of the approximation, and mixed empirical results in comparison

with SVMlight are reported.

Future work includes investigating whether the problem structure can be ex-

ploited to speed up the optimization problem. An important theoretical question

134 Semi-Supervised Learning Using Semi-Definite Programming

that remains unanswered is whether the relaxation allows finding a solution with a

margin that is provably within a fixed constant factor of the unrelaxed optimum.

As we pointed out, the relaxation does provide us with an interval within which

the true optimal solution must lie. However, the size of this interval is not known

a priori as is the case for, e.g., the relaxation of the max-cut problem (see e.g.

(Helmberg, 2000)). Lastly, it would be interesting to investigate theoretically what

the influence is of the subspace approximation on the optimum.

Appendix: The Extended Schur Complement Lemma

We state the Schur complement lemma without proof (see e.g. (Helmberg, 2000)):

Lemma 7.5 (Schur complement lemma) For symmetric matrices A ≻ 0 and

C � 0:

C � BT A−1B ⇔
(

A B

BT C

)
� 0.

When the matrix A may be rank deficient, the following extended Schur comple-

ment lemma should be used. It is a generalization of the standard Schur complement

lemma. We provide it here with a proof:Extended Schur

complement

lemma Lemma 7.6 (Extended Schur complement lemma) For symmetric matrices

A � 0 and C � 0:

The column space of B ⊥ the null space of A

C � BT A†B

}
⇔

(
A B

BT C

)
� 0.

Proof We write the singular value decomposition (SVD) of A as

A =
(

V V0

)(Λ 0

0 0

)(
V V0

)T

= VΛVT ,

where V0 denotes the singular vectors for the null space of A, V the other singular

vectors, and Λ is a diagonal matrix containing the non-zero singular values of A,

i.e. Λ ≻ 0. The blocks are assumed to be compatible. Similarly, we write the SVD

of C as

C =
(

W W0

)(∆ 0

0 0

)(
W W0

)T

= W∆WT .

(⇒) If the column space of B ⊥ V0, we can write B as B = VBV for some

matrix BV. Then also BT A†B = BT
VΛ−1BV. So, from C � BT A†B = BT

VΛ−1BV

and from Λ ≻ 0 and C � 0, it follows from the Schur complement lemma that

7.5 Summary and Outlook 135

(
Λ BV

BT
V C

)
� 0. Left multiplication of both sides of this inequality with

(
V 0

0 I

)
and on the right with its transpose, yields

(
A B

BT C

)
� 0.

(⇐) We will prove the orthogonality of the column space of B with the null space

of A by contradiction. So, assume that the column space of B is not orthogonal to

the null space V0 of A. Then, there exists a vector v0 in the span of V0 for which

BT v0 = b
= 0. Now, we have that

(
A B

BT C

)
=

(
VΛV B

BT C

)
� 0. Thus, for

any vector w, multiplying this matrix with

(
v0

w

)
on the right and on the left with

its transpose must result in a non-negative number: 2bT w + wT Cw ≥ 0. However,

plugging in w = −C†b−W0W
T
0 b yields 2bT w+wT Cw = −2bTW0W

T
0 b−bT C†b <

0, and thus we reached a contradiction. So we have established that the column

space of B is orthogonal to the span of V0.

This means that we can write B as B = VBV for some particular BV, and

(
A B

BT C

)
=

(
VΛVT VBV

BT
VVT C

)
=

(
V 0

0 I

)(
Λ BV

BT
V C

)(
V 0

0 I

)T

,

so that:
(

A B

BT C

)
� 0 ⇒

(
Λ BV

BT
V C

)
� 0.

Since Λ ≻ 0 and C � 0 we can invoke the Schur complement lemma, which

gives C � BT
VΛ−1BV � 0. However from the orthonormality of singular vectors

VT V = I, and thus BT
VΛ−1BV = BT

VVT VΛ−1VT VBV = BT A†B, meaning that

BT A†B � 0.

8 Gaussian Processes and the Null-Category

Noise Model

Neil D. Lawrence neil@dcs.shef.ac.uk

Michael I. Jordan jordan@cs.berkeley.edu

Gaussian process classifiers (GPCs) aim to predict the posterior probability of

the class label yi given a covariate vector xi. Under the standard assumptions

generally invoked by GPC practitioners, this posterior probability is unaffected

by unlabeled data points, providing no role for unlabeled data. This is in marked

contrast to margin-based methods such as the support vector machine (SVM);

for these methods the unlabeled data can influence the location of the decision

boundary, causing it to pass through regions of low data density (see chapter 6). In

this chapter we present an augmentation of the standard probabilistic classification

model which incorporates a null-category. Given a suitable probabilistic model

for the model category, we obtain a probabilistic counterpart of the margin. By

combining this noise model with a GPC we obtain a classification methodology

that is simultaneously discriminative, semi-supervised, and Bayesian. Our approach

incorporates the cluster assumption without explicitly modeling the data density

and without requiring specialized kernels.

8.1 Introduction

In this chapter we consider a Bayesian formulation of the classification problem and

propose a solution to the semi-supervised learning problem within the Bayesian

framework.

Bayesian methods are naturally used in the formulation of generative ap-

proaches to classification problems. Generative approaches explicitly model the

class-conditional densities p (xi|yi = 1) and p (xi|yi = −1), combining these densi-

ties with the class prior probabilities p (yi = 1) and p (yi = −1) and using the Bayes

138 Gaussian Processes and the Null-Category Noise Model

theorem to form posterior probabilities:

p (yi = 1|xi) =
p (xi|yi = 1) p (yi = 1)∑

yi
p (xi|yi) p (yi)

.

In the semi-supervised setting in which a label yi is not observed, the corresponding

contribution to the likelihood is obtained by marginalizing over yi. This yields a

mixture density for xi, a contribution to the likelihood that is handled readily within

the Bayesian formulation as a standard missing-data problem. Thus semi-supervised

learning is easily accommodated within a generative Bayesian framework.

Generative methods have well-known limitations in terms of prediction perfor-

mance, however, and most of the recent literature on classification has been devoted

to the development of discriminative approaches. Many of the well-known exam-discriminative

classification ples of discriminative classifiers are non-Bayesian, including the support vector ma-

chine (SVM), kernelized logistic regression (KLR), and AdaBoost (Shawe-Taylor

and Cristianini, 2004). It is, however, also possible to develop discriminative clas-

sifiers within a Bayesian framework; in particular, Gaussian process classifiers are

discriminative classifiers that share with SVM and KLR the use of a kernel function

to form nonlinear discriminant boundaries in the input space (O’Hagan, 1992).

Bayesian approaches to discriminative classification focus on modeling the pos-

terior probability p (yi|xi). Naively, it would seem that semi-supervised learning is

simply not accommodated within any such approach—marginalizing over yi yields

a constant contribution to the likelihood, thus providing no information regarding

the parameters. Non-Bayesian approaches can skirt this difficulty. In particular,

statistical inference for a non-Bayesian classifier involves the specification of a “loss

function” (e.g., a margin-based loss function) in addition to the specification of the

model, and, as shown by several of the other chapters in this book, loss functions

can be concocted to capture information coming from unlabeled data points. A

related point is that non-Bayesian approaches need not model the posterior prob-

ability, and this provides additional flexibility in the design of the loss function.

Bayesian approaches, on the other hand, start with the posterior probability and

this appears to tie the hands of the designer, making it difficult, if not impossible,

to develop discriminative, semi-supervised Bayesian learners.

In this chapter we show that it is in fact possible to solve the semi-supervised

learning problem within a discriminative, Bayesian framework. To motivate the

basic idea, let us first be more precise regarding the naive intuition referred to above

by making use of graphical model representations of Bayesian classifiers. Considergraphical model

representation first the graphical model representation of a generative classifier, shown in the left

panel of figure 8.1. In this diagram θ parameterizes the class-conditional densities.

(We have omitted a node representing the class prior probabilities.) The rectangle,

or “plate,” captures replication. In particular, the diagram captures an assumption

that the data {yi} are independent and identically distributed, conditional on

{xi} and θ. Finally, shading represents conditioning; thus the graphical model in

figure 8.1 captures the standard supervised learning setting in which the labels {yi}
are fully observed.

8.1 Introduction 139

Figure 8.1 (Left) The graphical representation of a generative model. (Right) The
graphical representation of a discriminative model.

The right panel of figure 8.1 presents a graphical representation of a discrimina-

tive classifier. In this case θ parameterizes the posterior probability (the meaning

of θ is different in the two diagrams). Again the figure captures the standard su-

pervised learning setting.

Let us now consider the semi-supervised learning problem. In semi-supervised

learning the data X are split into a subset that is labeled, Xl, and a subset

that is unlabeled, Xu. This is captured in the graphical model representations

shown in figure 8.2. Consider the model shown in the left panel for the generative

case. Using the d-separation criterion for assessing conditional independence in

graphical models (Pearl, 1988), we see that the parameter θ and the class label yj

are dependent, by virtue of the fact that their common descendant xj is observed

(shaded in the graph). This graphical motif is often referred to as a “v-structure.”

When two nodes point to a common descendant they are (necessarily) independent

only when the descendant is unobserved. This holds true both when yj is observed

and when it is not. Thus both labeled and unlabeled data points will affect the

Bayesian posterior distribution for θ.

Figure 8.2 Graphical models for semi-supervised data in the generative framework (left)
and the discriminative framework (right).

Contrast this with the situation in the discriminative model (right panel of

140 Gaussian Processes and the Null-Category Noise Model

figure 8.2). In this case the d-separation criterion shows that θ is independent of

xj for the unlabeled data. The observed value of xj will not have an effect on the

posterior distribution of θ when yj is unobserved.

In the remaining sections of this chapter we will show how the discriminative

model can be augmented to allow it to handle unlabeled data.

8.1.1 Augmenting the Model

In figure 8.2 (right panel) we saw how, in the discriminative approach, an unlabeled

data point fails to influence the posterior for θ and thus the position of the decision

boundary. This is because the unlabeled points and the parameters become d-

separated (independent from one another) when the label yj is unobserved. To

restore the dependence we need to augment the model. This can be done by

introducing an additional variable zi that is a child of yj and is always observed. As

shown in figure 8.3 this breaks the d-separation of xj and θ and allows probabilistic

dependence to flow between these variables—even when yj is unobserved.

Figure 8.3 The augmented discriminative model. Even when yj is unobserved xj is no
longer d-separated from θ because they have a common descendant which is observed.
Note that for labeled examples the parameters are d-separated from the indicator variable
zj by the observation of yj .

As a simple (and naive) example of such an augmented model, let zj be an

indicator variable that identifies whether or not the data point is labeled; i.e., zj isobservability

indicator taken to be 0 if the ith point is labeled and 1 if the point is unlabeled. Certainly zj

is itself always observed. Now by allowing the probability of a point being labeled to

depend on its label yi — i.e., by a particular specification of the model probability

p (zi|yi) — we can reintroduce the dependence of the parameters on the unlabeled

data.

Of course this simple device does not solve the semi-supervised learning problem.

Indeed, if we have no reason to believe that the probability of a data point being un-

8.2 The Noise Model 141

labeled is different in the two classes; i.e., if p (zj = 1|yj = 1) = p (zj = 1|yj = −1),

then we have p (zj) = p (zj |yj) and zj is effectively decoupled from yj, once again

d-separating θ from xj .

On the other hand, there is no need to restrict ourselves to binary indicator

variables; we can be more clever about the augmentation. The remainder of the

chapter develops the specific augmentation that we propose. As will be seen, our

proposal is similar in spirit to the transductive SVM (see chapter 6); we want to

place the decision boundary in a region of low data density. The assumption that

the interclass regions have lower data density is known as the cluster assumption

(see chapter 1). We will show how an augmented model can capture the spirit of

the cluster assumption—but without implementing an explicit density model.

8.2 The Noise Model

Our approach is based on the notion of a null-category, a class for which we never

observe any data. The null-category can be viewed as a probabilistic interpretation

of the “margin” in the SVM.1

To simplify our discussion of the null-category noise model, we first introduce

a latent process variable fi. This variable will allow us to discuss the noise model

independently of the “process model.” The latent variable allows the probability of

class membership to decompose as

p (yi|xi) =

∫
p (yi|fi) p (fi|xi) dfi,

where we refer to p (yi|fi) as the noise model and p (fi|xi) as the process model.

8.2.1 Ordered Categorical Models

The null-category noise model derives from the general class of ordered categorical

models (Agresti, 2002). In the specific context of binary classification we will

consider an ordered categorical model containing three categories:

p (yi|fi) =

⎧
⎪⎪⎨

⎪⎪⎩

φ
(
−
(
fi + a

2

))
for yi = −1

φ
(
fi + a

2

)
− φ

(
fi − a

2

)
for yi = 0

φ
(
fi − a

2

)
for yi = 1

,

where φ (x) =
∫ x

−∞ N (z|0, 1)dz is the cumulative Gaussian distribution function

and a is a parameter giving the width of category yi = 0 (see figure 8.4).

1. We are not the first to consider a probabilistic interpretation of the SVM loss function.
Sollich (1999, 2000) treats the margin in terms of a “not sure” class, but this interpretation
suffers from problems of normalization.

142 Gaussian Processes and the Null-Category Noise Model

Figure 8.4 The ordered categorical noise model. The plot shows p (yi|fi) for different
values of yi. Here we have assumed three categories.

We can also express this model in an equivalent and simpler form by replacing

the cumulative Gaussian distribution by a Heaviside step function,

H(x) =

{
0 if x < 0

1 if x > 0
,

and adding independent Gaussian noise to the process model:

p (yi|fi) =

⎧
⎪⎪⎨

⎪⎪⎩

H
(
−
(
fi + 1

2

))
for yi = −1

H
(
fi + 1

2

)
− H

(
fi − 1

2

)
for yi = 0

H
(
fi − 1

2

)
for yi = 1

,

where we have standardized the width parameter to 1, by assuming that the overall

scale is also handled by the process model.

8.2.2 The Null-Category Noise Model

As stated previously, to induce a statistical dependence between the unlabeled data

point, xi, and the parameters, θ, we can augment the model with an additional

variable zi which indicates whether the label is missing. For the null-category noise

model we also impose the constraint that

p (zi = 1|yi = 0) = 0; (8.1)

in other words, a data point cannot be from the category yi = 0 and be unlabeled.

We then parameterize the probabilities of missing labels for the other classes as

p (zi = 1|yi = 1) = γ+ and p (zi = 1|yi = −1) = γ−.

For points where the label is present the latent process is updated as usual

(because zi is d-separated from θ by yi). When the data point’s label is missing,

8.3 Process Model and Effect of the Null-Category 143

the posterior process is updated using the likelihood

p (zi = 1|fi) =
∑

yi

p (yi|fi) p (zi = 1|yi) .

By marginalizing across yi when the label is missing and otherwise using the

standard likelihood, we recover the “effective likelihood function” for a single dataeffective

likelihood

function

point, L (fi). It takes one of three forms:

L (fi) =

⎧
⎪⎪⎨

⎪⎪⎩

H
(
−
(
fi + 1

2

))
for yi = −1, zi = 0

γ−H
(
−
(
fi + 1

2

))
+ γ+H

(
fi − 1

2

)
for zi = 1

H
(
fi − 1

2

)
for yi = 1, zi = 0

.

The constraint imposed by (8.1) implies that an unlabeled data point never

comes from the class yi = 0. Since yi = 0 lies between the labeled classes this

is equivalent to a hard assumption that no data come from the region around

the decision boundary. We can also soften this hard assumption, if so desired, by

injection of noise into the process model. If we also assume that our labeled data

only come from the classes yi = 1 and yi = −1 we will never obtain any evidence

for data with yi = 0; for this reason we refer to this category as the null-category

and the overall model as a null-category noise model (NCNM).

8.3 Process Model and Effect of the Null-Category

The noise model we have described can be used within a range of optimization

frameworks. Indeed, viewing the noise model as a probabilistic interpretation of

the SVM’s margin, if we specify

fi = wTxi,

prescribe a Gaussian prior distribution for w,

p (w) = N (w|0, I) ,

and let z have a multivariate Gaussian distribution with mean m and covariance

Σ,

N (z|m, Σ) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
(z − m)

T
Σ−1 (z − m)

)
,

then the maximum a posteriori (MAP) solution for w is given by the linear SVMSVM as MAP

solution algorithm. Naturally fi can then be “kernelized” and the MAP solution for the

model becomes equivalent to the nonlinear SVM. However, in this domain the

meaning of a prior distribution over w is not entirely clear, and it is generally more

convenient to consider a process prior over fi. As is well known, the process prior

144 Gaussian Processes and the Null-Category Noise Model

which leads to the SVM as a MAP solution is the Gaussian process prior (for two

useful reviews of Gaussian processes see O’Hagan (1992); Williams (1998)). Under

the Gaussian process prior the values {fi} are jointly distributed as a zero-mean

Gaussian distribution with covariance given by the kernel matrix K.

8.3.1 Gaussian Processes

In the remainder of this chapter we will consider the use of a Gaussian process prior

over fi. The algorithms we consider update the process posterior in a sequential

manner, incorporating a single data point at a time. It is therefore sufficient to

consider a univariate distribution over fi given xi, of the form

p (fi|xi) = N (fi|μ (xi) , ς (xi)) ,

where the mean μ (xi) and the variance ς (xi) are functions of the covariate xi.

A natural consideration in this setting is the effect of our likelihood function on

the distribution over fi when incorporating a new data point. As we have already

mentioned, if we observe yi, then the parameters are d-separated from zi. In this

case the effect of the likelihood on the posterior process will be similar to thateffect on

posterior incurred in binary classification, in that the posterior will be a convolution of the

step function and a Gaussian distribution. However, when the data point’s label is

missing the effect will depend on the mean and variance of p (fi|xi). If this Gaussian

has little mass in the null-category region (i.e., the region between the classes), the

posterior will be similar to the prior. However, if the Gaussian has significant mass

in the null-category region, the outcome may be loosely described in two ways:

1. If p (fi|xi) “spans the likelihood,” figure 8.5 (left), then the mass of the posterior

can be apportioned to either side of the null-category region, leading to a bimodal

posterior. The variance of the posterior will be greater than the variance of the prior,

a consequence of the fact that the effective likelihood function is not log-concave

(as can be easily verified).

2. If p (fi|xi) is “rectified by the likelihood,” figure 8.5 (right), then the mass of the

posterior will be pushed into one side of the null-category and the variance of the

posterior will be smaller than the variance of the prior.

Note that for all situations in which a portion of the mass of the prior distribution

falls within the null-category region it is pushed out to one side or both sides. The

intuition behind the two situations is that in case 1, it is not clear what label the

data point has, but it is clear that it shouldn’t be where it currently is (in the

null-category). The result is that the process variance increases. In case 2 the data

point is being assigned a label and the decision boundary is pushed to one side of

the point so that it is classified according to the assigned label.

In figure 8.6, we demonstrate the effect of the null-category. We sampled a vector

(fi)
500
i=1 from a Gaussian process with an radial basis function (RBF) kernel. The

covariates (xi)
500
i=1 were sampled uniformly from the two-dimensional unit square.

8.4 Posterior Inference and Prediction 145

Figure 8.5 Two situations of interest. Diagrams show the prior distribution over fi

(long dashes), the effective likelihood function from the noise model when zi = 1 (short
dashes), and a schematic of the resulting posterior over fi (solid line). (Left) The posterior
is bimodal and has a larger variance than the prior. (Right) The posterior has one dominant
mode and a lower variance than the prior. In both cases the process is pushed away from
the null-category.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 8.6 Samples from a standard Gaussian process classifier with a probit noise
model (left) and a Gaussian process with the null-category noise model (right). The
covariate vectors were originally sampled uniformly from the unit square. The null-
category noise model has the effect of reducing the data density in the region of the
decision boundary.

In the left panel, points were assigned to the class of yi = 1 with probability

φ (fi) and were otherwise assigned a class of yi = −1. In the right panel they were

assigned the class yi = 1 with probability φ
(
fi − 1

2

)
and the class yi = −1 with

probability φ
(
−fi − 1

2

)
; all other points were assumed to have come from the null

category and were removed. Note that this rejection of points has the effect of

reducing the data density near the decision boundary.

8.4 Posterior Inference and Prediction

Broadly speaking, the effects discussed above are independent of the process model:

the effective likelihood will always force the latent function away from the null-

146 Gaussian Processes and the Null-Category Noise Model

category. To implement our model, however, we must choose a specific process model

and inference method. The nature of the noise model means that it is unlikely that

we will find a nontrivial process model for which inference (in terms of marginalizing

fi) will be tractable. We therefore turn to approximations which are inspired by

“assumed density filtering” (ADF) methods; see, e.g., Csató (2002). The idea in

ADF is to approximate the (generally non-Gaussian) posterior with a Gaussian by

matching the moments between the approximation and the true posterior. ADF

has also been extended to allow each approximation to be revisited and improved

as the posterior distribution evolves (Minka, 2001).

One further complication is that the “effective likelihood” associated with the

null-category noise model is not log-concave. The implication of this is that the

variance of the posterior process can increase when a point is included. This

situation is depicted in figure 8.5 (left); the posterior depicted in this plot has

a larger variance than the prior distribution. This increase in variance is difficult to

accommodate within the ADF approximation framework and in our implementation

it was ignored.

One important advantage of the Gaussian process framework is that it is

amenable to an empirical Bayesian treatment—the hyperparameters in the covari-learning the

hyperparameters ance function can be learned by optimizing the marginal likelihood. In practice,

however, if the process variance is maximized in an unconstrained manner the ef-

fective width of the null-category can be driven to zero, yielding a model that is

equivalent to a standard binary classification noise model. The process variance

controls the scale of the function. If the process variance is allowed to grow in an

unconstrained manner the effective width of the null-category region becomes zero,

removing any effect from unlabeled data points. To prevent this from happening

we regularize by imposing an L1 penalty on the process variances (this is equiva-

lent to placing an exponential prior on those parameters). The L1 penalty prefers

smaller process variances thereby increasing the effective width of the null-category

region. The model therefore prefers a large null-category region. This is analogous

to maximizing the margin in a support vector machine.

8.4.1 Prediction with the NCNM

Once the parameters of the process model have been learned, we wish to make

predictions about a new test-point x∗ via the marginal distribution p (y∗|x∗). For

the NCNM an issue arises here: this distribution will have a non-zero probability of

y∗ = 0, a label that does not exist in either our labeled or unlabeled data. This is

where the role of z∗ becomes essential. The new point also has z∗ = 1 so in reality

the probability that a data point is from the positive class is given by

p (y∗|x∗, z∗ = 1) ∝ p (z∗ = 1|y∗) p (y∗|x∗) . (8.2)

The constraint that p (z∗ = 1|y∗ = 0) = 0 causes the predictions to be correctly

normalized. So for the distribution to be correctly normalized for a test data point

8.5 Results 147

we must assume that we have observed z∗ = 1.

An interesting consequence is that observing x∗ will have an effect on the process

model. This is contrary to the standard Gaussian process setup (see, e.g., Williams

(1998)) in which the predictive distribution depends only on the labeled training

data and the location of the test point x∗. In the NCNM the entire process model

p (f∗|x∗) should be updated after the observation of x∗. This is not a particular

disadvantage of the NCNM; it is an inevitable consequence of any method that

allows unlabeled data to affect the location of the decision boundary—a consequence

the probabilistic framework makes explicit. In practice, however, we may disregard

such considerations and make (possibly suboptimal) predictions of the class labels

according to (8.2) without updating the location of the decision boundary.

8.5 Results

Sparse representations of the training data are essential for speeding up the process

of learning. We made use of the informative vector machine (IVM) approach in

which the data are sparsified via a sequential greedy method in which points are

placed in an active set according to information-theoretic criteria. This approach

provides an approximation to a full Gaussian process classifier which is competitive

with the SVM in terms of speed and accuracy. The IVM also enables efficient

learning of kernel hyperparameters, and we made use of this feature in all of our

experiments.

10 5 0 5 10
10

5

0

5

10

10 5 0 5 10
10

5

0

5

10

Figure 8.7 Results from the toy problem. There are 400 points, which have probability
0.1 of receiving a label. Labeled data points are shown as circles and crosses. Data points
in the active set are shown as large dots. All other data points are shown as small dots.
(Left) Learning on the labeled data with the IVM algorithm. All labeled points are used
in the active set. (Right) Learning on the labeled and unlabeled data with the NCNM.
There are 100 points in the active set. In both plots decision boundaries are shown as
a solid line; dotted lines represent contours within 0.5 of the decision boundary (for the
NCNM this is the edge of the null-category).

148 Gaussian Processes and the Null-Category Noise Model

In all our experiments we used a kernel of the form

knm = θ2 exp
(
−θ1 (xn − xm)

T
(xn − xm)

)
+ θ3δnm,

where δnm is the Kronecker delta function. The parameters of the kernel were

learned by performing type II maximum likelihood over the active set. Since active

set selection causes the marginalized likelihood to fluctuate it cannot be used to

monitor convergence; we therefore simply iterated fifteen times between active set

selection and kernel parameter optimization. The parameters of the noise model,

{γ+, γ−}, can also be optimized, but note that if we constrain γ+ = γ− = γ, then

the likelihood is maximized by setting γ to the proportion of the training set that

is unlabeled.

We first considered an illustrative toy problem to demonstrate the capabilities

of our model. We generated two-dimensional data in which two class-conditional

densities interlock. There were 400 points in the original data set. Each point was

assigned a label with probability 0.1, leading to 37 labeled points. First a standard

IVM classifier was trained on the labeled data only (figure 8.7, left). We then used

the null-category approach to train a classifier that incorporates the unlabeled data.

As shown in figure 8.7 (right), the resulting decision boundary finds a region of low

data density and more accurately reflects the underlying data distribution.

8.5.1 USPS Digits

We next considered the null-category noise model for learning of the USPS hand-

written digit data set. This data set is fully labeled, but we can ignore a proportion

of the labels and treat the data set as a semi-supervised task. In the experiments

that followed we used an RBF kernel with a linear component. We ran each experi-

ment ten times, randomly selecting the data points that were labeled. The fraction

of labeled points, r, was varied between 0.01 and 0.25. Each digit was treated as a

separate “one against the others” binary classification class. We also summarized

these binary classification tasks with an overall error rate by allocating each test

data point to the class with the highest probability. In the first of our experiments,

we attempted to learn the parameters of the kernel by maximizing the IVM’s ap-

proximation to the marginal likelihood. The results are summarized in table 8.1.

As can be seen in the table, good classification results are obtained for values of

r above 0.1, but poor results are obtained for values of r below 0.1. This appears

troublesome at first sight, given that many semi-supervised learning algorithms give

reasonable performance even when the proportion of unlabeled data is as low as

0.1. It must be borne in mind, however, that the algorithm presented here faces the

additional burden of learning the kernel hyperparameters. Most other approaches

do not have this capability and therefore results are typically reported for a given,

tuned set of kernel parameters. To make a more direct comparison we also undertook

experiments in which the kernel hyperparameters were fixed to the values found by

an IVM trained on the fully labeled data set. These results are summarized in

8.6 Discussion 149

Table 8.1 Table of results for semi-supervised learning on the USPS digit data.

r 0 1 2 3 4

0.010 18 ± 0.0 8.0 ± 6.5 9.9 ± 0.0 8.3 ± 0.0 10 ± 0.0

0.025 11 ± 8.8 0.98 ± 0.1 9.9 ± 0.0 6.5 ± 2.4 10 ± 0.0

0.050 1.7 ± 0.2 1.0 ± 0.1 3.7 ± 0.4 5.4 ± 2.7 7.4 ± 3.5

0.10 1.7 ± 0.1 0.95 ± 0.1 3.2 ± 0.2 3.2 ± 0.3 3.3 ± 0.3

0.25 1.6 ± 0.2 0.97 ± 0.1 2.5 ± 0.2 2.9 ± 0.2 2.8 ± 0.1

r 5 6 7 8 9 Overall

0.010 8.0 ± 0.0 8.5 ± 0.0 7.3 ± 0.0 8.3 ± 0.0 8.8 ± 0.0 83 ± 7.3

0.025 8.0 ± 0.0 8.5 ± 0.0 7.3 ± 0.0 8.3 ± 0.0 8.8 ± 0.0 64 ± 5.0

0.05 7.1 ± 1.9 1.7 ± 0.2 7.3 ± 0.0 7.4 ± 1.9 7.6 ± 2.7 33 ± 7.2

0.1 3.0 ± 0.3 1.5 ± 0.1 1.3 ± 0.1 3.4 ± 0.2 2.0 ± 0.3 7.7 ± 0.2

0.25 2.4 ± 0.2 1.3 ± 0.2 1.2 ± 0.1 2.6 ± 0.3 1.6 ± 0.2 6.4 ± 0.2

For these results the model learned the kernel parameters. We give the results for the individual
binary classification tasks and the overall error computed from the combined classifiers. Each
result is summarized by the mean and standard deviation of the percent classification error across
ten runs with different random seeds.

table 8.2. As expected these results are much better in the range where r < 0.1.

With the exception of the digit 2 at r = 0.01 a sensible decision boundary was

learned for at least one of the runs even when r = 0.01.

8.6 Discussion

We have presented a Bayesian approach to the semi-supervised learning problem.

While Bayesian approaches to semi-supervised learning are well known and easy to

formulate in the generative setting, they appear to be more difficult to formulate

in the discriminative setting—an unfortunate state of affairs given the superior

performance attainable with discriminative methods. Indeed, we are aware of no

previous work on classification algorithms that is simultaneously discriminative,

semi-supervised, and Bayesian. The approach presented in the previous paper shows

that this gap in the literature is not due to a fundamental limitation. Indeed,

discriminative, semi-supervised, Bayesian algorithms exist, and can be developed

via a relatively straightforward augmentation involving a “null-category.” Drawing

its inspiration from the role of the margin in the support vector machine, our null-

category noise model provides a probabilistic implementation of the assumption

that discriminant boundaries should pass through regions of low data density. We

achieve this within a fully discriminative framework that does not require modeling

of class-conditional densities.

Our approach provides a practical approach to performing kernel-based, semi-

150 Gaussian Processes and the Null-Category Noise Model

Table 8.2 Table of results for semi-supervised learning on the USPS digit data.

r 0 1 2 3 4

0.010 3.2 ± 5.2 13 ± 14 9.9 ± 0.0 3.1 ± 0.2 8.3 ± 2.6

0.025 1.5 ± 0.2 1.5 ± 0.9 5.2 ± 2.0 2.9 ± 0.2 4.4 ± 2.1

0.050 1.5 ± 0.2 1.2 ± 0.2 3.4 ± 0.4 2.9 ± 0.1 3.3 ± 0.2

0.10 1.5 ± 0.1 1.2 ± 0.1 2.8 ± 0.2 2.8 ± 0.2 3.0 ± 0.2

0.25 1.4 ± 0.2 1.3 ± 0.2 2.4 ± 0.2 2.6 ± 0.2 2.8 ± 0.2

r 5 6 7 8 9 Overall

0.010 7.5 ± 1.0 7.7 ± 8.5 12 ± 17 7.5 ± 1.2 35 ± 23 42 ± 10

0.025 5.0 ± 1.3 1.6 ± 0.2 1.9 ± 1.9 4.3 ± 0.5 9.9 ± 8.5 14 ± 6.1

0.050 3.6 ± 0.6 1.5 ± 0.1 1.3 ± 0.1 4.1 ± 0.4 2.6 ± 1.3 8.4 ± 0.7

0.10 2.8 ± 0.2 1.3 ± 0.1 1.3 ± 0.1 3.5 ± 0.3 2.0 ± 0.2 7.2 ± 0.5

0.25 2.3 ± 0.2 1.2 ± 0.1 1.2 ± 0.1 2.7 ± 0.2 1.6 ± 0.2 6.1 ± 0.4

For these results the model was given the kernel parameters learned by the IVM on the standard
fully labeled data. We give the results for the individual binary classification tasks and the overall
error computed from the combined classifiers.

supervised learning without requiring the design of specialized kernels.

Code for recreating our experiments is available from http://www.dcs.shef.

ac.uk/~neil/ncnm.

9 Entropy Regularization

Yves Grandvalet yves.grandvalet@utc.fr

Yoshua Bengio bengioy@iro.umontreal.ca

The problem of semi-supervised induction consists in learning a decision rule

from labeled and unlabeled data. This task can be undertaken by discriminative

methods, provided that learning criteria are adapted consequently. In this chapter,

we motivate the use of entropy regularization as a means to benefit from unlabeled

data in the framework of maximum a posteriori estimation. The learning criterion

is derived from clearly stated assumptions and can be applied to any smoothly

parameterized model of posterior probabilities. The regularization scheme favors

low-density separation, without any modeling of the density of input features. The

contribution of unlabeled data to the learning criterion induces local optima, but

this problem can be alleviated by deterministic annealing. For well-behaved models

of posterior probabilities, deterministic annealing expectation-maximization (EM)

provides a decomposition of the learning problem in a series of concave subproblems.

Other approaches to the semi-supervised problem are shown to be close relatives or

limiting cases of entropy regularization. A series of experiments illustrates the good

behavior of the algorithm in terms of performance and robustness with respect to

the violation of the postulated low-density separation assumption. The minimum

entropy solution benefits from unlabeled data and is able to challenge mixture

models and manifold learning in a number of situations.

9.1 Introduction

This chapter addresses semi-supervised induction, which refers to the learning of

a decision rule, on the entire input domain X, from labeled and unlabeled data.

The objective is identical to the one of supervised classification: generalize fromsemi-supervised

induction examples. The problem differs in the respect that the supervisor’s responses are

missing for some training examples. This characteristic is shared with transduction,

which has, however, a different goal, that is, of predicting labels on a set of

152 Entropy Regularization

predefined patterns.

In the probabilistic framework, semi-supervised induction is a missing data

problem, which can be addressed by generative methods such as mixture models

thanks to the EM algorithm and extensions thereof (McLachlan, 1992). Generative

models apply to the joint density of patterns x and class y. They have appealing

features, but they also have major drawbacks. First, the modeling effort is much

more demanding than for discriminative methods, since the model of p(x, y) is

necessarily more complex than the model of P (y|x). Being more precise, the

generative model is also more likely to be misspecified. Second, the fitness measure

is not discriminative, so that better models are not necessarily better predictors of

class labels. These issues are addressed in chapters 2 and 4.

These difficulties have led to proposals where unlabeled data are processed

by supervised classification algorithms. Here, we describe an estimation principle

applicable to any probabilistic classifier, aiming at making the most of unlabeled

data when they should be beneficial to the learning process, that is, when classes are

well apart. The method enables control of the contribution of unlabeled examples,

thus providing robustness with respect to the violation of the postulated low-density

separation assumption.

Section 9.2 motivates the estimation criterion. It is followed by the description

of the optimization algorithms in section 9.3. The connections with some other

principles or algorithms are then detailed in section 9.4. Finally, the experiments of

section 9.5 offer a test bed to evaluate the behavior of entropy regularization, with

comparisons to generative models and manifold learning.

9.2 Derivation of the Criterion

In this section, we first show that unlabeled data do not contribute to the maximum-

likelihood estimation of discriminative models. The belief that “unlabeled data

should be informative” should then be encoded as a prior to modify the estimation

process. We argue that assuming high entropy for P (y|x) is a sensible encoding

of this belief, and finally we describe the learning criterion derived from this

assumption.

9.2.1 Likelihood

The maximum-likelihood principle is one of the main estimation techniques in

supervised learning, which is closely related to the more recent margin maximization

techniques such as boosting and support vector machines (SVMs) (Friedman et al.,

2000). We start here by looking at the contribution of unlabeled examples to the

(conditional) likelihood.

The learning set is denoted Ln = {(x1, y1), . . . , (xl, yl), xl+1, . . . , xn}, where the

l first examples are labeled, and the u = n − l last ones are unlabeled. We

assume that labels are missing at random, that is, the missingness mechanismmissing value

mechanism

9.2 Derivation of the Criterion 153

is independent from the missing class information. Let h be the random variable

encoding missingness: h = 1 if y is hidden and h = 0 if y is observed. The missing

at random assumption readsmissing at

random
P (h|x, y) = P (h|x) . (9.1)

This assumption excludes cases where missingness may indicate a preference for a

particular class (this can happen, for example, in opinion polls where the “refuse

to answer” option may hide an inclination toward a shameful answer). Assuming

independent examples, the conditional log likelihood is then

L(θ; Ln) =

l∑

i=1

lnP (yi|xi; θ) +

n∑

i=1

lnP (hi|xi). (9.2)

Maximizing (9.2) with respect to θ can be performed by dropping the second

term of the right-hand side. It corresponds to maximizing the complete likelihood

when no assumption whatsoever is made on p(x) (McLachlan, 1992). As unlabeled

data are not processed by the model of posterior probabilities, they do not convey

information regarding P (y|x). In the maximum a posteriori (MAP) framework,

unlabeled data are useless regarding discrimination when the priors on p(x) and

P (y|x) factorize and are not tied (see chapter 2): observing x does not inform

about y, unless the modeler assumes so. Benefiting from unlabeled data requires

assumptions of some sort on the relationship between x and y. In the MAP

framework, this will be encoded by a prior distribution. As there is no such thing

as a universally relevant prior, we should look for an induction bias allowing the

processing of unlabeled data when the latter are known to convey information.

9.2.2 When Are Unlabeled Examples Informative?

Theory provides little support for the numerous experimental evidence showing

that unlabeled examples can help the learning process. Learning theory is mostly

developed at the two extremes of the statistical paradigm: in parametric statistics

where examples are known to be generated from a known class of distribution,

and in the distribution-free structural risk minimization (SRM) or probably ap-

proximately correct (PAC) frameworks. Semi-supervised induction does not fit the

distribution-free frameworks: no positive statement can be made without distribu-

tional assumptions, as for some distributions p(x, y), unlabeled data are noninfor-

mative while supervised learning is an easy task. In this regard, generalizing from

labeled and unlabeled data may differ from transductive inference.

In parametric statistics, theory has shown the benefit of unlabeled examples,

either for specific distributions (O’Neill, 1978), or for mixtures of the form p(x) =information

content of

unlabeled

examples

πp(x|y = 1)+(1−π)p(x|y = 2), where the estimation problem is essentially reduced

to the one of estimating the mixture parameter π (Castelli and Cover, 1996). These

studies conclude that the (asymptotic) information content of unlabeled examples

154 Entropy Regularization

decreases as classes overlap.1 Hence, in the absence of general results, postulating

that classes are well apart, separated by a low-density area, is sensible when one

expects to take advantage of unlabeled examples.

9.2.3 A Measure of Class Overlap

There are many possible measures of class overlap. We chose Shannon’s conditional

entropy, which is invariant to the parameterization of the model, but the framework

developed below could be applied to other measures of class overlap, such as Renyi

entropies. Note, however, that the algorithms detailed in section 9.3.1 are specific to

this choice. Obviously, the conditional entropy may only be related to the usefulnessconditional

entropy of unlabeled data where labeling is indeed ambiguous. Hence, the measure of class

overlap should be conditioned on missingness:

H(y|x, h = 1) = −Exy [lnP (y|x, h = 1)] (9.3)

= −
∫ M∑

m=1

lnP (y = m|x, h = 1)p(x, y = m|h = 1) dx .

In the MAP framework, assumptions are encoded by means of a prior on the

model parameters. Stating that we expect a high conditional entropy does not

uniquely define the form of the prior distribution, but the latter can be derived by

resorting to the maximum entropy principle.2

The maximum entropy prior verifying Eθ [H(y|x, h = 1)] = c, where the constant

c quantifies how small the entropy should be on average, takes the form

p(θ) ∝ exp (−λH(y|x, h = 1))) , (9.4)

where λ is the positive Lagrange multiplier corresponding to the constant c.

Computing H(y|x, h = 1) requires a model of p(x, y|h = 1), whereas the choice

of supervised classification is motivated by the possibility of limiting modeling

to conditional probabilities. We circumvent the need of additional modeling by

applying the plug-in principle, which consists in replacing the expectation withplug-in principle

respect to (x|h = 1) by the sample average. This substitution, which can be

interpreted as “modeling” p(x|h = 1) by its empirical distribution, yields

Hemp(y|x, h = 1; Ln) = − 1

u

n∑

i=l+1

M∑

m=1

P (m|xi, ti = 1) lnP (m|xi, ti = 1) . (9.5)

1. This statement, given explicitly by O’Neill (1978), is also formalized, though not
stressed, by Castelli and Cover (1996), where the Fisher information for unlabeled ex-
amples at the estimate π̂ is clearly a measure of the overlap between class-conditional

densities: Iu(π̂) =
R (p(x|y=1)−p(x|y=2))2

π̂p(x|y=1)+(1−π̂)p(x|y=2)
dx.

2. Here, maximum entropy refers to the construction principle which enables derivation
of distributions from constraints, not to the content of priors regarding entropy.

9.3 Optimization Algorithms 155

The missing at random assumption (9.1) yields P (y|x, h = 1) = P (y|x), hence

Hemp(y|x, h = 1; Ln) = − 1

u

n∑

i=l+1

M∑

m=1

P (m|xi) lnP (m|xi) . (9.6)

This empirical functional is plugged in (9.4) to define an empirical prior on param-

eters θ, that is, a prior whose form is partly defined from data (Berger, 1985).

9.2.4 Entropy Regularization

The MAP estimate is defined as the maximizer of the posterior distribution, that

is, the maximizer of

C(θ, λ; Ln) = L(θ; Ln) − λHemp(y|x, h = 1; Ln)

=

l∑

i=1

lnP (yi|xi; θ) + λ

n∑

i=l+1

M∑

m=1

P (m|xi; θ) lnP (m|xi; θ) , (9.7)

where the constant terms in the log likelihood (9.2) and log prior (9.4) have been

dropped.

While L(θ; Ln) is only sensitive to labeled data, Hemp(y|x, h = 1; Ln) is only

affected by the value of P (m|x; θ) on unlabeled data. Since these two components of

the learning criterion are concave in P (m|x; θ), their weighted difference is usually

not concave, except for λ = 0. Hence, the optimization surface is expected to

possess local maxima, which are likely to be more numerous as u and λ grow. Semi-

supervised induction is halfway between classification and clustering; hence, the

progressive loss of concavity in the shift from supervised to unsupervised learning

is not surprising, as most clustering optimization problems are nonconvex (Rose

et al., 1990).

The empirical approximation Hemp (9.5) of H (9.3) breaks down for wiggly

functions P (m|·) with abrupt changes between data points (where p(x) is bounded

from below). As a result, it is important to constrain P (m|·) in order to enforce the

closeness of the two functionals. In the following experimental section, we imposed

such a constraint on P (m|·) by adding a smoothness penalty to the criterion C

(9.7). Note that this penalty also provides a means to control the capacity of the

classifier.

9.3 Optimization Algorithms

9.3.1 Deterministic Annealing EM and IRLS

In its application to semi-supervised learning, the EM algorithm is generally used

to maximize the joint likelihood from labeled and unlabeled data. This iterative

algorithm increases the likelihood at each step and converges toward a stationary

156 Entropy Regularization

point of the likelihood surface.

The criterion C(θ, λ; Ln) (9.7) departs from the conditional likelihood by its

entropy term. It is in fact formulated as each intermediate optimization subproblem

solved in the deterministic annealing EM algorithm. This scheme was originally

proposed to alleviate the difficulties raised by local maxima in joint likelihood

for some clustering problems (Rose et al., 1990; Yuille et al., 1994). It consistsdeterministic

annealing in optimizing the likelihood subject to a constraint on the level of randomness,

measured by the entropy of the model of P (y|x). The Lagrangian formulation of

this optimization problem is precisely (9.7), where T = 1 − λ is the analogue of a

temperature. Deterministic annealing is the cooling process defining the continuous

path of solutions indexed by the temperature. Following this path is expected to

lead to a final solution with lower free energy, that is, higher likelihood.

If the optimization criteria are identical, the goals, and the hyperparameters used

are different. On the one hand, in deterministic annealing EM, one aims at reaching

the global maximum (or at least a good local optimum) of the joint likelihood. For

this purpose, one starts from a concave function (T → ∞) and the temperature is

gradually lowered down to T = 1, in order to reach a state with high likelihood.

On the other hand, the goal of entropy regularization is to alter the maximum-

likelihood solution, by biasing it toward low entropy. One starts from a possibly

concave conditional likelihood (λ = 0, i.e., T = 1) and the temperature is gradually

lowered until it reaches some predetermined value 1 − λ0 = T0 ≥ 0, to return a

good local maximum of C(θ, λ0; Ln).

Despite these differences, the analogy with deterministic annealing EM is useful

because it provides an optimization algorithm for maximizing C(θ, λ; Ln) (9.7).

Deterministic annealing EM (Yuille et al., 1994) is a simple generalization ofdeterministic

annealing EM the standard EM algorithm. Starting from the solution obtained at the highest

temperature, the path of solution is computed by gradually increasing λ. For each

trial value of λ, the corresponding solution is computed by a two-step iterative

procedure, where the expected log likelihood is maximized at the M step, and

where soft (expected) assignments are imputed at the E step for unlabeled data.

The only difference with standard EM takes place at the E step, where the expected

value of labels is computed using the Gibbs distribution

gm(xi; θ) =
P (m|xi; θ)

1
1−λ

∑M
ℓ=1 P (ℓ|xi; θ)

1
1−λ

,

which distributes the probability mass according to the current estimated posterior

P (m|·) (for labeled examples, the assignment is clamped at the original label

gm(xi; θ) = δmyi
). For 0 < λ ≤ 1, the Gibbs distribution is more peaked than

the estimated posterior. One recovers EM for λ = 0, and the hard assignments of

classification EM (CEM) (Celeux and Govaert, 1992) correspond to λ = 1.

The M step then consists in maximizing the expected log likelihood with respect

9.3 Optimization Algorithms 157

to θ,

θs+1 = argmax
θ

n∑

i=1

M∑

m=1

gm(xi; θ
s) lnP (m|xi; θ) , (9.8)

where the expectation is taken with respect to the distribution (g1(·; θs), . . . , gM (·; θs)),

and θs is the current estimate of θ.

The optimization problem (9.8) is concave in P (m|x; θ) and also in θ for logistic

regression models. Hence it can be solved by a second-order optimization algorithm,

such as the Newton-Raphson algorithm, which is often referred to as iteratively

reweighted least squares, or IRLS in statistical textbooks (Friedman et al., 2000).IRLS

We omit the detailed derivation of IRLS, and provide only the update equation

for θ in the standard logistic regression model for binary classification problems. 3

The model of posterior distribution is defined as

P (1|x; θ) =
1

1 + e−(w⊤x+b)
, (9.9)

where θ = (w, b). In the binary classification problem, the M-step (9.8) reduces to

θs+1 = argmax
θ

n∑

i=1

g1(xi; θ
s) lnP (1|xi; θ) + (1− g1(xi; θ

s)) ln(1−P (1|xi; θ)) ,

where

g1(xi; θ) =
P (1|xi; θ)

1
1−λ

P (1|xi; θ)
1

1−λ + (1 − P (1|xi; θ))
1

1−λ

for unlabeled data and g1(xi; θ) = δ1yi
for labeled examples. Let pθ and g denote

the vector of P (1|xi; θ) and g1(xi; θ
s) values respectively, X the (n×(d+1)) matrix

of xi values concatenated with the vector 1, and Wθ the (n × n) diagonal matrix

with ith diagonal entry P (1|xi; θ)(1 − P (1|xi; θ)). The Newton-Raphson update is

θ ← θ +
(
X⊤WθX

)−1
X⊤(g − pθ) . (9.10)

Each Newton-Raphson update can be interpreted as solving a weighted least squares

problem, and the scheme is iteratively reweighted by updating pθ (and hence Wθ)

and applying (9.10) until convergence.

9.3.2 Conjugate Gradient

Depending on how P (y|x) is modeled, the M step (9.8) may not be concave, and

other gradient-based optimization algorithms should be used. Even in the case

3. The generalization to kernelized logistic regression is straightforward, and the gener-
alization to more than two classes results in similar expressions, but they would require
numerous extra notations.

158 Entropy Regularization

where a logistic regression model is used, conjugate gradient may turn out being

computationally more efficient than the IRLS procedure. Indeed, even if each M step

of the deterministic annealing EM algorithm consists in solving a convex problem,

this problem is nonquadratic. IRLS solves exactly each quadratic subproblem, a

strategy which becomes computationally expensive for high-dimensional data or

kernelized logistic regression. The approximate solution provided by a few steps of

conjugate gradient may turn out to be more efficient, especially since the solution

θs+1 returned at the sth M step is not required to be accurate.

Depending on whether memory is an issue or not, conjugate gradient updates

may use the optimal steps computed from the Hessian, or approximations returned

by a line search. These alternatives have experimentally been shown to be much

more efficient than IRLS on large problems (Komarek and Moore, 2003).

Finally, when EM does not provide a useful decomposition of the learning task,

one can directly address the minimization of the learning criterion (9.7) with

conjugate gradient, or other gradient-based algorithms. Here also, it is useful to

define an annealing scheme, where λ is gradually increased from 0 to 1, in order to

avoid poor local maxima of the optimization surface.

9.4 Related Methods

9.4.1 Minimum Entropy in Pattern Recognition

Minimum entropy regularizers have been used in other contexts to encode learn-

ability priors (Brand, 1999). In a sense, Hemp can be seen as a poor man’s way to

generalize this approach to continuous input spaces. This empirical functional was

also used as a criterion to learn scale parameters in the context of transductive man-

ifold learning (Zhu et al., 2003b). During learning, discrepancies between H (9.3)

and Hemp (9.5) are prevented to avoid hard unstable solutions by smoothing the

estimate of posterior probabilities.

9.4.2 Input-Dependent and Information Regularization

Input-dependent regularization, introduced by Seeger (2000b) and detailed in chap-

ter 2, aims at incorporating some knowledge about the density p(x) in the modeling

of P (y|x). In the framework of Bayesian inference, this knowledge is encoded by

structural dependencies in the prior distributions.

Information regularization, introduced by Szummer and Jaakkola (2002a) and

extended as detailed in chapter 10, is another approach where the density p(x) is

assumed to be known, and where the mutual information between variables x and

y is penalized within predefined small neighborhoods. As the mutual information

I(x; y) is related to the conditional entropy by I(x; y) = H(y)−H(y|x), low entropy

and low mutual information are nearly opposite quantities. However, penalizing

mutual information locally, subject to the class constraints provided by labeled

9.4 Related Methods 159

examples, highly penalizes the variations of P (y|x) in the high-density regions.

Hence, like entropy regularization, information regularization favors solution where

label switching is restricted to low density areas between disagreeing labels.

Entropy regularization differs from these schemes in that it is expressed only in

terms of P (y|x) and does not involve a model of p(x). However, we stress that

for unlabeled data, the MAP minimum entropy estimation is consistent with the

maximum (complete)-likelihood approach when p(x) is small near the decision

surface. Indeed, whereas the complete likelihood maximizes ln p(x) on unlabeled

data, the regularizer minimizes the conditional entropy on the same points. Hence,

the two criteria agree provided the class assignments are confident in high-density

regions, or conversely, when label switching occurs in a low-density area.

9.4.3 Self-Training

Self-training is an iterative process, where a learner imputes the labels of examples

which have been classified with confidence in the previous step. This idea, which

predates EM, was independently proposed by several authors (see chapter 1). Amini

and Gallinari (2002) analyzed this technique and have shown that it is equivalent

to a version of the classification EM algorithm (Celeux and Govaert, 1992), which

minimizes the likelihood deprived of the entropy of the partition.

In the context of conditional likelihood estimation from labeled and unlabeled

examples, self-training minimizes C (9.7) with λ = 1. The optimization process itself

is identical to the generalized EM described in section 9.3.1 with hard assignments

(Grandvalet, 2002; Jin and Ghahramani, 2003).

Minimum entropy regularization is expected to have two benefits. First, the

influence of unlabeled examples can be controlled, in the spirit of EM-λ (Nigam

et al., 2000) Second, the deterministic annealing process, by which λ is slowly

increased, is expected to help the optimization process to avoid poor local minima of

the criterion. This scheme bears some similarity to the increase of the C∗ parameter

in the transductive SVM algorithm of Joachims (1999).

9.4.4 Maximal Margin Separators

Maximal margin separators are theoretically well-founded models which have shown

great success in supervised classification. For linearly separable data, they have been

shown to be a limiting case of probabilistic hyperplane separators (Tong and Koller,

2000).

In the framework of transductive learning, Vapnik (1998) proposed broaden-

ing the margin definition to unlabeled examples, by taking the smallest Euclidean

distance between any (labeled and unlabeled) training point to the classification

boundary. The following theorem, whose proof is given in the appendix, general-

izes theorem 5, corollary 6 of Tong and Koller (2000) to the margin defined in

160 Entropy Regularization

transductive learning4 when using the proposed minimum entropy criterion.

Theorem 9.1 Consider the two-class linear classification problem with linearly

separable labeled examples, where the classifier is obtained by optimizing

P (1|x; (w, b)) = 1/(1 + e−(w⊤x+b)) with the semi-supervised minimum entropy cri-

terion (9.7), under the constraint that ||w|| ≤ B. The margin of that linear classifier

converges toward the maximum possible margin among all such linear classifiers,

as the bound B goes to infinity.

Hence, the minimum entropy solution can approach semi-supervised SVM (Vap-

nik, 1998; Bennett and Demiriz, 1999). We, however, recall that the MAP criterion

is not concave in P (m|x; θ), so that the convergence toward the global maximum

cannot be guaranteed with the algorithms presented in section 9.3. This problem is

shared by all inductive semi-supervised algorithms dealing with a large number of

unlabeled data in reasonable time, such as mixture models or the transductive SVM

of Joachims (1999). Explicitly or implicitly, inductive semi-supervised algorithms

impute labels which are somehow consistent with the decision rule returned by the

learning algorithm. The enumeration of all possible configurations is only avoided

thanks to a heuristic process, such as deterministic annealing, which may fail.

Most graph-based transduction algorithms avoid this enumeration problem be-

cause their labeling process is not required to comply with a parameterized deci-

sion rule. This clear computational advantage has, however, its counterpart: label

propagation is performed via a user-defined similarity measure. The selection of

a discriminant similarity measure is thus left to the user, or to an outer loop, in

which case the overall optimization process is not convex anymore. The experimen-

tal section below illustrates that the choice of discriminant similarity measures is

difficult in high-dimensional spaces, and when a priori similar patterns should be

discriminated.

9.5 Experiments

9.5.1 Artificial Data

In this section, we chose a simple experimental setup in order to avoid artifacts

stemming from optimization problems. This setting enables checking to what

extent supervised learning can be improved by unlabeled examples, and when

minimum entropy can compete with generative methods which are traditionally

advocated in this framework. The minimum entropy criterion is applied to the

logistic regression model. It is compared to logistic regression fitted by maximum

likelihood (ignoring unlabeled data) and logistic regression with all labels known.

4. That is, the margin on an unlabeled example is defined as the absolute value of the
margin on a labeled example at the same location.

9.5 Experiments 161

The former shows what has been gained by handling unlabeled data, and the latter

provides the “crystal ball” ultimate performance obtained by guessing correctly all

labels. All hyperparameters (weight-decay for all logistic regression models plus the

λ parameter (9.7) for minimum entropy) are tuned by tenfold cross-validation.

These discriminative methods are compared to generative models. Throughout

all experiments, a two-components Gaussian mixture model was fitted by the EM

algorithm (two means and one common covariance matrix estimated by maximum

likelihood on labeled and unlabeled examples (McLachlan, 1992)). The problem

of local maxima in the likelihood surface is artificially avoided by initializing

EM with the parameters of the true distribution when the latter is truly a two-

component Gaussian mixture, or with maximum likelihood parameters on the

(fully labeled) test sample when the distribution departs from the model. This

initialization advantages EM, which is guaranteed to pick, among all local maxima

of the likelihood, the one which is in the basin of attraction of the optimal

value. In particular, this initialization prevents interferences that may result from

the “pseudolabels” given to unlabeled examples at the first E step. The “label

switching” problem (badly labeled clusters) is prevented at this stage.

Correct Joint Density Model In the first series of experiments, we consider

two-class problems in a 50-dimensional input space. Each class is generated with

equal probability from a normal distribution. Class 1 is normal with mean (a a . . . a)

and unit covariance matrix. Class 2 is normal with mean −(a a . . . a) and unit

covariance matrix. Parameter a tunes the Bayes error which varies from 1 % to 20

% (1 %, 2.5 %, 5 %, 10 %, 20 %). The learning sets comprise l labeled examples,

(l = 50, 100, 200) and u unlabeled examples, (u = l× (1, 3, 10, 30, 100)). Overall, 75

different setups are evaluated, and for each one, ten different training samples are

generated. Generalization performances are estimated on a test set of size 10, 000.

This first benchmark provides a comparison for the algorithms in a situation

where unlabeled data are known to convey information. Besides the favorable

initialization of the EM algorithm to the optimal parameters, the generative models

benefit from the correctness of the model: data were generated according to the

model, that is, two Gaussian subpopulations with identical covariances. The logistic

regression model is only compatible with the joint distribution, which is a weaker

fulfillment than correctness.

As there is no modeling bias, differences in error rates are only due to differences

in estimation efficiency. The overall error rates (averaged over all settings) are in

favor of minimum entropy logistic regression (14.1 ± 0.3 %). EM (15.7 ± 0.3 %)

does worse on average than logistic regression (14.9 ± 0.3 %). For reference, the

average Bayes error rate is 7.7 % and logistic regression reaches 10.4± 0.1 % when

all examples are labeled.

Figure 9.1 provides more informative summaries than these raw numbers. The

first plot represents the error rates (averaged over l) versus the Bayes error rate

and the u/l ratio. The second plot represents the same performances on a common

scale along the abscissa, by showing the relative improvement of using unlabeled

162 Entropy Regularization

5 10 15 20

10

20

30

40

Bayes Error (%)

T
es

t
E

rr
o
r

(%
)

5 10 15 20

1

1.5

2

2.5

3

3.5

Bayes Error (%)

R
el

at
iv

e
im

p
ro

v
em

en
t

Figure 9.1 (Left): Test error of minimum entropy logistic regression (◦) and mixture
models (+) versus Bayes error rate for u/l = 10. The errors of logistic regression (dashed),
and logistic regression with all labels known (dash-dotted) are shown for reference. (Right):
Relative improvement to logistic regression versus Bayes error rate.

examples when compared to logistic regression ignoring unlabeled examples. The

relative improvement is defined here as the ratio of the gap between test error and

Bayes error for the considered method to the same gap for logistic regression. This

plot shows that, as asymptotic theory suggests (O’Neill, 1978; Castelli and Cover,

1996), unlabeled examples are more beneficial when the Bayes error is low. This

observation supports the relevance of the minimum entropy assumption.

Figure 9.2 illustrates the consequence of the demanding parametrization of gen-

erative models. Mixture models are outperformed by the simple logistic regression

model when the sample size is low, since their number of parameters grows quadrat-

ically (versus linearly) with the number of input features. This graph also shows

that the minimum entropy model takes quick advantage of unlabeled data when

classes are well separated. With u = 3l, the model considerably improves upon the

one discarding unlabeled data. At this stage, the generative models do not per-

form well, as the number of available examples is low compared to the number

of parameters in the model. However, for very large sample sizes, with 100 times

more unlabeled examples than labeled examples, the generative method eventually

becomes more accurate than the discriminative one.

These results are reminiscent of those of Efron (1975), in the respect that the

generative method is asymptotically slighly more efficient than the discriminative

one, mainly because logistic regression makes little use of examples far from the

decision surface. In the same respect, our observations differ from the comparison

of Ng and Jordan (2001), which shows that naive Bayes can be competitive in terms

of test error for small training sample sizes. This may be explained by the more

general generative model used here, which does not assume feature independance.

Misspecified Joint Density Model In a second series of experiments, the

setup is slightly modified by letting the class-conditional densities be corrupted by

9.5 Experiments 163

1 3 10 30 100
5

10

15

Ratio u/l

T
es

t
E

rr
o

r
(%

)

Figure 9.2 Test error versus u/l ratio for 5 % Bayes error (a = 0.23). Test errors of
minimum entropy logistic regression (◦) and mixture models (+). The errors of logistic
regression (dashed), and logistic regression with all labels known (dash-dotted) are shown
for reference.

outliers. For each class, the examples are generated from a mixture of two Gaussians

centered on the same mean: a unit variance component gathers 98 % of examples,

while the remaining 2 % are generated from a large variance component, where

each variable has a standard deviation of 10. The mixture model used by EM is

now slightly misspecified since the whole distribution is still modeled by a simple

two-components Gaussian mixture. The results, displayed in the left-hand-side of

figure 9.3, should be compared with figure 9.2. The generative model dramatically

suffers from the misspecification and behaves worse than logistic regression for all

sample sizes. The unlabeled examples have first a beneficial effect on test error, then

have a detrimental effect when they overwhelm the number of labeled examples.

On the other hand, the discriminative models behave smoothly as in the previous

case, and the minimum entropy criterion performance steadily improves with the

addition of unlabeled examples.

The last series of experiments illustrate the robustness with respect to the

cluster assumption, by which the decision boundary should be placed in low-

density regions. The samples are drawn from a distribution such that unlabeled

data do not convey information, and where a low-density p(x) does not indicate

class separation. This distribution is modeled by two Gaussian clusters, as in the

first series of experiments, but labeling is now independent from clustering: example

xi belongs to class 1 if xi2 > xi1 and belongs to class 2 otherwise; the Bayes

decision boundary now separates each cluster in its middle. The mixture model is

unchanged. It is now far from the model used to generate data. The right-hand side

plot of figure 9.3 shows that the favorable initialization of EM does not prevent

the model from being fooled by unlabeled data: its test error steadily increases

with the amount of unlabeled data. Conversely, the discriminative models behave

well, and the minimum entropy algorithm is not distracted by the two clusters; its

performance is nearly identical to the one of training with labeled data only (cross-

164 Entropy Regularization

1 3 10 30 100
5

10

15

20

Ratio u/l

T
es

t
E

rr
o
r

(%
)

1 3 10 30 100
0

5

10

15

20

25

30

Ratio u/l

T
es

t
E

rr
o
r

(%
)

Figure 9.3 Test error versus u/l ratio for a = 0.23. Average test errors for minimum
entropy logistic regression (◦) and mixture models (+). The test error rates of logistic
regression (dotted), and logistic regression with all labels known (dash-dotted) are shown
for reference. (Left): Experiment with outliers. (Right): Experiment with uninformative
unlabeled data.

Table 9.1 Error rates (%) of minimum entropy (ME) versus consistency method (CM),
for a = 0.23, l = 50, and (a) pure Gaussian clusters, (b) Gaussian clusters corrupted by
outliers, and (c) class boundary separating one Gaussian cluster

nu 50 150 500 1500

a) ME 10.8 ± 1.5 9.8 ± 1.9 8.8 ± 2.0 8.3 ± 2.6

a) CM 21.4 ± 7.2 25.5 ± 8.1 29.6 ± 9.0 26.8 ± 7.2

b) ME 8.5 ± 0.9 8.3 ± 1.5 7.5 ± 1.5 6.6 ± 1.5

b) CM 22.0 ± 6.7 25.6 ± 7.4 29.8 ± 9.7 27.7 ± 6.8

c) ME 8.7 ± 0.8 8.3 ± 1.1 7.2 ± 1.0 7.2 ± 1.7

c) CM 51.6 ± 7.9 50.5 ± 4.0 49.3 ± 2.6 50.2 ± 2.2

validation provides λ values close to zero), which can be regarded as the ultimate

achievable performance in this situation.

Comparison with Manifold Transduction Although this chapter focuses on

inductive classification, we also provide comparisons with a transduction algorithm

relying on the manifold assumption. The consistency method (Zhou et al., 2004)

is a very simple label propagation algorithm with only two tuning parameters. As

suggested by Zhou et al. (2004), we set α = 0.99 and the scale parameter σ2 was

optimized on test results. The results are reported in table 9.1. The experiments

are limited due to the memory requirements of the consistency method in our naive

implementation.

The results are extremely poor for the consistency method, whose error is way

9.5 Experiments 165

Anger Fear Disgust Joy Sadness Surprise Neutral

Figure 9.4 Examples from the facial expression recognition database.

above minimum entropy, and which does not show any sign of improvement as the

sample of unlabeled data grows. In particular, when classes do not correspond to

clusters, the consistency method performs random class assignments.

In fact, the experimental setup, which was designed for the comparison of global

classifiers, is not favorable to manifold methods, since the input data are truly

50-dimensional. In this situation, finding a discriminant similarity measure may

require numerous degrees of freedom, and the consistency method provides only

one tuning parameter: the scale parameter σ2. Hence, these results illustrate that

manifold learning requires more tuning efforts for truly high-dimensional data, and

some recent techniques may respond to this need (Sindhwani et al., 2005).

9.5.2 Facial Expression Recognition

We now consider an image recognition problem, consisting in recognizing seven

(balanced) classes corresponding to the universal emotions (anger, fear, disgust,

joy, sadness, surprise, and neutral). The patterns are gray level images of frontal

faces, with standardized positions, as displayed in figure 9.4. The data set comprises

375 such pictures made of 140 × 100 pixels (Abboud et al., 2003; Kanade et al.,

2000)

We tested kernelized logistic regression (Gaussian kernel), its minimum entropy

version, nearest neighbor, and the consistency method. We repeatedly (10 times)

sampled 1/10 of the data set for providing the labeled part, and the remainder for

testing. Although (α, σ2) were chosen to minimize the test error, the consistency

method performed poorly with 63.8± 1.3 % test error (compared to 86 % error for

random assignments). Nearest neighbor gets similar results with 63.1 ± 1.3 % test

error, and kernelized logistic regression (ignoring unlabeled examples) improved

to reach 53.6 ± 1.3 %. Minimum entropy kernelized logistic regression regression

achieves 52.0 ± 1.9 % error (compared to about 20 % errors for human on this

database). The scale parameter chosen for kernelized logistic regression (by tenfold

cross-validation) amount to using a global classifier.

The failure of local methods may be explained by the fact that the database

contains several pictures of each person, with different facial expressions. Hence,

local methods are likely to pick the same identity instead of the same expression,

while global methods are able to learn the discriminating directions.

166 Entropy Regularization

9.6 Conclusion

Although discriminative methods do not benefit from unlabeled data in the

maximum-likelihoood framework, maximum a posteriori estimation enables ad-

dressing the semi-supervised induction problem. The information content of unla-

beled data decreases with class overlap, which can be measured by the conditional

entropy of labels given patterns. Hence, the minimum entropy prior encodes a

premise of semi-supervised induction, that is, the belief that unlabeled data may

be useful. The postulate is optimistic in some problems where unlabeled data do not

convey information regarding labels, but the strength of the prior is controlled by

a tuning parameter, so that the contribution of unlabeled examples to the estimate

may vanish.

Minimum entropy regularization is related to self-training in general and to

transductive SVMs in particular. It promotes classifiers with high confidence on

the unlabeled examples. A deterministic annealing process smoothly drives the

decision boundary away from unlabeled examples, favoring low-density separation.

The regularizer can be applied to local and global models of posterior probabili-

ties. As a result, it can improve over local models when they suffer from the curse of

dimensionality. Minimum entropy regularization may also be a serious contender for

generative methods. It compares favorably to these mixture models in three situa-

tions: for small sample sizes, where the generative model cannot completely benefit

from the knowledge of the correct joint model; when the joint distribution is (even

slightly) misspecified; when the unlabeled examples turn out to be noninformative

regarding class probabilities.

Finally, the algorithms presented in this chapter can be applied to a generalized

version of the semi-supervised induction problem, where the examples may be

labeled by any subset of labels, representing the set of plausible classes. This kind of

information is sometimes a more faithful description of the true state of knowledge

when labeling is performed by an expert.

Appendix: Proof of Theorem 9.1

Theorem 9.1 Consider the two-class linear classification problem with linearly sep-

arable labeled examples, where the classifier is obtained by optimizing

P (1|x; (w, b)) = 1/(1 + e−(w⊤x+b)) with the semi-supervised minimum entropy cri-

terion (9.7), under the constraint that ||w|| ≤ B. The margin of that linear classifier

converges toward the maximum possible margin among all such linear classifiers,

as the bound B goes to infinity.

Proof Consider the logistic regression model P (1|x; θ) parameterized by θ =

(w, b). Let zi ∈ {−1, +1} be a binary variable defined as follows: if xi is a positive

labeled example, zi = +1; if xi is a negative labeled example, zi = −1; if xi is an

unlabeled example, zi = sign(P (1|x; θ) − 1/2). The margin for the ith labeled or

9.6 Conclusion 167

unlabeled example is defined as mi(θ) = zi(w
⊤xi + b).

The criterion C (9.7) can be written as a function of mi = mi(θ) as follows:

C(θ) = −
l∑

i=1

ln(1 + e−mi) − λ

n∑

i=l+1

(
ln(1 + e−mi) +

mie
−mi

1 + e−mi

)
, (9.11)

where the indices [1, l] and [l + 1, n] correspond to labeled and unlabeled data,

respectively.

On the one hand, for all θ such that there exists an example with non-negative

margin, the cost (9.11) is trivially upper-bounded by − ln(2) if the example is

labeled and −λ ln(2) otherwise. On the other hand, by the linear separability

assumption, there exists θ = (w, b) with, say, ||w|| = 1 such that mi > 0. Consider

now the cost obtained with the admissible solution Bθ as B → +∞. In this limit,

since mi(Bθ) = Bmi(θ), all the terms of the finite sum (9.11) converge to zero, so

that the value of the cost converges to its maximum value (limB→+∞ C(Bθ) = 0).

Hence, in the limit of B → +∞ all margins of the maximizer of C are positive.

We now show that the maximizer of C achieves the largest minimal margin. The

cost (9.11) is simplified by using the following equivalence relations when B → +∞:

ln(1 + e−Bmi) ∼ e−Bmi

Bmie
−Bmi

1 + e−Bmi
∼ Bmie

−Bmi ,

which yields

C(Bθ) = −
l∑

i=1

e−Bmi + o(e−Bmi) − λ

n∑

i=l+1

Bmie
−Bmi + o(Bmie

−Bmi) .

Let us write m∗ > 0 the minimum margin among the labeled examples and

m∗ > 0 the minimum margin among the unlabeled examples, N ∗ the number

of minimum margin labeled examples (with mi = m∗), and N∗ the number of

minimum margin unlabeled examples (with mi = m∗). As e−Bmi = o(e−Bm∗

)

when mi > m∗, we obtain

C(Bθ) = −N∗e−Bm∗

+ o(e−Bm∗

) − λN∗Bm∗e
−Bm∗ + o(Bm∗e

−Bm∗) .

Now we note that if m∗ < m∗, then Bm∗e−Bm∗ = o(e−Bm∗

), and that if m∗ ≥ m∗
then e−Bm∗

= o(Bm∗e−Bm∗

). Hence, depending on whether m∗ < m∗ or m∗ ≥ m∗
we either obtain

C(Bθ) = −N∗e−Bm∗

+ o(e−Bm∗

) (9.12)

or

C(Bθ) = −λN∗Bm∗e
−Bm∗ + o(Bm∗e

−Bm∗

) . (9.13)

Now, consider two different values of θ, θ1 and θ2, giving rise to minimum margins

168 Entropy Regularization

M1 and M2 respectively, with M1 > M2. The solution Bθ1 will be prefered to Bθ2

if C(Bθ1)/C(Bθ2) < 1. From (9.12) and (9.13), we see that it does not matter

whether Mi is among the labels or the unlabeled, but only whether M1 > M2

or M2 > M1. In all cases C(Bθ1)/C(Bθ2) → 0 when M1 > M2. This allows

the conclusion that as B → ∞, the global maximum of C(Bθ) over θ tends to a

maximum margin solution, where the minimum margin M (over both labeled and

unlabeled examples) is maximized.

10 Data-Dependent Regularization

Adrian Corduneanu adrianc@mit.edu

Tommi Jaakkola tommi@csail.mit.edu

Information regularization is a principle for assigning labels to unlabeled data points

in a semi-supervised setting. The broader principle is based on finding labels that

minimize the information induced between examples and labels relative to a topol-

ogy over the examples; any label variation within a small local region of examples

ties together the identities of examples and their labels. Such variation should be

minimized unless supported directly or indirectly by the available labeled examples.

The principle can be cast in terms of Tikhonov style regularization for maximizing

likelihood of labeled examples with an information-theoretic regularization penalty.

We consider two ways of representing the topology over examples, either based on

complete knowledge of the marginal density, or by grouping together examples

whose labels should be related. We discuss the learning algorithms and sample

complexity issues that result from each representation.

10.1 Introduction

A substantial number of algorithms and methods exist for solving supervised learn-

ing problems with little or no assumptions about the distribution generating the

samples. Semi-supervised learning methods, in contrast, have to rely on assump-

tions about the problem so as to relate the available unlabeled data to possible

class decisions. The most common such assumption is the cluster assumption (see

chapter 1, or (Seeger, 2000b)) that, loosely speaking, prefers class decisions that

cut between rather than through clusters of unlabeled points. The effect of the

assumption is that it can significantly reduce the set of possible (reasonable) deci-

sions that need to be considered in response to a few labeled examples. The same

effect can also be achieved through representational constraints (e.g., (Blum and

Mitchell, 1998)).

The definition of what constitutes a cluster and how the cluster assumption is

170 Data-Dependent Regularization

formalized varies from one method to another. For example, clusters may be defined

in terms of a weighted graph so that class decisions correspond to a graph partition

(Szummer and Jaakkola, 2001; Blum and Chawla, 2001; Blum et al., 2004). In a

regularization setting, the graph may be used to introduce a smoothness penalty on

the discriminant function so as to limit how the discriminant function can change

within graph neighborhoods (e.g., see chapter 12). Alternatively, we may define

a model for each cluster via generative mixture models, and associate a single

class decision (distribution over classes) with each mixture component (e.g., see

chapter 3).

The strength of the bias from unlabeled data can be directly controlled via the

regularization parameter or by weighting likelihoods corresponding to labeled and

unlabeled data. The choice of the weight may have a substantial effect on the

resulting classifier, however (e.g., (Corduneanu and Jaakkola, 2002)).

We approach here the semi-supervised learning problem as a regularization prob-

lem , consistent with the broader cluster assumption, but define the regularizationregularization

approach penalty by appealing to information theory. The key idea is to express the penalty as

a bit cost of deviating decisions from those consistent with some assumed structure

over the unlabeled examples. In our case the structure corresponds to a collection of

overlapping sets or regions that play a role similar to clusters; decisions are biased

to be the same within each set and their specification is tied to the marginal distri-

bution over the examples. In practice, the sets can be derived from weighted graph

neighborhoods for discrete objects or from ǫ-balls covering the unlabeled points.

We begin by introducing the overall information regularization principle. Theinformation

regularization structure of the remaining sections is modeled after figure 10.1, successively elabo-

rating the principle under variations in the example space, type of unlabeled data

that is available, and which modeling assumptions we are willing to make.

Consider a typical semi-supervised learning problem with a few labeled examples

((x1, y1), . . . , (xl, yl)) and a large number of unlabeled examples (xl+1, . . . , xn) or

the marginal distribution p(x). We assume that the labels are discrete taking values

in Y = {1, . . . , M} for some finite M . The goal is to estimate the conditional dis-

tributions Q(y|x) associated with each available example x (labeled or unlabeled).

We will introduce the information regularization approach here from two alter-

native perspectives: smoothness and communication. By smoothness we mean con-

straining how Q(y|x) is allowed to vary from one point to another. The smoothness

preference is expressed as a regularization penalty over different choices of Q(·|x),

x ∈ X. The communication perspective, on the other hand, characterizes the reg-

ularization penalty in terms of the cost of encoding labels for all the points using

Q(y|x) relative to a basic coding scheme.

In either case the key role is played by a collection of regions, denoted by R. Eachunlabeled bias as

regions region R ∈ R represents a set of a priori equivalent examples. In other words, in the

absence of any other information, we would prefer to associate the same distribution

of labels with all x ∈ R. Figure 10.2 illustrates two possible overlapping regions.

We will use these regions to exemplify the basic ideas.

10.1 Introduction 171

(Corduneanu, Jaakkola UAI 03)unrestricted

parametric

relational

metric

full marginal

finite sample

full marginal

finite sample

unrestricted

parametric

unrestricted

parametric

unrestricted

parametric

space
unlabeled

information
model type

inductive

inductive

transductive

transductive

inductive

inductive

transductive

transductive

resulting

classifier

(Corduneanu, Jaakkola UAI 03)

(Szummer, Jaakkola NIPS02)

(Corduneanu, Jaakkola NIPS 04)

(Corduneanu, Jaakkola –

submitted)

reference

estimation

estimation

(Szummer, Jaakkola NIPS02)

Figure 10.1 Outline of information regularization methods under different assumptions
about the space, data, and model. Dotted arrows indicate that one setting can be cast as
another through a simple transformation (estimation, or relations derived from metric)

10.1.1 Regions and Smoothness

Consider the six unlabeled examples in region R in figure 10.2. We assume that

each point has the same probability of being a member of the region so that

P(x|R) = 1/6. The membership probabilities provide an additional degree of free-

dom for specifying smoothness constraints. Given the region R and the membership

probabilities P(x|R), x ∈ R, we would like to introduce a penalty for any varia-

tion in the conditionals Q(y|x) across the examples in the region. A natural choice

for this penalty is the Kullback-Leibler (KL) divergence between each conditional

Q(y|x) and the best common choice Q(y|R):

IR(x; y) = min
Q(·|R)

∑

x∈R

P(x|R)
∑

y∈Y

Q(y|x) log
Q(y|x)

Q(y|R)
, (10.1)

=
∑

x∈R

P(x|R)
∑

y∈Y

Q(y|x) log
Q(y|x)

Q(y|R)
, (10.2)

172 Data-Dependent Regularization

Figure 10.2 Example regions.

where Q(y|R) =
∑

x∈R P(x|R)Q(y|x).1 Note that we can interpret the result as

the mutual information between x and y within the region so long as the jointmutual

information distribution Q(x, y) is defined as Q(y|x)P(x|R). The mutual information involves

no prior penalty on what the common distribution should be; IR(x, y) is zero if all

the points in the region are labeled y = 1 or all of them have entirely uncertain

conditionals Q(y|x) = 1/M .

Suppose now that some of the six examples in region R have been labeled. We

will formulate the resulting estimation task as a regularization problem with the

mutual information serving as a regularization penalty. To this end, let Q refer

collectively to the parameters Q(·|x), x ∈ R. Define J(Q) = IR(x; y) (which we

will extend shortly to multiple regions) so that the penalized maximum-likelihood

criterion is given by

l∑

i=1

log Q(yi|xi) − λJ(Q),

where λ is a regularization parameter that balances the fit to the available labeled

points and the smoothness bias expressed by J(Q). If only one of the six points is

labeled, all the points in the region will be labeled with the observed label. This

is because the value of the regularizer is independent of the common choice within

the region but biases any differences within the region. In case of two distinctly

labeled points, the remaining points would be labeled such that the conditionals

Q(y|x) assign all their weight equally to the two observed labels while excluding all

others. The conditionals associated with the labeled points would be drawn toward

their respective labels, also excluding other than observed label values.

Multiple Regions In the single-region case the labels for unlabeled points

are pulled equally toward the optimized common distribution without further

distinguishing between the points. The notion of locality arises from multiple

regions, such as R = {R, R′} in the figure. In this setting, the overall regularization

1. IR(x; y) is exactly the general Jensen-Shannon divergence between Q(·|x) for all x ∈ R,
weighted by P(x|R)

10.1 Introduction 173

penalty must be a (weighted) average of the individual region penalties:

J(Q) =
∑

R∈R

γ(R) IR(x; y),

where γ(R) represents the weight of region R, where the choice of γ(R) is a modeling

decision. γ(R) expresses a priori belief in the relative importance of the regions, thus

it is not necessarily related to P(R) =
∫

R p(x)dx, the probability of region R derived

from the generative distribution of the data.

In figure 10.2 there are three sets of equivalent points that are not further

distinguished in this regularizer. They are R \ R′, R ∩ R′, and R′ \ R. We call

these sets that are not further partitioned by other regions atomic regions. Byatomic regions

introducing more regions, we partition the space into smaller atomic regions and

thus can make finer distinctions between the conditional distributions associated

with the points; within each atomic region, the conditional distributions can differ

only if some of the points are explicitly labeled.

A sequence of overlapping regions can mediate influence between the conditionals

associated with more “remote” points, those that do not appear in a common region.

For example, labeling any point in R \ R′ will also set all the labels in R′ \ R via

the intersection. Note, however, that labeling the points in the intersection would

not completely remove this influence; the Markov properties associated with the

regions pertain to the conditional distributions, not labels directly.

The choice of the regions, region weights γ(R), and the membership probabilities

P (x|R) will change the regularizer. While these provide additional degrees of

freedom that have to be set (or learned), there are nevertheless simple ways of

specifying them directly based on the problem. For example, suppose we are given

a weighted undirected graph with vertex set V , edge set E, and edge weights w(u, v)weighted graph

representation associated with any (u, v) ∈ E. Then we can simply associate the regions with edges,

specify equal membership probabilities for vertices in each edge, and set γ(R) equal

to the weight of the corresponding edge in the graph. The resulting regularizer is

analogous to the graph-based regularizers for discriminant functions except that it

is cast in terms of conditional probabilities.

10.1.2 Communication Principle

The information regularization objective can be also derived from a communication

principle. Suppose we have the same collection of regions R, region weights γ(R),

membership probabilities P (x|R), and the conditionals {Q(y|x)} associated with

the points. The regularizer is defined as the bit rate of communicating labels for

points according to the following communication game. In this scheme, the regions,

points, and labels are sampled as follows. First, we select a region R ∈ R with

probability (proportional to) γ(R), then a point within the region according to the

membership probabilities P (x|R), and finally the label y from Q(y|x). The label is

then communicated to the receiver using a coding scheme tailored to the region,

i.e., on the basis of Q(y|R). The receiver is assumed to have prior access to x, R,

174 Data-Dependent Regularization

and the region-specific coding scheme. Under these assumptions, the amount of

information that must be sent to the receiver to accurately reconstruct the samples

on average is

J(Q) =
∑

R∈R

γ(R)IR(x ; y),

which is the regularizer previously defined. Equivalently, we can rewrite the regu-

larizer as

J(Q) = I(x ; y) − I(R ; y).

Therefore the communication principle aims to minimize any information x has to

communicate about y beyond what has already been communicated by the region

from which x was drawn. This information is minimal when the label within each

region does not depend on which x we sampled.

10.2 Information Regularization on Metric Spaces

We adapt here the information regularization principle to the setting where X is a

metric space and assume that its metric is correlated with the labeling of points. In

other words, points that are close according to the metric are likely to have the same

label. For example, if X is a real vector space the metric could be the Euclidean

distance between the points, possibly weighted by feature relevance. Using a metric

to introduce a bias in semi-supervised learning is quite common, and many existing

algorithms require an explicit or implicit metric.

10.2.1 Full Knowledge of the Marginal

We begin by considering the ideal situation in which we have access to unlimited

unlabeled data, which, together with the metric, amounts to knowing the marginal

density p(x). In this case the information regularizer will relate the structure of

p(x) to the possible labelings of points. While we develop the ideas in the context

of knowing the marginal, the resulting algorithms apply also to finite sample cases,

by replacing p(x) with an empirical estimate.

10.2.1.1 The Information Regularizer

In order to construct the regularizer we need to specify how the regions cover the

metric space along with the weights γ(R) associated with the regions. The cover

R should provide connected and significantly overlapping regions. This is necessary

since labeling one point can only affect another if they can be connected through a

path of overlapping regions.overlap

In covering the space we have to balance the size of the regions with their

10.2 Information Regularization on Metric Spaces 175

overlap. We derive here the form of the regularizer in the limit of vanishing but

highly overlapping regions. Under mild constraints about how the limit is taken,

the resulting regularizer is the same. The limiting form has the additional benefit

that it no longer requires us to engineer a particular covering of the space.

We choose the regions such that as their size approaches 0, the overlap between

neighbors approaches 100% (this is required for smoothness). In the limit, therefore,

each point belongs to infinitely many regions, resulting in an infinite sum of local

regularizers. An appropriate choice of λ, the regularization parameter, is needed to

rescale the regularizer to take into account this increase.

In choosing the cover R care must be taken not to introduce systematic biasesavoid systematic

bias into the regularizer. Assuming that X has vector space structure, we can cover it

with a homogeneous set of overlapping regions of identical shape: regions centered

at the axis-parallel lattice points spaced at distance l′. In what follows the regions

are going to be axis-parallel cubes of length l, where l is much larger than l′. Because

R covers X uniformly, we can weight the regions based on the marginal density, i.e.,

γ(R) = P(R) up to a multiplicative constant.

Assuming that l and l′ are such that l/l′ is an integer, each (nonlattice) point

belongs to (l/l′)d cubic regions, where d is the dimension of the vector space. Let

R′ be the partitioning of R into atomic lattice cubes of length l′. Each region in

R is partitioned into (l/l′)d disjoint atomic cubes from R′, and each atomic cube

is contained in (l/l′)d overlapping regions from R. We may now rewrite the global

regularizer as a sum over the partition R′:

J(p) = lim
l→0

∑

R∈R

P(R)IR(x; y) = lim
l→0

∑

R′∈R′

P(R′)
∑

R⊇R′

IR(x; y) =

(l/l′)d lim
l′→0

∑

R′∈R′

P(R′)IR(x; y) = lim
l→0

(l/l′)d ·
∫

X

p(x)
dIR(x; y)

dx
dx.

Note that the factor in front of the integral can be factored into the regularization

parameter λ as a multiplicative constant.

Infinitesimal Mutual Information We derive the local mutual information

as the diameter of R approaches 0. If x0 is the expectation of x over R, mutual

information takes the following asymptotic form:

IR(x; y) =
1

2
tr (VarR [x] F (x0)) + O

(
diam(R)3

)
,

where F (x) = EQ(y|x)

[
∇x log Q(y|x) · ∇x log Q(y|x)⊤

]
is the Fisher information

and VarR [x] is the covariance of pR(x) (for a proof of this result see (Corduneanu

and Jaakkola, 2003)). Note that since the covariance is O
(
diam(R)2

)
, IR(x; y) → 0

as diam(R) → 0. Therefore limdiam(R)→0 IR(x; y)/diam(R)2 is well defined, and this

176 Data-Dependent Regularization

is the infinitesimal quantity that we will integrate to obtain J(p)2:

J(p) =

∫

X

p(x)tr

(
F (x) lim

diam(R)→0

VarR [x]

diam(R)2

)
dx

Given this form of the regularizer we can argue that regions in the shape of a

cube are indeed appropriate. We start from the principle that the regularizer should

not introduce any systematic directional bias in penalizing changes in the label. If

the diameter of a region R is small enough, pR(x) is almost uniform, and p(y = 1|x)

can be approximated well by v ·x+ c, where v is the direction of highest variation.

In this setting we have the following result (Corduneanu and Jaakkola, 2003):

Theorem 10.1 Let R be such that diam(R) = 1. The local information regularizer

is independent of v/ ‖v‖ if and only if VarR [·] is a multiple of the identity.

Proof We have F (x0) = vv⊤. The relevant quantity that should be independent

of v/ ‖v‖ is therefore v⊤VarR [·]v. Let v = Φi/ ‖Φi‖, where Φi is an eigenvector

of VarR [·] of eigenvalue φi. Then v⊤VarR [·]v = φi should not depend on the

eigenvector. If follows that VarR [·] has equal eigenvalues, thus VarR [·] = φI. The

converse is trivial.

It follows that in order to remove any directional bias, VarR [x] ≈ diam(R)2 ·I, as

is the case if R is a cube or a sphere. We thus reach our final form of the information

regularizer for metric space when the marginal is fully known:

J(p) =

∫

X

p(x)tr (F (x)) dx (10.3)

Note that the dependence of R is only implicit.

10.2.1.2 Classification Algorithm

We would like to estimate a label confidence Q(·|x) (that is, a soft label in [0, 1]M)

for every x ∈ X given the knowledge of p(x), and a labeled sample {(xi, yi)}i=1...l.

The information regularization principle requires us to maximize the regularized

log likelihood:

max
{Q(y|x) ; x∈X,y∈Y}

l∑

i=1

log Q(yi|xi) − λ

∫

X

p(x)tr (F (x)) dx, (10.4)

where F (x) = EQ(y|x)

[
∇x log Q(y|x) · ∇x log Q(y|x)⊤

]
, and the maximization is

subject to 0 ≤ Q(y|x) ≤ 1 and
∑

y∈Y
Q(y|x) = 1.

2. To be consistent with the derivation of J(p), we should normalize IR(x; y) by diam(R)d,
but unless d = 2 the regularizer would be either 0 or ∞. We can afford to choose the
convenient normalization without compromising the principle because we are free to choose
λ

10.2 Information Regularization on Metric Spaces 177

It is interesting that the above optimization defines a labeling even in a com-

pletely unrestricted nonparametric setting (save for differentiability constraints on

Q(·|x). In this situation labels of distinct data points are related only through

the information regularizer. We show that if we fix the values of the labels at the

observed labeled samples, Q(yi|xi) = P0(yi|xi), for all i = 1 . . . l, the regularizer

extends Q(y|x) to unobserved x’s uniquely. In what follows, we restrict the analysis

to binary classification (Y = {−1, 1}).
We cast the optimization as solving a differential equation that characterizes the

optimal conditional. The conditional that minimizes the regularizer
∫

p(x)tr (F (x))

is a differentiable function (except maybe at the labeled samples, where it is only

continuous) that satisfies the Euler-Lagrange condition (Corduneanu and Jaakkola,

2003):

∇x log p(x)∇xQ(1|x)⊤+tr
(
∇2

xxQ(1|x)
)
+

1

2

Q(1|x) − Q(−1|x)

Q(1|x)Q(−1|x)
‖∇xQ(1|x)‖2 = 0.

This differential equation defines a unique solution given the natural boundary

conditions p(x) = 0 and ∇xQ(y|x) = 0 at infinity, as well as the labels P0(yi|xi) at

labeled samples.

In order to optimize (10.4) one could solve the differential equation for various

values {P0(yi|xi)}i=1...l, then optimize with respect to P0(yi|xi). Unfortunately,

solving the differential equation numerically involves discretizing X, which is im-

practical for all but low-dimensional spaces. That is why the nonparametric but

inductive (find a label for each point in X) information regularization is of more

theoretical than practical interest.

Nevertheless, if X is the one-dimensional real line the differential equation can

be solved analytically (Corduneanu and Jaakkola, 2003). We present the solution

here to illustrate the type of biases imposed by the information regularizer. When

X is one-dimensional, the labeled samples x1, x2, . . . , xl split the real line into

disjoint intervals; thus if P0(y|xi) are given, the differential equation can be solved

independently on each interval determined by the samples. The solution only

depends on the labels of the endpoints, and is given by the following:

Q(1|x) =
1

1 + tan2
(
−c

∫
1

p(x)

) ,

where c and the additive constant in
∫

1/p can be determined from the values of

the conditional at the endpoints. These two parameters need not be the same on

different intervals.

Figure 10.3 shows the influence of various p(x) on Q(1|x) through information

regularization under the boundary conditions P (y = 1|x = 0) = 0.9 and P (y =

1|x = 1) = 0.1. The property of preferring changes in the label in regions of low data

density is evident. Note that the optimal P (y|x) will always be between its values

at the boundary; otherwise for some x1
= x2 we would have P (y|x1) = P (y|x2),

and because the cumulative variation is minimized, necessarily P (y|x) = P (y|x1)

178 Data-Dependent Regularization

2 1.5 1 0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(y|x)

p(x)

x

x

2 1.5 1 0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(y|x)

p(x)

x

x

2 1.5 1 0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(y|x)

p(x)

x

x

2 1.5 1 0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(y|x)

p(x)

x

x

Figure 10.3 Nonparametric conditionals that minimize the information regularizer for
various one-dimensional data densities while the label at boundary labeled points is fixed

for every x ∈ [x1, x2].

10.2.1.3 Learning Theoretical Properties

We extend the analysis of information regularization on metric spaces given the

full knowledge of the marginal with a learning theoretical framework. The aim is to

show that the information regularizer captures the learning complexity, in the sense

that bounding it makes the labels learnable without any additional assumptions

about {Q(y|x)}x∈X,y∈Y. Because the setting is nonparametric, and the only link

that relates labels of distinct points is the information regularizer, {Q(y|x)}x∈X,y∈Y

would not be learnable without placing a constraint on the information regularizer.

While the learning framework is general, due to technical constraints 3 we derive an

explicit sample-size bound only for binary classification when X is one-dimensional.

We need to formalize the concepts, the concept class (from which to learn them),

and a measure of achievement consistent with (10.4). The key is then to show that

the task is learnable in terms of the complexity of the concept class.

Standard probably approximately correct (PAC)-learning of indicator functions

3. Only in one dimension do the labeled points give rise to segments that can be optimized
independently.

10.2 Information Regularization on Metric Spaces 179

of class membership will not suffice for our purpose. Indeed, conditionals with very

small information regularizer can still have very complex decision boundaries, of

infinite Vapnik-Chervonenkis dimension. Instead, we rely on the p-concept Kearnsp-concept

learning and Schapire (1994) model of learning full conditional densities: concepts are

functions Q(y|x) : X → [0, 1]. Then the concept class is that of conditionals with

bounded information regularizer:

Iγ(p) =

⎧
⎨

⎩Q :

∫

X

p(x)
∑

y∈Y

Q(y|x) ‖∇x log Q(y|x)‖2
dx ≤ γ

⎫
⎬

⎭ .

We measure the quality of learning by a loss function LQ : X × Y → [0,∞).

This can be the log loss − log Q(y|x) associated with maximizing likelihood, or the

square loss (Q(y|x) − 1)2. The goal is to estimate from a labeled sample a concept

Qopt from Iγ(p) that minimizes the expected loss Ep(x)P (y|x) [LQ], where P(y|x) is

the true conditional.

One cannot devise an algorithm that optimizes the expected loss directly, because

this quantity depends on the unknown P(y|x). We make the standard approximation

of estimating Qopt by minimizing instead the empirical estimate of the expected loss

from the labeled sample:

Q̂ = arg min
Q∈Iγ(p)

Ê [LQ] = arg min
Q

1

l

l∑

i=1

LQ(xi, yi).

If the loss function is the log loss, finding Q̂ is equivalent to maximizing the

information regularization objective (10.4) for a specific value of λ. However, we

will present the learning bound for the square loss, as it is bounded and easier to

work with. A similar result holds for the log-loss by using the equivalence results

between the log loss and square loss presented in (Abe et al., 2001).

The question is how different Q̂ (estimated from the sample) and Qopt (estimated

from the true conditional) can be due to this approximation. Learning theoretical

results provide guarantees that given enough labeled samples the minimization of

Ê [LQ] and Ep(x)P (y|x) [LQ] are equivalent. We say the task is learnable if with high

probability in the sample the empirical loss converges to the true loss uniformly for

all concepts as l → ∞. This guarantees that E
[
LQ̂

]
approximates E

[
LQopt

]
well.

Formally,

P{∃Q ∈ Iγ(p) : |Ê [LQ] − E [LQ] | > ǫ} ≤ δ, (10.5)

where the probability is with respect to all samples of size l. The inequality should

hold for l polynomially large in 1/ǫ, 1/δ, 1/γ.

We have the following sample complexity bound on the square loss, derived in

(Corduneanu and Jaakkola, 2003):

180 Data-Dependent Regularization

Theorem 10.2 Let ǫ, δ > 0. Then

P{∃Q ∈ Iγ(p) : |Ê [LQ] − E [LQ] | > ǫ} < δ,

where the probability is over samples of size l greater than

O

(
1

ǫ4

(
log

1

ǫ

)[
log

1

δ
+ cp(m

−1
p (ǫ2)) +

γ

(m−1
p (ǫ2))2

])
.

Here mp(α) = P{x : p(x) ≤ α}, and cp(α) is the number of disconnected sets in

{x : p(x) > α}.

The quantities mp(·) and cp(·) characterize how difficult the classification is due

to the structure of p(x). Learning is more difficult when significant probability mass

lies in regions of small p(x) because in such regions the variation of Q(y|x) is less

constrained. Also, the larger cp(·) is, the labels of more “clusters” need to be learned

from labeled data. The two measures of complexity are well behaved for the useful

densities. Densities of bounded support, Laplace and Gaussian, as well as mixtures

of these, have mp(α) < uα, where u is some constant. Mixtures of single-mode

densities have cp(α) bounded by the number of mixtures.

10.2.2 Finite Unlabeled Sample

We discuss here classification by information regularization when X is endowed with

a metric but the true marginal p(x) is unknown save for a large unlabeled sample

(xl+1, . . . , xn). In practice we might already have a domain-specific model (class) of

how the labels are generated and we show how to apply information regularization

if the labels must come from a parametric family Q(y|x, θ).

Although it is possible to approach this scenario directly by partitioning the space

into regions as in (Szummer and Jaakkola, 2002a), here we reduce the task to the

situation in which the full marginal is known by replacing the full marginal with

an empirical estimate obtained from the unlabeled sample.

We illustrate this method on logistic regression, in which we restrict the condi-logistic regression

tional to linear decision boundaries with the following parametric form: Q(y|x; θ) =

σ(yθ⊤x), where y ∈ {−1, 1} and σ(x) = 1/(1+exp(−x)). The Fisher information is

therefore F (x; θ) = σ(θ⊤x)σ(−θ⊤x)θθ⊤ and according to Eq. 10.3 the information

regularizer takes the form

‖θ‖2
∫

p̂(x)σ(θ⊤x)σ(−θ⊤x)dx.

Here p̂(x) is the empirical estimate of the true marginal. We compare two ways

of estimating p(x), the empirical approximation 1
n

∑n
j=1 δ(x − x′

j), as well as a

Gaussian kernel density estimator. The empirical approximation leads to optimizing

10.2 Information Regularization on Metric Spaces 181

the following criterion:

max
θ

l∑

i=1

log σ(yiθ
⊤xi) − ‖θ‖2 λ

n

n∑

j=1

σ(θ⊤xj)σ(−θ⊤xj).

It is instructive to contrast this information regularization objective with the

criterion optimized by transductive support vector machines (SVMs), as in chap-

ter 6. Changing the SVM loss function to logistic loss, transductive SVM/logistic

regression optimizes

max
θ,yl+1,...,yn

n∑

i=1

log σ(yiθ
⊤xi) −

λ

2
‖θ‖2

over all labelings of unlabeled data. In contrast, our algorithm contains the unla-

beled information in the regularizer.

The presented information regularization criterion can be easily optimized by

gradient-ascent or Newton-type algorithms. Note that the term σ(θ⊤x)σ(−θ⊤x) =

Q(1|x)Q(−1|x) focuses on the decision boundary. Therefore, compared to the stan-

dard logistic regression regularizer ‖θ‖2
, we penalize more decision boundaries cross-

ing regions of high data density. Also, the term makes the regularizer nonconvex,

making optimization potentially more difficult. This level of complexity is, however,

unavoidable by any semi-supervised algorithm for logistic regression, because the

structure of the problem introduces locally optimal decision boundaries.

If unlabeled data are limited, we may prefer a kernel estimate p̂(x) = 1
n

∑n
j=1 K(x, x′

j)

to the empirical approximation, provided the regularization integral remains

tractable. In logistic regression, if the kernels are Gaussian we can make the in-

tegral tractable by approximating σ(θ⊤x)σ(−θ⊤x) with a degenerate Gaussian.

Either from the Laplace approximation, or the Taylor expansion log(1 + ex) ≈
log 2 + x/2 + x2/8, we derive the following approximation, as in (Corduneanu and

Jaakkola, 2003):

σ(θ⊤x)σ(−θ⊤x) ≈ 1

4
exp

(
−1

4
(θ⊤x)2

)
.

With this approximation computing the integral of the regularizer over the kernel

centered μ of variance τI becomes integration of a Gaussian:

1

4
exp

(
−1

4
(θ⊤x)2

)
N(x ; μ, τI) =

1

4

√
detΣθ

det τI
exp

(
−μ⊤ (τI − Σθ)μ

2τ2

)
N

(
x ;

Σθμ

τ
, Σθ

)
,

where Σθ =
(

1
τ I + 1

2θθ⊤
)−1

= τ
[
I − 1

2θθ⊤/
(

1
τ + 1

2 ‖θ‖
2
)]

.

After integration only the multiplicative factor remains:

1

4

(
1 +

τ

2
‖θ‖2

)− 1
2

exp

(
−1

4

(θ⊤μ)2

1 + τ
2 ‖θ‖2

)
.

182 Data-Dependent Regularization

Therefore, if we place a Gaussian kernel of variance τI at each sample xj we

obtain the following approximation to the information regularization penalty:

‖θ‖2

√
1 + τ

2 ‖θ‖2

1

4n

n∑

j=1

exp

(
−1

4

(θ⊤xj)
2

1 + τ
2 ‖θ‖2

)
.

This regularizer can be also optimized by gradient ascent or Newton’s method.

10.2.2.1 Logistic Regression Experiments

We demonstrate the logistic information regularization algorithm as derived in the

previous section on synthetic classification tasks. The data are generated from two

bivariate Gaussian densities of equal covariance, a model in which the linear decision

boundary can be Bayes optimal. However, the small number of labeled samples

is not enough to accurately estimate the model, and we show that information

regularization with unlabeled data can significantly improve error rates.

We compare a few criteria: logistic regression trained only on labeled data

and regularized with the standard ‖θ‖2
; logistic regression regularized with the

information regularizer derived from the empirical estimate to p(x) ; and logistic

regression with the information regularizer derived from a Gaussian kernel estimate

of p(x).

We have optimized the regularized likelihood L(θ) both with gradient ascent

θ ← θ + α∇θL(θ), and with Newton’s method (iterative reweighted least squares)

θ ← θ − α∇2
θθL(θ)−1∇θL(θ) with similar results. Newton’s method converges

with fewer iterations, but computing the Hessian becomes prohibitive if data are

high-dimensional, and convergence depends on stronger assumptions that those for

gradient ascent. Gradient ascent is safer but slower.

We ran 100 experiments with data drawn from the same model and averaged the

error rates to obtain statistically significant results. In figure 10.4 (Corduneanu and

Jaakkola, 2003) we have obtained the error rates on 5 labeled and 100 unlabeled

samples. On each data set we initialized the iteration randomly multiple times.

We set the kernel width τ of the Gaussian kernel approximation to the regularizer

by standard cross-validation for density estimation. Nevertheless, on such a large

number of unlabeled samples the information regularizers derived from kernel and

empirical estimates perform indistinguishably. They both outperform the standard

supervised regularization significantly.

10.3 Information Regularization and Relational Data

In a large number of classification domains we do not have a natural metric relevant

to the classification task (correlating Q(y|x) and Q(y|x′) for x
= x′). In the absence

of a metric, biases about labelings are often naturally expressed in relational form.

For example, consider the task of categorization of webpages in the presence of

10.3 Information Regularization and Relational Data 183

0 0.5 1 1.5 2 2.5
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

regularization strength (λ)

e
rr

o
r

ra
te

information regularization (empirical)
information regularization (kernel)
standard regularization

Figure 10.4 Average error rates of logistic regression with and without information
regularization on 100 random selections of 5 labeled and 100 unlabeled samples from
bivariate Gaussian classes.

information about their link structure. It is natural to believe that pages that are

linked in the same manner (common parents and common children) are biased

to have similar topics even before we see any information about their content.

Similarly, all other things being equal, pages that share common words are likely

to have similar topics. In classifying gene function, genes whose protein products

interact are more likely to participate in the same process with similar function;

or in retrieving science publications, co-cited articles, or articles published in the

same journal, are likely to have similar relevance assessments.

Relational classification is not new – it has been studied extensively from arelational

classification Bayesian network perspective, as in (Taskar et al., 2002). Nevertheless, information

regularization can exploit the relational structure with minimal assumptions about

the distribution of data, even in a nonparametric, purely transductive context.

Let us begin by representing the relational constraints as a collection of regions

(sets) R, derived from observed examples (x1, x2, . . . , xn), where we expect the

labels to be similar within each region. The regions here differ from the continuous

case in that they are discrete subsets of indices {1, 2, . . . , n} in the training set. It

is useful to depict the region cover as a bipartite graph with points on one side and

regions on the other, as in figure 10.5. Note that regions can also be derived from a

metric if such a metric exists. For example, we could define regions centered at each

observed data point of a certain radius. For this reason every algorithm discussed

in this section is also applicable to finite sample metric settings.

We consider a generative process over the finite sample (x1, x2, . . . , xn) by

selecting a region R from R with probability γ(R), and then an observed point xi

184 Data-Dependent Regularization

…

…

P (x|R)

Q(y|x)

R1 Rm

x1 x2 xn−1 xn

γ(R)

Figure 10.5 Covering of the observed samples with a set of relational regions represented
as a bipartite graph. The lower nodes are the observed data points, and the upper nodes
are the regions.

from R according to the membership 4 probability P(i|R). The probabilities γ(R)

and P(x|R) are task specific and must be selected such that
∑

R∈R
γ(R)P(i|R) =

P(xi), the probability of sampling xi from (x1, . . . , xn). If the true marginal is

known, then we can replace P(xi) with its true value; otherwise, a reasonable

empirical estimate is P(xi) = 1/n for all i = 1 . . . n. If there is no reason to prefer

one region over another, γ(R) could be uniform on R; the constraint P(xi) = 1/n

cannot be typically simultaneously enforced, however.

In this context the goal of classification is purely transductive: given the labels

of the labeled training set, the classifier assigns labels to the unlabeled training

set in a manner consistent with the relational biases R. Nothing is inferred about

unobserved x ∈ X.

10.3.1 Nonparametric Classification

Without constraining the family of label distributions Q(y|x), the objective that

must be optimized according to the information regularization principle is

max
{Q(y|xi)}i=1...n

1

l

l∑

i=1

log Q(yi|xi) − λJ(Q; R),

4. In the finite sample case we use the index of the example interchangeably with the
example itself.

10.3 Information Regularization and Relational Data 185

where the information regularizer is given by

J(Q; R) =
∑

R∈R

γ(R)IR(x; y) =
∑

R∈R

γ(R)
∑

j∈R

∑

y∈Y

P(j|R)Q(y|xj) log
Q(y|xj)

Q(y|R)
,

where Q(y|R) =
∑

j∈R P (j|R)Q(y|xj) is the overall probability of y within the

region.

As opposed to the continuous version of information regularization, the above

objective depends on a finite set of parameters {Q(y|xi)}i=1...n; thus optimization

is efficient. Moreover, in the nonparametric setting the objective is convex due to the

convexity of mutual information (Cover and Thomas, 1991). The following lemma

from (Corduneanu and Jaakkola, 2004) formalizes the result:

Lemma 10.3 The relational regularization objective for λ > 0 is a strictly convex

function of the conditionals {Q(y|xi)} provided that (1) each point i ∈ {1, . . . , n}
belongs to at least one region containing at least two points, and (2) the membership

probabilities P(i|R) and γ(R) are all non-zero.

10.3.1.1 Distributed Propagation Algorithm

As in (Corduneanu and Jaakkola, 2004) we derive a local propagation algorithm for

minimizing the relational regularization objective that is both easy to implement

and provably convergent. The algorithm can be seen as a variant of the Blahut-

Arimoto algorithm in rate-distortion theory (Blahut, 1972). We begin by rewriting

each mutual information term IR(x; y) in the criterion

IR(x; y) =
∑

j∈R

∑

y∈Y

P(j|R)Q(y|xj) log
Q(y|xj)

Q(y|R)

= min
QR(·)

∑

j∈R

∑

y∈Y

P(j|R)Q(y|xj) log
Q(y|xj)

QR(y)
,

where the variational distribution QR(y) can be chosen independently from Q(y|xj)

but the unique minimum is attained when QR(y) = Q(y|R) =
∑

j∈R P(j|R)Q(y|xj).

We can extend the regularizer over both {Q(y|xi)} and {QR(y)} by defining

J(Q, QR; R) =
∑

R∈R

γ(R)
∑

j∈R

∑

y∈Y

P(j|R)Q(y|xj) log
Q(y|xj)

QR(y)

so that J(Q; R) = min{QR(·),R∈R} J(Q, QR; R) recovers the original regularizer.

The local propagation algorithm follows from optimizing each Q(y|xi) based onlocal propagation

algorithm fixed {QR(y)} and subsequently finding each QR(y) given fixed {Q(y|xi)}. We

omit the straightforward derivation and provide only the resulting algorithm: for

all points xi, i = (l + 1) . . . n (not labeled), and for all regions R ∈ R we perform

186 Data-Dependent Regularization

the following complementary averaging updates

Q(y|xi) ← 1

Zxi

exp(
∑

R:j∈R

P(R|j) logQR(y)) (10.6)

QR(y) ←
∑

j∈R

P(xj |R)Q(y|xj), (10.7)

where Zxj
is a normalization constant, and P (R|j) ∝ P (j|R)γ(R). In other words,

Q(y|xi) is obtained by taking a weighted geometric average of the distributions

associated with the regions, whereas QR(y) is (as before) a weighted arithmetic

average of the conditionals within each region.

Updating Q(y|xi) for each labeled point xi, i = 1 . . . l involves minimizing

1

l
log Q(yi|xi) −

λ

n
H(Q(·|xi)) − λ

∑

y∈Y

Q(y|xi)

(∑

R:j∈R

γ(R)P(j|R) log QR(y)

)
,

where H(Q(·|xi)) is the Shannon entropy of the conditional. While the objective

is strictly convex, the solution cannot be written in closed form and has to be

found iteratively (e.g., via Newton-Raphson or simple bracketing when the labels

are binary). A much simpler update Q(y|xi) = δ(y, yi), where yi is the observed

label for xi, may suffice in practice. This update results from taking the limit of

small λ and approximates the iterative solution.

Thus the transduction information regularization algorithm in the nonparametric

setting consists of the following steps:

1. Associate with each region R ∈ R a label probability distribution QR(y).

2. Initialize {Q(y|xi)}i=1...n and {QR(y)}R∈R. The initialization values are

irrelevant because the objective is convex and admits a unique minimum.

3. Iterate (10.6) and (10.7) alternatively until convergence. For labeled points

a slightly different update than (10.6) must be used to account for the obser-

vation.

10.3.1.2 Learning Theoretical Properties

As in the metric case, we seek to show that the information regularizer is an

adequate measure of complexity, in the sense that learning a labeling consistent

with a cap on the regularizer requires fewer labeled samples. We consider only

the simpler setting where the labels are hard and binary, Q(y|xi) ∈ {0, 1}, and

show that bounding the information regularizer significantly reduces the number

of possible labelings. Assuming that the points in a region have uniform weights

P (j|R), let N(γ) be the number of labelings of {x1, x2, . . . , xn} consistent with

J(Q,R) < γ.

According to (Corduneanu and Jaakkola, 2004) we have the following result:

10.3 Information Regularization and Relational Data 187

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 10.6 Clusters correctly separated by information regularization given one label
from each class.

Theorem 10.4 log2 N(γ) ≤ C(γ) + γ · n · t(R)/ minR γ(R), where C(γ) → 1 as

γ → 0, and t(R) is a property of R that does not depend on the cardinality of R.

Therefore when γ is small, N(γ) is exponentially smaller than 2n, and

lim
γ→0

N(γ) = 2.

10.3.1.3 Experiments

To begin with we illustrate the performance of transductive information regular-

ization on two two-dimensional generated binary classification tasks (Corduneanu

and Jaakkola, 2004). In this setting we convert the tasks to relational classification

by deriving regions of observed points contained in spheres centered at each data

point and of a certain radius.

On the classic semi-supervised data set in figure 10.6 the method correctly

propagates the labels to the clusters starting from a single labeled point in each

class. In the example in figure 10.7 we demonstrate that information regularization

can be used as a post-processing to supervised classification and improve error rates

by taking advantage of the topology of the space. All points are a priori labeled

by a linear classifier that is nonoptimal and places a decision boundary through

the negative and positive clusters. Information regularization is able to correct the

mislabeling of the clusters. Both results are quite robust in the choice of the radius

of the regions as long as all regions remain connected with each other.

Next we test the algorithm on a web document classification task, the WebKB

data set of (Blum and Mitchell, 1998). The data consist of 1051 pages collected

from the websites of four universities. This particular subset of WebKB is a binary

classification task into “course” and “non-course” pages. 22% of the documents are

positive (“course”). The data set is interesting because apart from the documents’

contents we have information about the link structure of the documents. The two

188 Data-Dependent Regularization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10.7 Ability of information regularization to correct the output of a prior
classifier (left: before; right: after)

sources of information can illustrate the capability of information regularization of

combining heterogeneous unlabeled representations.

Both “text” and “link” features used here are a bag-of-words representation of

documents. To obtain “link” features we collect text that appears under all links

that link to that page from other pages, and produce its bag-of-words representa-

tion. We employ no stemming, or stopword processing, but restrict the vocabulary

to 2000 text words and 500 link words. The experimental setup consists of 100

random selections of three positive-labeled, nine negative-labeled, and the rest un-

labeled. The test set includes all unlabeled documents. We report a naive Bayes

baseline based on the model that features of different words are independent given

the document class. The naive Bayes algorithm can be run on text features, link

features, or combine the two feature sets by assuming independence. We also quote

the performance of the semi-supervised method obtained by combining naive Bayes

with the expectation-maximization (EM) algorithm as in chapter 3.

We measure the performance of the algorithms by the F-score equal to 2pr/(p+r),

where p and r are the precision and recall. A high F-score indicates that the pre-

cision and recall are high and also close to each other. To compare algorithms

independently of the probability threshold that decides between positive and neg-

ative samples, the results reported are the best F-scores for all possible settings of

the threshold.

The key issue in applying information regularization is the selection of sound

relational biases (i.e., R). For document classification we obtained the best results

by grouping all documents that share a certain word into the same region; thus each

region is in fact a word, and there are as many regions as the size of the vocabulary.

Regions are weighted equally, as well as the words belonging to the same region.

The choice of λ is also task dependent. Here cross-validation selected an optimal

value λ = 90. When running information regularization with both text and link

features we combined the coverings with a weight of 0.5.

All results are reported in table 10.1. We observe that information regularization

10.4 Discussion 189

Table 10.1 Webpage classification comparison between naive Bayes and information
regularization and semi-supervised naive Bayes + EM on text, link, and joint features

naive Bayes inforeg naive Bayes + EM

text 82.85 85.10 93.69

link 65.64 82.85 67.18

both 83.33 86.15 91.01

performs better than naive Bayes on all types of features, that combining text and

link features improves performance of the regularization method, and that on link

features the method performs better than the semi-supervised naive Bayes + EM.

10.3.2 Parametric Classification

We briefly discuss extensions to the transductive information regularization algo-

rithm with relational biases when the conditional takes a parametric form (unpub-

lished work). The extended framework subsumes standard estimation principles

such as supervised maximum likelihood, EM from incomplete data, as well as infor-

mation regularization presented above. One of the key modifications is to associate

with each region R a parametric model QR(x, y|θR) instead of the standard average

label QR(y) as introduced in the above transductive algorithm. With this change

the meaning of the regions shifts to represent groups of data points that are mod-

eled in a similar way (same parametric family), where the parametric family may

change from region to region. This revision increases the expressive power of infor-

mation regularization significantly while remaining tractable. Preliminary results

are encouraging.

10.4 Discussion

We have presented the broader information regularization framework, a principle

for assigning labels to unlabeled data in a semi-supervised setting. The principle

seeks to minimize the information induced between examples and labels relative to

a topology over the examples. In other words, we minimize spurious information

content not forced by the observed labels.

The information regularization principle manifests itself in different forms de-

pending on assumptions about the space of examples – metric or relational. We

demonstrated the resulting algorithms both under the idealized setting where the

marginal is known, as well as when only a finite unlabeled sample is available.

Transductive nonparametric classification results in an efficient algorithm that is

provably convergent to a unique optimum.

We can also constrain the conditional probabilities to take a particular para-

190 Data-Dependent Regularization

metric form. This extension can be generalized considerably, leading to a unifying

framework.

III Graph-Based Methods

11 Label Propagation and Quadratic Criterion

Yoshua Bengio bengioy@iro.umontreal.ca

Olivier Delalleau delallea@iro.umontreal.ca

Nicolas Le Roux nicolas.le.roux@umontreal.ca

Various graph-based algorithms for semi-supervised learning have been proposed

in the recent literature. They rely on the idea of building a graph whose nodes

are data points (labeled and unlabeled) and edges represent similarities between

points. Known labels are used to propagate information through the graph in order

to label all nodes. In this chapter, we show how these different algorithms can be

cast into a common framework where one minimizes a quadratic cost criterion whose

closed-form solution is found by solving a linear system of size n (total number of

data points). The cost criterion naturally leads to an extension of such algorithms

to the inductive setting, where one obtains test samples one at a time: the derived

induction formula can be evaluated in O(n) time, which is much more efficient than

solving again exactly the linear system (which in general costs O(kn2) time for a

sparse graph where each data point has k neighbors). We also use this inductive

formula to show that when the similarity between points satisfies a locality property,

then the algorithms are plagued by the curse of dimensionality, with respect to the

dimensionality of an underlying manifold.

11.1 Introduction

Many semi-supervised learning algorithms rely on the geometry of the data induced

by both labeled and unlabeled examples to improve on supervised methods that use

only the labeled data. This geometry can be naturally represented by an empirical

graph g = (V, E) where nodes V = {1, . . . , n} represent the training data and edges

E represent similarities between them (cf. section 1.3.3). These similarities are given

by a weight matrix W: Wij is non-zero iff xi and xj are “neighbors”, i.e., the edgeweight matrix

(i, j) is in E (weighted by Wij). The weight matrix W can be, for instance, the

k-nearest neighbor matrix: Wij = 1 iff xi is among the k-nearest neighbors of xj

194 Label Propagation and Quadratic Criterion

or vice versa (and is 0 otherwise). Another typical weight matrix is given by the

Gaussian kernel of width σ:

Wij = e−
‖xi−xj‖2

2σ2 . (11.1)

In general, we assume Wij is given by a symmetric positive function WX (possibly

dependent on the data set X = (x1, . . . , xn)) by Wij = WX(xi, xj) ≥ 0. This

functional view will be useful in the inductive setting (section 11.4).

This chapter is organized as follows. In section 11.2 we present algorithms based

on the idea of using the graph structure to spread labels from labeled examples to

the whole data set (Szummer and Jaakkola, 2002b; Zhu and Ghahramani, 2002;

Zhou et al., 2004; Zhu et al., 2003b). An alternative approach originating from

smoothness considerations yields algorithms based on graph regularization, which

naturally leads to a regularization term based on the graph Laplacian (Belkin and

Niyogi, 2003b; Joachims, 2003; Zhou et al., 2004; Zhu et al., 2003b; Belkin et al.,

2004b; Delalleau et al., 2005). This approach, detailed in section 11.3, is then shown

to be tightly linked to the previous label propagation algorithms. In sections 11.4

and 11.5 we present two extensions of these algorithms: first, a simple way to turn

a number of them, originally designed for the transductive setting, into induction

algorithms, then a method to better balance classes using prior information about

the classes’ distribution. Section 11.6 finally explores theoretical limitations of

these methods which, being based mostly on the local geometry of the data in

small neighborhoods, are subject to the curse of dimensionality when the intrinsic

dimension of the underlying distribution (the dimensionality of the manifold near

which it concentrates) increases, when this manifold is far from being flat.

11.2 Label Propagation on a Similarity Graph

11.2.1 Iterative Algorithms

Given the graph g, a simple idea for semi-supervised learning is to propagate labelslabel propagation

on the graph. Starting with nodes 1, 2, . . . , l labeled1 with their known label (1 or

−1) and nodes l + 1, . . . , n labeled with 0, each node starts to propagate its label

to its neighbors, and the process is repeated until convergence.

An algorithm of this kind has been proposed by Zhu and Ghahramani (2002),

and is described in algorithm 11.1. Estimated labels on both labeled and unlabeled

data are denoted by Ŷ = (Ŷl, Ŷu), where Ŷl may be allowed to differ from the given

1. If there are M > 2 classes, one can label each node i with an M -dimensional vector
(one-hot for labeled samples, i.e., with 0 everywhere except a 1 at index yi = class
of xi), and use the same algorithms in a one-versus-rest fashion. We consider here the
classification case, but extension to regression is straightforward since labels are treated
as real values.

11.2 Label Propagation on a Similarity Graph 195

Algorithm 11.1 Label propagation (Zhu and Ghahramani, 2002)

Compute affinity matrix W from (11.1)

Compute the diagonal degree matrix D by Dii ←
∑

j Wij

Initialize Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)

Iterate

1. Ŷ (t+1) ← D−1WŶ (t)

2. Ŷl
(t+1) ← Yl

until convergence to Ŷ (∞)

Label point xi by the sign of ŷ
(∞)
i

labels Yl = (y1, . . . , yl). In this particular algorithm, Ŷl is constrained to be equal

to Yl. We propose in algorithm 11.2 below a slightly different label propagation

scheme (originally inspired from the Jacobi iterative method for linear systems),

similar to the previous algorithm except that

we advocate forcing Wii = 0, which often works better;

we allow Ŷl
= Yl (which may be useful, e.g., when classes overlap); and

we use an additional regularization term ǫ for better numerical stability.

Algorithm 11.2 Label propagation (inspired from Jacobi iteration algorithm)

Compute an affinity matrix W such that Wii = 0

Compute the diagonal degree matrix D by Dii ←
∑

j Wij

Choose a parameter α ∈ (0, 1) and a small ǫ > 0

μ ← α
1−α ∈ (0, +∞)

Compute the diagonal matrix A by Aii ← I[l](i) + μDii + μǫ

Initialize Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)

Iterate Ŷ (t+1) ← A−1(μWŶ (t) + Ŷ (0)) until convergence to Ŷ (∞)

Label point xi by the sign of ŷ
(∞)
i

The iteration step of algorithm 11.2 can be rewritten for a labeled example (i ≤ l)

ŷ
(t+1)
i ←

∑
j Wij ŷ

(t)
j + 1

μyi
∑

j Wij + 1
μ + ǫ

(11.2)

and for an unlabeled example (l + 1 ≤ i ≤ n)

ŷ
(t+1)
i ←

∑
j Wij ŷ

(t)
j∑

j Wij + ǫ
. (11.3)

These two equations can be seen as a weighted average of the neighbors’ current

labels, where for labeled examples we also add the initial label (whose weight is

inversely proportional to the parameter μ). The ǫ parameter is a regularization

196 Label Propagation and Quadratic Criterion

term to prevent numerical problems when the denominator becomes too small. The

convergence of this algorithm follows from the convergence of the Jacobi iteration

method for a specific linear system, and will be discussed in section 11.3.3.

Another similar label propagation algorithm was given by Zhou et al. (2004):

at each step a node i receives a contribution from its neighbors j (weighted by

the normalized weight of the edge (i, j)), and an additional small contribution

given by its initial value. This process is detailed in algorithm 11.3 below (the

name “label spreading” was inspired from the terminology used by Zhou et al.

(2004)). Compared to algorithm 11.2, it corresponds to the minimization of a

slightly different cost criterion, maybe not as intuitive: this will be studied later

in sections 11.3.2 and 11.3.3.

Algorithm 11.3 Label spreading (Zhou et al., 2004)

Compute the affinity matrix W from (11.1) for i
= j (and Wii ← 0)

Compute the diagonal degree matrix D by Dii ←
∑

j Wij

Compute the normalized graph Laplacian L ← D−1/2WD−1/2

Initialize Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)

Choose a parameter α ∈ [0, 1)

Iterate Ŷ (t+1) ← αLŶ (t) + (1 − α)Ŷ (0) until convergence to Ŷ (∞)

Label point xi by the sign of ŷ
(∞)
i

The proof of convergence of algorithm 11.3 is simple (Zhou et al., 2004). The

iteration equation being Ŷ (t+1) ← αLŶ (t) + (1 − α)Ŷ (0), we have

Ŷ (t+1) = (αL)tŶ (0) + (1 − α)
t∑

i=0

(αL)iŶ (0).

The matrix L being similar to P = D−1W = D−1/2LD1/2, it has the same

eigenvalues. Since P is a stochastic matrix by construction, its eigenvalues are in

[−1, 1], and consequently the eigenvalues of αL are in (−1, 1) (remember α < 1).

It follows that when t → ∞, (αL)t → 0 and

t∑

i=0

(αL)i → (I − αL)−1

so that

Ŷ (t) → Ŷ (∞) = (1 − α)(I − αL)−1Ŷ (0). (11.4)

The convergence rate of these three algorithms depends on specific properties of

the graph such as the eigenvalues of its Laplacian. In general, we can expect it to

be at worst on the order of O(kn2), where k is the number of neighbors of a point

in the graph. In the case of a dense weight matrix, the computational time is thus

cubic in n.

11.2 Label Propagation on a Similarity Graph 197

11.2.2 Markov Random Walks

A different algorithm based on label propagation on the similarity graph was

proposed earlier by Szummer and Jaakkola (2002b). They consider Markov random

walks on the graph with transition probabilities from i to j,transition

probabilities
pij =

Wij∑
k Wik

, (11.5)

in order to estimate probabilities of class labels. Here, Wij is given by a Gaussian

kernel for neighbors and 0 for non-neighbors, and Wii = 1 (but one could also use

Wii = 0). Each data point xi is associated with a probability P (y = 1|i) of being

of class 1. Given a point xk, we can compute the probability P (t)(ystart = 1|k) that

we started from a point of class ystart = 1 given that we arrived to xk after t steps

of random walk by

P (t)(ystart = 1|k) =

n∑

i=1

P (y = 1|i)P0|t(i|k),

where P0|t(i|k) is the probability that we started from xi given that we arrived at

k after t steps of random walk (this probability can be computed from the pij). xk

is then classified to 1 if P (t)(ystart = 1|k) > 0.5, and to −1 otherwise. The authors

propose two methods to estimate the class probabilities P (y = 1|i). One is based on

an iterative expectation-maximization (EM) algorithm, the other on maximizing

a margin-based criterion, which leads to a closed-form solution (Szummer and

Jaakkola, 2002b).

It turns out that this algorithm’s performance depends crucially on the hyper-

parameter t (the length of the random walk). This parameter has to be chosen

by cross-validation (if enough data are available) or heuristically (it corresponds

intuitively to the amount of propagation we allow in the graph, i.e., to the scale of

the clusters we are interested in). An alternative way of using random walks on the

graph is to assign to point xi a label depending on the probability of arriving at

a positively labeled example when performing a random walk starting from xi and

until a labeled example is found (Zhu and Ghahramani, 2002; Zhu et al., 2003b).

The length of the random walk is not constrained anymore to a fixed value t. In

the following, we will show that this probability, denoted by P (yend = 1|i), is equal

(up to a shift and scaling) to the label obtained with algorithm 11.1 (this is similar

to the proof by Zhu and Ghahramani (2002)).

When xi is a labeled example, P (yend = 1|i) = δyi1, and when it is unlabeled we

have the relation

P (yend = 1|i) =
n∑

j=1

P (yend = 1|j)pij , (11.6)

with the pij computed as in (11.5). Let us consider the matrix P = D−1W,

i.e., such that Pij = pij . We will denote ẑi = P (yend = 1|i) and Ẑ = (Ẑl, Ẑu)

198 Label Propagation and Quadratic Criterion

the corresponding vector split into its labeled and unlabeled parts. Similarly, the

matrices D and W can be split into four parts:

D =

(
Dll 0

0 Duu

)

W =

(
Wll Wlu

Wul Wuu

)
.

Equation (11.6) can then be written

Ẑu =
(
D−1

uuWul | D−1
uuWuu

)
(

Ẑl

Ẑu

)

= D−1
uu

(
WulẐl + WuuẐu

)
,

which leads to the linear system

LuuẐu = WulẐl, (11.7)

where L = D−W is the un-normalized graph Laplacian. Since Ẑl is known (ẑi = 1

if yi = 1, and 0 otherwise), this linear system can be solved in order to find the

probabilities Ẑu on unlabeled examples. Note that if (Ẑu, Ẑl) is a solution of (11.7),

then (Ŷu, Ŷl) is also a solution, with

Ŷu = 2Ẑu − (1, 1, . . . , 1)⊤

Ŷl = 2Ẑl − (1, 1, . . . , 1)⊤ = Yl.

This allows us to rewrite the linear system (11.7) in terms of the vector of original

labels Yl as follows:

LuuŶu = WulŶl (11.8)

with the sign of each element yi of Ŷu giving the estimated label of xi (which is

equivalent to comparing ẑi to a 0.5 threshold).

The solution of this random walk algorithm is thus given in closed form by a linear

system, which turns out to be equivalent to iterative algorithm 11.1 (or equivalently,

algorithm 11.2 when μ → 0 and ǫ = 0), as we will see in section 11.3.4.

11.3 Quadratic Cost Criterion

In this section, we investigate semi-supervised learning by minimization of a cost

function derived from the graph g. Such methods will be shown to be equivalent to

label propagation algorithms presented in the previous section.

11.3 Quadratic Cost Criterion 199

11.3.1 Regularization on Graphs

The problem of semi-supervised learning on the graph g consists in finding a labeling

of the graph that is consistent with both the initial (incomplete) labeling and the

geometry of the data induced by the graph structure (edges and weights W). Given

a labeling Ŷ = (Ŷl, Ŷu), consistency with the initial labeling can be measured, e.g.,

by

l∑

i=1

(ŷi − yi)
2 = ‖Ŷl − Yl‖2. (11.9)

On the other hand, consistency with the geometry of the data, which follows from

the smoothness (or manifold) assumption discussed in section 1.2, motivates asmoothness

assumption penalty term of the form

1

2

n∑

i,j=1

Wij(ŷi − ŷj)
2 =

1

2

⎛

⎝2

n∑

i=1

ŷ2
i

n∑

j=1

Wij − 2

n∑

i,j=1

Wij ŷiŷj

⎞

⎠

= Ŷ ⊤(D − W)Ŷ

= Ŷ ⊤LŶ (11.10)

with L = D−W the un-normalized graph Laplacian. This means we penalize rapidgraph Laplacian

changes in Ŷ between points that are close (as given by the similarity matrix W).

Various algorithms have been proposed based on such considerations. Zhu et al.

(2003b) force the labels on the labeled data (Ŷl = Yl), then minimize (11.10) over

Ŷu. However, if there is noise in the available labels, it may be beneficial to allow

the algorithm to relabel the labeled data (this could also help generalization in a

noise-free setting where, for instance, a positive sample had been drawn from a

region of space mainly filled with negative samples). This observation leads to a

more general cost criterion involving a tradeoff between (11.9) and (11.10) (Belkin

et al., 2004b; Delalleau et al., 2005). A small regularization term can also be added

in order to prevent degenerate situations, for instance, when the graph g has a

connected component with no labeled sample. We thus obtain the following general

labeling cost2:

C(Ŷ) = ‖Ŷl − Yl‖2 + μŶ ⊤LŶ + μǫ‖Ŷ ‖2. (11.11)

Joachims (2003) obtained the same kind of cost criterion from the perspective of

spectral clustering. The unsupervised minimization of Ŷ ⊤LŶ (under the constraintsspectral

clustering Ŷ ⊤1 = 0 and ‖Ŷ ‖2 = n) is a relaxation of the NP-hard problem of minimizing the

normalized cut of the graph g, i.e. splitting g into two subsets g+ = (V +, E+) and

2. Belkin et al. (2004b) first center the vector Yl and also constrain Ŷ to be centered:
these restrictions are needed to obtain theoretical bounds on the generalization error, and
will not be discussed in this chapter.

200 Label Propagation and Quadratic Criterion

g− = (V −, E−) such as to minimize
∑

i∈V +,j∈V − Wij

|V +||V −| ,

where the normalization by |V +||V −| favors balanced splits. Based on this ap-

proach, Joachims (2003) introduced an additional cost which corresponds to our

part ‖Ŷl −Yl‖2 of the cost (11.11), in order to turn this unsupervised minimization

into a semi-supervised transductive algorithm (called spectral graph transducer).

Note, however, that although very similar, the solution obtained differs from the

straighforward minimization of (11.11) since

the labels are not necessarily +1 and −1, but depend on the ratio of the number

of positive examples over the number of negative examples (this follows from the

normalized cut optimization);

the constraint ‖Ŷ ‖2 = n used in the unsupervised setting remains, thus leading

to an eigenvalue problem instead of the direct quadratic minimization that will be

studied in the next section;

the eigenspectrum of the graph Laplacian is normalized by replacing the ordered

Laplacian eigenvalues by a monotonically increasing function, in order to focus

on the ranking among the smallest cuts and abstract, for example, from different

magnitudes of edge weights.

Belkin and Niyogi (2003b) also proposed a semi-supervised algorithm based

on the same idea of graph regularization, but using a regularization criterion

different from the quadratic penalty term (11.10). It consists in taking advantage

of properties of the graph Laplacian L, which can be seen as an operator ongraph Laplacian

functions defined on nodes of the graph g. The graph Laplacian is closely related

to the Laplacian on the manifold, whose eigenfunctions provide a basis for the

Hilbert space of L2 functions on the manifold (Rosenberg, 1997). Eigenvalues

of the eigenfunctions provide a measure of their smoothness on the manifold

(low eigenvalues correspond to smoother functions, with the eigenvalue 0 being

associated with the constant function). Projecting any function in L2 on the

first p eigenfunctions (sorted by order of increasing eigenvalue) is thus a way of

smoothing it on the manifold. The same principle can be applied to our graph

setting, thus leading to algorithm 11.4 (Belkin and Niyogi, 2003b) below. It consists

in computing the first p eigenvectors of the graph Laplacian (each eigenvector

can be seen as the corresponding eigenfunction applied on training points), then

finding the linear combination of these eigenvectors that best predicts the labels

(in the mean-squared sense). The idea is to obtain a smooth function (in the sense

that it is a linear combination of the p smoothest eigenfunctions of the Laplacian

operator on the manifold) that fits the labeled data. This algorithm does not

explicitely correspond to the minimization of a nonparametric quadratic criterion

such as (11.11) and thus is not covered by the connection shown in section 11.3.3

with label propagation algorithms, but one must keep in mind that it is based

11.3 Quadratic Cost Criterion 201

Algorithm 11.4 Laplacian regularization (Belkin and Niyogi, 2003b)

Compute the affinity matrix W (with Wii = 0)

Compute the diagonal degree matrix D by Dii ←
∑

j Wij

Compute the un-normalized graph Laplacian L = D − W

Compute the p eigenvectors e1, . . . , ep corresponding to the p smallest eigenvalues

of L

Minimize over a1, . . . , ap the quadratic criterion
∑l

i=1

(
yi −

∑p
j=1 ajej,i

)2

Label point xi (1 ≤ i ≤ n) by the sign of
∑p

j=1 ajej,i

on similar graph regularization considerations and offers competitive classification

performance.

11.3.2 Optimization Framework

In order to minimize the quadratic criterion (11.11), we can compute its derivative

with respect to Ŷ . We will denote by S the diagonal matrix (n × n) given by

Sii = I[l](i), so that the first part of the cost can be rewritten ‖SŶ − SY ‖2. The

derivative of the criterion is then

1

2

∂C(Ŷ)

∂Ŷ
= S(Ŷ − Y) + μLŶ + μǫŶ

= (S + μL + μǫI) Ŷ − SY.

The second derivative is

1

2

∂2C(Ŷ)

∂Ŷ ∂Ŷ ⊤
= S + μL + μǫI,

which is a positive definite matrix when ǫ > 0 (L is positive semi-definite as shown

by (11.10)). This ensures the cost is minimized when the derivative is set to 0, i.e.,

Ŷ = (S + μL + μǫI)
−1

SY. (11.12)

This shows how the new labels can be obtained by a simple matrix inversion. It

is interesting to note that this matrix does not depend on the original labels, but

only on the graph Laplacian L; the way labels are “propagated” to the rest of the

graph is entirely determined by the graph structure.

An alternative (and very similar) criterion was proposed by Zhou et al. (2004),

202 Label Propagation and Quadratic Criterion

and can be written

C′(Ŷ) = ‖Ŷ − SY ‖2 +
μ

2

∑

i,j

Wij

(
ŷi√
Dii

− ŷj√
Djj

)2

(11.13)

= ‖Ŷl − Yl‖2 + ‖Ŷu‖2 + μŶ ⊤ (I − L) Ŷ

= ‖Ŷl − Yl‖2 + ‖Ŷu‖2 + μŶ ⊤D−1/2 (D − W)D−1/2Ŷ

= ‖Ŷl − Yl‖2 + ‖Ŷu‖2 + μ(D−1/2Ŷ)⊤L(D−1/2Ŷ).

This criterion C ′ has two main differences with C (11.11):

the term ‖Ŷ − SY ‖2 = ‖Ŷl − Yl‖2 + ‖Ŷu‖2 not only tries to fit the given labels

but also to pull to 0 labels of unlabeled samples (this is a similar but stronger

regularization compared to the term μǫ‖Ŷ ‖2 in the cost C), and

labels are normalized by the square root of the degree matrix elements Dii when

computing their similarity. This normalization may not be intuitive, but is necessary

for the equivalence with the label propagation algorithm 11.3, as seen below.

11.3.3 Links with Label Propagation

The optimization algorithms presented above turn out to be equivalent to the

label propagation methods from section 11.2. Let us first study the optimization

of the cost C(Ŷ) from (11.11). The optimum Ŷ is given by (11.12), but another

way to obtain this solution, besides matrix inversion, is to solve the linear system

using one of the many standard methods available. We focus here on the simple

Jacobi iteration method (Saad, 1996), which consists in solving for each componentJacobi iteration

iteratively. Given the system

Mx = b (11.14)

the approximate solution at step t + 1 is

x
(t+1)
i =

1

Mii

⎛

⎝b −
∑

j �=i

Mijx
(t)
j

⎞

⎠ . (11.15)

Applying this formula with x := Ŷ , b := SY and M := S + μL + μǫI, we obtain

ŷ
(t+1)
i =

1

I[l](i) + μ
∑

j �=i Wij + μǫ

⎛

⎝I[l](i)yi + μ
∑

j �=i

Wij ŷ
(t)
j

⎞

⎠ ,

i.e. exactly the update equations (11.2) and (11.3) used in algorithm 11.2. Con-

vergence of this iterative algorithm is guaranteed by the following theorem (Saad,

1996): if the matrix M is strictly diagonally dominant, the Jacobi iteration (11.15)

converges to the solution of the linear system (11.14). A matrix M is strictly di-

agonally dominant iff |Mii| >
∑

j �=i |Mij |, which is clearly the case for the matrix

11.3 Quadratic Cost Criterion 203

S+μL+μǫI (remember L = D−W with Dii =
∑

i�=j Wij , and all Wij ≥ 0). Note

that this condition also guarantees the convergence of the Gauss-Seidel iteration,

which is the same as the Jacobi iteration except that updated coordinates x
(t+1)
i

are used in the computation of x
(t+1)
j for j > i. This means we can apply Eqs. 11.2

and 11.3 with Ŷ (t+1) and Ŷ (t) sharing the same storage.

To show the equivalence between algorithm 11.3 and the minimization of C ′ given

in (11.13), we compute its derivative with respect to Ŷ :

1

2

∂C′(Ŷ)

∂Ŷ
= Ŷ − SY + μ

(
Ŷ − LŶ

)

and is zero iff

Ŷ = ((1 + μ)I − μL)
−1

SY,

which is the same equation as (11.4) with μ = α/(1 − α), up to a positive factor

(which has no effect on the classification since we use only the sign).

11.3.4 Limit Case and Analogies

It is interesting to study the limit case when μ → 0. In this section we will set ǫ = 0

to simplify notations, but one should keep in mind that it is usually better to use a

small positive value for regularization. When μ → 0, the cost (11.11) is dominated

by ‖Ŷl − Yl‖2. Intuitively, this corresponds to

1. forcing Ŷl = Yl, then

2. minimizing Ŷ ⊤LŶ .

Writing Ŷ = (Yl, Ŷu) (i.e. Ŷl = Yl) and

L =

(
Lll Llu

Lul Luu

)

the minimization of Ŷ ⊤LŶ with respect to Ŷu leads to

LulYl + LuuŶu = 0 ⇒ Ŷu = −L−1
uuLulYl. (11.16)

If we consider now Eq. 11.12 where Ŷl is not constrained anymore, when ǫ = 0 and

μ → 0, using the continuity of the inverse matrix application at I, we obtain that

Ŷl → Yl and

Ŷu = −L−1
uuLulŶl,

which, as expected, gives us the same solution as (11.16).

Analogy with Markov Random Walks In section 11.2.2, we presented an

algorithm of label propagation based on Markov random walks on the graph, leading

204 Label Propagation and Quadratic Criterion

to the linear system (11.8). It is immediately seen that this system is exactly the

same as the one obtained in (11.16). The equivalence of the solutions discussed in

the previous section between the linear system and iterative algorithms thus shows

that the random walk algorithm described in section 11.2.2 is equivalent to the

iterative algorithm 11.2 when μ → 0, i.e., when we keep the original labels instead

of iteratively updating them by (11.2).

Analogy with Electric Networks Zhu et al. (2003b) also link this solution to

heat kernels and give an electric network interpretation taken from Doyle and Snell

(1984), which we now present. This analogy is interesting as it gives a physical

interpretation to the optimization and label propagation framework studied in this

chapter. Let us consider an electric network built from the graph g by adding

resistors with conductance Wij between nodes i and j (the conductance is the

inverse of the resistance). The positive labeled nodes are connected to a positive

voltage source (+1V), the negative ones to a negative source (−1V), and we want to

compute the voltage on the unlabeled nodes (i.e., their label). Denoting the intensity

between i and j by Iij , and the voltage by Vij = ŷj − ŷi, we use Ohm’s law,

Iij = WijVij , (11.17)

and Kirchoff’s law on an unlabeled node i > l:
∑

j

Iij = 0. (11.18)

Kirchoff’s law states that the sum of currents flowing out from i (such that Iij > 0)

is equal to the sum of currents flowing into i (Iij < 0). Here, it is only useful to

apply it to unlabeled nodes as the labeled ones are connected to a voltage source,

and thus receive some unknown (and uninteresting) current. Using (11.17), we can

rewrite (11.18),

0 =
∑

j

Wij(ŷj − ŷi)

=
∑

j

Wij ŷj − ŷi

∑

j

Wij

= (WŶ − DŶ)i

= −(LŶ)i,

and since this is true for all i > l, it is equivalent in matrix notations to

LulYl + LuuŶu = 0,

which is exactly (11.16). Thus the solution of the limit case (when labeled examples

are forced to keep their given label) is given by the voltage in an electric network

where labeled nodes are connected to voltage sources and resistors correspond to

weights in the graph g.

11.4 From Transduction to Induction 205

11.4 From Transduction to Induction

The previous algorithms all follow the transduction setting presented in section

1.2.4. However, it could happen that one needs an inductive algorithm, for instance,

in a situation where new test examples are presented one at a time and solving theinductive setting

linear system turns out to be too expensive. In such a case, the cost criterion

(11.11) naturally leads to an induction formula that can be computed in O(n)

time. Assuming that labels ŷ1, . . . , ŷn have already been computed by one of the

algorithms above, and we want the label ŷ of a new point x: we can minimize

C(ŷ1, . . . , ŷn, ŷ) only with respect to this new label ŷ, i.e. minimize

constant + μ

⎛

⎝
∑

j

WX(x, xj)(ŷ − ŷj)
2 + ǫŷ2

⎞

⎠ ,

where WX is the (possibly data-dependent) function that generated the matrix W

on X = (x1, . . . , xn). Setting to zero the derivative with respect to ŷ directly yields

ŷ =

∑
j WX(x, xj)ŷj∑

j WX(x, xj) + ǫ
, (11.19)

a simple inductive formula whose computational requirements scale linearly with

the number of samples already seen.

It is interesting to note that, if WX is the k-nearest neighbor function, (11.19)

reduces to k-nearest neighbor classification. Similarly, if WX is the Gaussian kernel

(11.1), it is equivalent to the formula for Parzen windows or Nadaraya-WatsonParzen windows

nonparametric regression (Nadaraya, 1964; Watson, 1964). However, we use in this

formula the learned predictions on the labeled and unlabeled examples as if they

were observed training values, instead of relying only on labeled data.

11.5 Incorporating Class Prior Knowledge

From the beginning of the chapter, we have assumed that the class label is given by

the sign of ŷ. Such a rule works well when classes are well separated and balanced.

However, if this is not the case (which is likely to happen with real-world data

sets), the classification resulting from the label propagation algorithms studied in

this chapter may not reflect the prior class distribution.

A way to solve this problem is to perform class mass normalization (Zhu et al.,

2003b), i.e. to rescale classes so that their respective weights over unlabeled ex-

amples match the prior class distribution (estimated from labeled examples). Until

now, we had been using a scalar label ŷi ∈ [−1, 1], which is handy in the binary

case. In this section, for the sake of clarity, we will use an M -dimensional vector (M

being the number of classes), with each element ŷi,k between 0 and 1 giving a score

(or weight) for class k (see also footnote 1 at the beginning of this chapter). For

206 Label Propagation and Quadratic Criterion

instance, in the binary case, a scalar ŷi ∈ [−1, 1] would be represented by the vector(
1
2 (1 + ŷi),

1
2 (1 − ŷi)

)⊤
, where the second element would be the score for class −1.

Class mass normalization works as follows. Let us denote by pk the prior proba-

bility of class k obtained from the labeled examples, i.e.,

pk =
1

l

l∑

i=1

yi,k.

The mass of class k as given by our algorithm will be the average of estimated

weights of class k over unlabeled examples, i.e.,

mk =
1

u

n∑

i=l+1

ŷi,k.

Class mass normalization consists in scaling each class k by the factor

wk =
pk

mk
,

i.e. to classify xi in the class given by argmaxk wkŷi,k (instead of the simpler decision

function argmaxk ŷi,k, equivalent to sign(ŷi) in the scalar binary case studied in

the previous sections). The goal is to make the scaled masses match the prior class

distribution, i.e. after normalization we have that for all k

wkmk∑M
j=1 wjmj

= pk.

In general, such a scaling gives a better classification performance when there are

enough labeled data to accurately estimate the class distribution, and when the

unlabeled data come from the same distribution. Note also that if there is an m

such that each class mass is mk = mpk, i.e., the masses already reflect the prior

class distribution, then the class mass normalization step has no effect, as wk = m−1

for all k.

11.6 Curse of Dimensionality for Semi-Supervised Learning

A large number of the semi-supervised learning algorithms proposed in recent years

and discussed in this book are essentially nonparametric local learning algorithms,

relying on a neighborhood graph to approximate manifolds near which the data

density is assumed to concentrate. It means that the out-of-sample or transductive

prediction at x depends mostly on the unlabeled examples very near x and on

the labeled examples that are close in the sense of this graph. In this section, we

present theoretical arguments that suggest that such methods are unlikely to scale

well (in terms of generalization performance) when the intrinsic dimension of these

manifolds becomes large (curse of dimensionality), if these manifolds are sufficiently

curved (or the functions to learn vary enough).

11.6 Curse of Dimensionality for Semi-Supervised Learning 207

11.6.1 The Smoothness Prior, Manifold Assumption, and Nonparametric

Semi-Supervised Learning

As introduced in section 1.2, the smoothness assumption (or its semi-supervisedsmoothness and

cluster

assumptions

variant) about the underlying target function y(·) (such that y(xi) = yi) is at

the core of most of the algorithms studied in this book, along with the cluster

assumption (or its variant, the low-density separation assumption). The former

implies that if x1 is near x2, then y1 is expected to be near y2, and the latter implies

that the data density is low near the decision surface. The smoothness assumption is

intimately linked to a definition of what it means for x1 to be near x2, and that can

be embodied in a similarity function on input space, WX(·, ·), which is at the core

of the graph-based algorithms reviewed in this chapter, transductive support vector

machines (SVMs) (where WX is seen as a kernel), and semi-supervised Gaussian

processes (where WX is seen as the covariance of a prior over functions), both in

part II of this book, as well as the algorithms based on a first unsupervised step to

learn a better representation (part IV).

The central claim of this section is that in order to obtain good results with algo-

rithms that rely solely on the smoothness assumption and on the cluster assumption

(or the low-density separation assumption), an acceptable decision surface (in the

sense that its error is at an acceptable level) must be “smooth” enough. This can

happen if the data for each class lie near a low-dimensional manifold (i.e., the man-

ifold assumption), and these manifolds are smooth enough, i.e., do not have high

curvature where it matters, i.e., where a wrong characterization of the manifold

would yield to large error rate. This claim is intimately linked to the well-known

curse of dimensionality, so we start the section by reviewing results on generaliza-

tion error for classical nonparametric learning algorithms as dimension increases.

We present theoretical arguments that suggest notions of locality of the learning al-

gorithm that make it sensitive to the dimension of the manifold near which data lie.

These arguments are not trivial extensions of the arguments for classical nonpara-

metric algorithms, because the semi-supervised algorithms such as those studied

in this book involve expansion coefficients (e.g., the ŷj in equation (11.19)) that

are nonlocal, i.e., the coefficient associated with the jth example xj may depend

on inputs xi that are far from xj , in the sense of the similarity function or kernel

WX(xi, xj). For instance, a labeled point xi far from an unlabeled point xj (i.e.

WX(xi, xj) is small) may still influence the estimated label of xj if there exists a

path in the neighborhood graph g that connects xi to xj (going through unlabeled

examples).

In the last section (11.6.5), we will try to argue that it is possible to build

nonlocal learning algorithms, while not using very specific priors about the tasknonlocal learning

to be learned. This goes against common folklore that when there are not enough

training examples in a given region, one cannot generalize properly in that region.

This would suggest that difficult learning problems such as those encountered in

artificial intelligence (e.g., vision, language, robotics, etc.) would benefit from the

development of a larger array of such nonlocal learning algorithms.

208 Label Propagation and Quadratic Criterion

In order to discuss the curse of dimensionality for semi-supervised learning, we

introduce a particular notion of locality. It applies to learning algorithms that can

be labeled as kernel machines, i.e., shown to explicitly or implicitly learn a predictorkernel machine

function of the form

f(x) = b +

n∑

i=1

αikX(x, xi), (11.20)

where i runs over all the examples (labeled and unlabeled), and kX(·, ·) is a

symmetric function (kernel) that is either chosen a priori or using the whole data

set X (and does not need to be positive semi-definite). The learning algorithm is

then allowed to choose the scalars b and αi.

Most of the decision functions learned by the algorithms discussed in this chapter

can be written as in (11.20). In particular, the label propagation algorithm 11.2

leads to the induction formula (11.19) corresponding to

b = 0

αi = ŷi

kX(x, xi) =
WX(x, xi)

ǫ +
∑

j WX(x, xj)
. (11.21)

The Laplacian regularization algorithm (algorithm 11.4) from Belkin and Niyogi

(2003b), which first learns about the shape of the manifold with an embedding based

on the principal eigenfunctions of the Laplacian of the neighborhood, also falls into

this category. As shown by Bengio et al. (2004a), the principal eigenfunctions canNyström formula

be estimated by the Nyström formula:

fk(x) =

√
n

λk

n∑

i=1

vk,ikX(x, xi), (11.22)

where (λk, vk) is the kth principal (eigenvalue, eigenvector) pair of the Gram matrix

K obtained by Kij = kX(xi, xj), and where kX(·, ·) is a data-dependent equivalent

kernel derived from the Laplacian of the neighborhood graph g. Since the resulting

decision function is a linear combination of these eigenfunctions, we obtain again a

kernel machine (11.20).

In the following, we say that a kernel function kX(·, ·) is local if for all x ∈ X ,

there exists a neighborhood N(x) ⊂ X such that

f(x) ≃ b +
∑

xi∈N(x)

αikX(x, xi). (11.23)

Intuitively, this means that only the near neighbors of x have a significant contribu-

tion to f(x). For instance, if kX is the Gaussian kernel, N(x) is defined as the points

in X that are close to x with respect to σ (the width of the kernel). If (11.23) is an

equality, we say that kX is strictly local. An example is when WX is the k-nearest

neighbor kernel in algorithm 11.2. kX obtained by (11.21) is then also the k-nearest

neighbor kernel, and we have N(x) = Nk(x) the set of the k nearest neighbors of

11.6 Curse of Dimensionality for Semi-Supervised Learning 209

x, so that

f(x) =
∑

xi∈Nk(x)

ŷi

k
.

Similarly, we say that kX is local-derivative if there exists another kernel k̃X such

that for all x ∈ X , there exists a neighborhood N(x) ⊂ X such that

∂f

∂x
(x) ≃

∑

xi∈N(x)

αi(x − xi)k̃X(x, xi). (11.24)

Intuitively, this means that the derivative of f at point x is a vector contained

mostly in the span of the vectors x− xi with xi a near neighbor of x. For instance,

with the Gaussian kernel, we have kX(x, xi) = e−‖x−xi‖2/2σ2

and

∂kX(x, xi)

∂x
= −x − xi

σ2
exp

(
−‖x − xi‖2

2σ2

)

so that

f(x) ≃ b +
∑

xi∈N(x)

αi(x − xi)

(
− 1

σ2
exp

(
−‖x − xi‖2

2σ2

))
.

Because here k̃X is proportional to a Gaussian kernel with width σ, the neighbor-

hood N(x) is also defined as the points in X which are close to x with respect

to σ. Again, we say that kX is strictly local-derivative when (11.24) is an equality

(for instance, when kX is a thresholded Gaussian kernel, i.e. kX(x, xi) = 0 when

‖x − xi‖ > δ).

11.6.2 Curse of Dimensionality for Classical Nonparametric Learning

The term curse of dimensionality has been coined by Bellman (1961) in thecurse of

dimensionality context of control problems, but it has been used rightfully to describe the poor

generalization performance of local nonparametric estimators as the dimensionality

increases. We define bias as the square of the expected difference between the

estimator and the true target function, and we refer generically to variance as

the variance of the estimator, in both cases the expectations being taken with

respect to the training set as a random variable. It is well known that classical

nonparametric estimators must trade bias and variance of the estimator through

a smoothness hyperparameter, e.g., kernel bandwidth σ for the Nadarya-Watson

estimator (Gaussian kernel). As σ increases, bias increases and the predictor

becomes less local, but variance decreases, hence the bias-variance dilemma (Gemanbias-variance

dilemma et al., 1992) is also about the locality of the estimator.

A nice property of classical nonparametric estimators is that one can prove their

convergence to the target function as n → ∞, i.e., these are consistent estimators.

One obtains consistency by appropriately varying the hyperparameter that controls

the locality of the estimator as n increases. Basically, the kernel should be allowed

210 Label Propagation and Quadratic Criterion

to become more and more local, so that bias goes to zero, but the “effective number

of examples” involved in the estimator at x,

1∑n
i=1 kX(x, xi)2

,

(equal to k for the k-nearest neighbor estimator, with kX(x, xi) = 1/k for xi a

neighbor of x) should increase as n increases, so that variance is also driven to 0.

For example, one obtains this condition with limn→∞ k = ∞ and limn→∞
k
n = 0

for the k-nearest neighbor. Clearly the first condition is sufficient for variance to

go to 0 and the second for the bias to go to 0 (since k/n is proportional to the

volume around x containing the k-nearest neighbors). Similarly, for the Nadarya-

Watson estimator with bandwidth σ, consistency is obtained if limn→∞ σ = 0

and limn→∞ nσ = ∞ (in addition to regularity conditions on the kernel). See

the book by Härdle et al. (2004) for a recent and easily accessible exposition

(with web version). The bias is due to smoothing the target function over the

volume covered by the effective neighbors. As the intrinsic dimensionality of the

data increases (the number of dimensions that they actually span locally), bias

increases. Since that volume increases exponentially with dimension, the effect of

the bias quickly becomes very severe. To see this, consider the classical example of

the [0, 1]d hypercube in R
d with uniformly distributed data in the hypercube. To

hold a fraction p of the data in a subcube of it, that subcube must have sides of

length p1/d. As d → ∞, p1/d → 1, i.e., we are averaging over distances that cover

almost the whole span of the data, just to keep variance constant (by keeping the

effective number of neighbors constant).

For a wide class of kernel estimators with kernel bandwidth σ, the expected

generalization error (bias plus variance, ignoring the noise) can be written as follows

(Härdle et al., 2004):

expected error =
C1

nσd
+ C2σ

4,

with C1 and C2 not depending on n nor d. Hence an optimal bandwidth is

chosen proportional to n−1/(4+d), and the resulting generalization error converges

in n−4/(4+d), which becomes very slow for large d. Consider for example the increase

in number of examples required to get the same level of error, in one dimension

versus d dimensions. If n1 is the number of examples required to get a level of error

e, to get the same level of error in d dimensions requires on the order of n
(4+d)/5
1

examples, i.e. the required number of examples is exponential in d. However, if the

data distribution is concentrated on a lower-dimensional manifold, it is the manifold

dimension that matters. Indeed, for data on a smooth lower-dimensional manifold,

the only dimension that, for instance, a k-nearest neighbor classifier sees is the

dimension of the manifold, since it only uses the Euclidean distances between the

near neighbors, and if they lie on such a manifold then the local Euclidean distances

approach the local geodesic distances on the manifold (Tenenbaum et al., 2000).

The curse of dimensionality on a manifold (acting with respect to the dimensionality

11.6 Curse of Dimensionality for Semi-Supervised Learning 211

Figure 11.1 Geometric illustration of the effect of the curse of dimensionality on
manifolds: the effect depends on the dimension on the manifold, as long as the data are
lying strictly on the manifold. In addition to dimensionality, the lack of smoothness (e.g.
curvature) of the manifold also has an important influence on the difficulty of generalizing
outside of the immediate neighborhood of a training example.

of the manifold) is illustrated in figure 11.1.

11.6.3 Manifold Geometry: The Curse of Dimensionality for Local

Nonparametric Manifold Learning

Let us first consider how semi-supervised learning algorithms could learn about

the shape of the manifolds near which the data concentrate, and how either a

high-dimensional manifold or a highly curved manifold could prevent this when the

algorithms are local, in the local-derivative sense discussed above. As a prototypical

example, let us consider the algorithm proposed by Belkin and Niyogi (2003b)

(algorithm 11.4). The embedding coordinates are given by the eigenfunctions fk

from (11.22).

The first derivative of fk with respect to x represents the tangent vector of the

kth embedding coordinate. Indeed, it is the direction of variation of x that gives

rise locally to the maximal increase in the kth coordinate. Hence the set of manifold

tangent vectors { ∂f1(x)
∂x , ∂f2(x)

∂x , . . . , ∂fd(x)
∂x } spans the estimated tangent plane of the

manifold.

By the local-derivative property (strict or not), each of the tangent vectors at x

is constrained to be exactly or approximately in the span of the difference vectors

x − xi, where xi is a neighbor of x. Hence the tangent plane is constrained to be a

subspace of the span of the vectors x−xi, with xi neighbors of x. This is illustrated

in figure 11.2. In addition to the algorithm of Belkin and Niyogi (2003b), a number

212 Label Propagation and Quadratic Criterion

i

x

x

Figure 11.2 Geometric illustration of the effect of the local derivative property shared
by semi-supervised graph-based algorithms and spectral manifold learning algorithms.
The tangent plane at x is implicitly estimated, and is constrained to be in the span of the
vectors (xi − x), with xi near neighbors of x. When the number of neighbors is small the
estimation of the manifold shape has high variance, but when it is large, the estimation
would have high bias unless the true manifold is very flat.

of nonparametric manifold learning algorithms can be shown (e.g. see (Bengio

et al., 2005)) to have the local derivative property (or the strictly local derivative

property): locally linear embedding (LLE), Isomap, and spectral clustering with

Gaussian or nearest neighbor kernels.

Hence the local-derivative property gives a strong locality constraint to the

tangent plane, in particular when the set of neighbors is small. If the number of

neighbors is not large in comparison with the manifold dimension, then the locally

estimated shape of the manifold will have high variance, i.e., we will have a poor

estimator of the manifold structure. If the manifold is approximately flat in a large

region, then we could simply increase the number of neighbors. However, if the

manifold has high curvature, then we cannot increase the number of neighbors

without significantly increasing bias in the estimation of the manifold shape. Bias

will restrict us to small regions, and the number of such regions could grow

exponentially with the dimension of the manifold (figure 11.1).

A good estimation of the manifold structure – in particular in the region near

the decision surface – is crucial for all the graph-based semi-supervised learning

algorithms studied in this chapter. It is thanks to a good estimation of the regions

in data space where there is high density that we can “propagate labels” in the right

places and obtain an improvement with respect to ordinary supervised learning on

the labeled examples. The problems due to high curvature and high dimensionality

of the manifold are therefore important to consider when applying these graph-

based semi-supervised learning algorithms.

11.6 Curse of Dimensionality for Semi-Supervised Learning 213

11.6.4 Curse of Dimensionality for Local Nonparametric Semi-Supervised

Learning

In this section we focus on algorithms of the type described in part III of the book

(graph-based algorithms), using the notation and the induction formula presented

in this chapter (on label propagation and a quadratic criterion unifying many of

these algorithms).

We consider here that the ultimate objective is to learn a decision surface, i.e.,

we have a classification problem, and therefore the region of interest in terms of

theoretical analysis is mostly the region near the decision surface. For example, if

we do not characterize the manifold structure of the underlying distribution in a

region far from the decision surface, it is not important, as long as we get it right

near the decision surface. Whereas in the previous section we built an argument

based on capturing the shape of the manifold associated with each class, here we

focus directly on the discriminant function and on learning the shape of the decision

surface.

An intuitive view of label propagation suggests that a region of the manifold

around a labeled (e.g. positive) example will be entirely labeled positively, as

the example spreads its influence by propagation on the graph representing the

underlying manifold. Thus, the number of regions with constant label should be on

the same order as (or less than) the number of labeled examples. This is easy to see

in the case of a sparse weight matrix W, i.e. when the affinity function is strictly

local. We define a region with constant label as a connected subset of the graph

g where all nodes xi have the same estimated label (sign of ŷi), and such that no

other node can be added while keeping these properties. The following proposition

then holds (note that it is also true, but trivial, when W defines a fully connected

graph, i.e. N(x) = X for all x).

Proposition 11.1 After running a label propagation algorithm minimizing a cost

of the form (11.11), the number of regions with constant estimated label is less than

(or equal to) the number of labeled examples.

Proof By contradiction, if this proposition is false, then there exists a region with

constant estimated label that does not contain any labeled example. Without loss

of generality, consider the case of a positive constant label, with xl+1, . . . , xl+q the

q samples in this region. The part of the cost (11.11) depending on their labels is

C(ŷl+1, . . . , ŷl+q) =
μ

2

l+q∑

i,j=l+1

Wij(ŷi − ŷj)
2

+ μ

l+q∑

i=l+1

⎛

⎝
∑

j /∈{l+1,...,l+q}
Wij(ŷi − ŷj)

2

⎞

⎠

+ μǫ

l+q∑

i=l+1

ŷ2
i .

214 Label Propagation and Quadratic Criterion

The second term is stricly positive, and because the region we consider is maximal

(by definition) all samples xj outside of the region such that Wij > 0 verify

ŷj < 0 (for xi a sample in the region). Since all ŷi are strictly positive for

i ∈ {l + 1, . . . , l + q}, this means this second term can be strictly decreased by

setting all ŷi to 0 for i ∈ {l+1, . . . , l+ q}. This also sets the first and third terms to

zero (i.e. their minimum), showing that the set of labels ŷi are not optimal, which

is in contradiction with their definition as the labels that minimize C.

This means that if the class distributions are such that there are many distinct

regions with constant labels (either separated by low-density regions or regions with

samples from the other class), we will need at least the same number of labeled

samples as there are such regions (assuming we are using a strictly local kernel

such as the k-nearest neighbor kernel, or a thresholded Gaussian kernel). But this

number could grow exponentially with the dimension of the manifold(s) on which

the data lie, for instance in the case of a labeling function varying highly along each

dimension, even if the label variations are “simple” in a nonlocal sense, e.g. if they

alternate in a regular fashion.

When the affinity matrix W is not sparse (e.g., Gaussian kernel), obtaining

such a result is less obvious. However, for local kernels, there often exists a sparse

approximation of W (for instance, in the case of a Gaussian kernel, one can set to

0 entries below a given threshold or that do not correspond to a k-nearest neighbor

relationship). Thus we conjecture that the same kind of result holds for such dense

weight matrices obtained from a local kernel.

Another indication that highly varying functions are fundamentally hard to learn

with graph-based semi-supervised learning algorithms is given by the following

theorem (Bengio et al., 2006a):

Theorem 11.2 Suppose that the learning problem is such that in order to achieve a

given error level for samples from a distribution P with a Gaussian kernel machine

(11.20), then f must change sign at least 2k times along some straight line (i.e.,

in the case of a classifier, the decision surface must be crossed at least 2k times by

that straight line). Then the kernel machine must have at least k examples (labeled

or unlabeled).

The theorem is proven for the case where kX is the Gaussian kernel, but we

conjecture that the same result applies to other local kernels, such as the normalized

Gaussian or the k-nearest neighbor kernels implicitly used in graph-based semi-

supervised learning algorithms. It is coherent with proposition 11.1 since both tell

us that we need at least k examples to represent k “variations” in the underlying

target classifier, whether along a straight line or as the number of regions of differing

class on a manifold.

11.7 Discussion 215

11.6.5 Outlook: Nonlocal Semi-Supervised Learning

What conclusions should we draw from the previous results? They should help

to better circumscribe where the current local semi-supervised learning algorithms

are likely to be most effective, and they should also help to suggest directions of

research into nonlocal learning algorithms, either using nonlocal kernels or similarity

functions, or using altogether other principles of generalization.

When applying a local semi-supervised learning algorithm to a new task, one

should consider the plausibility of the hypothesis of a low-dimensional manifold

near which the distribution concentrates. For some problems this could be very

reasonable a priori (e.g., printed digit images varying mostly due to a few geometric

and optical effects). For others, however, one would expect tens or hundreds of

degrees of freedom (e.g., many artificial intelligence problems, such as natural

language processing or recognition of complex composite objects).

Concerning new directions of research suggested by these results, several possible

approaches can already be mentioned:

Semi-supervised algorithms that are not based on the neighborhood graph, such

as the one presented in chapter 9, in which a discriminant training criterion for

supervised learning is adapted to semi-supervised learning by taking advantage of

the cluster hypothesis, more precisely, the low-density separation hypothesis (see

section 1.2).

Algorithms based on the neighborhood graph but in which the kernel or similarity

function (a) is nonisotropic or (b) is adapted based on the data (with the spread in

different directions being adapted). In that case the predictor will be neither local

nor local-derivative. More generally, the structure of the similarity function at x

should be inferred based not just on the training data in the close neighborhood of

x. For an example of such nonlocal learning in the unsupervised setting, see (Bengio

and Monperrus, 2005; Bengio et al., 2006b).

Other data-dependent kernels could be investigated, but one should check whether

the adaptation allows nonlocal learning, i.e., that information at x could be used

to usefully alter the prediction at a point x′ far from x.

More generally, algorithms that learn a similarity function Sim(x, y) in a nonlocal

way (i.e., taking advantage of examples far from x and y) should be good candidates

to consider to defeat the curse of dimensionality.

11.7 Discussion

This chapter shows how different graph-based semi-supervised learning algorithms

can be cast into a common framework of label propagation and quadratic criterion

optimization. They benefit from both points of view: the iterative label propagation

methods can provide simple efficient approximate solutions, while the analysis of

216 Label Propagation and Quadratic Criterion

the quadratic criterion helps to understand what these algorithms really do. The

solution can also be linked to physical phenomena such as voltage in an electric

network built from the graph, which provides other ways to reason about this

problem. In addition, the optimization framework leads to a natural extension of

the inductive setting that is closely related to other classical nonparametric learning

algorithms such as k-nearest neighbor or Parzen windows. Induction will be studied

in more depth in the next chapter, and the induction formula (11.19) will turn out to

be the basis for a subset approximation algorithm presented in chapter 18. Finally,

we have shown that the local semi-supervised learning algorithms are likely to be

limited to learning smooth functions for data living near low-dimensional manifolds.

Our approach of locality properties suggests a way to check whether new semi-

supervised learning algorithms have a chance to scale to higher-dimensional tasks

or learning less smooth functions, and motivates further investigation in nonlocal

learning algorithms.

Acknowledgments

The authors would like to thank the editors and anonymous reviewers for their

helpful comments and suggestions. This chapter has also greatly benefited from

advice from Mikhail Belkin, Dengyong Zhou, and Xiaojin Zhu, whose papers

first motivated this research (Belkin and Niyogi, 2003b; Zhou et al., 2004; Zhu

et al., 2003b). The authors also thank the following funding organizations for their

financial support: Canada Research Chair, NSERC, and MITACS.

12 The Geometric Basis of Semi-Supervised

Learning

Vikas Sindhwani vikass@cs.uchicago.edu

Misha Belkin mbelkin@cse.ohio-state.edu

Partha Niyogi niyogi@cs.uchicago.edu

In this chapter, we present an algorithmic framework for semi-supervised inference

based on geometric properties of probability distributions. Our approach brings

together Laplacian-based spectral techniques, regularization with kernel methods,

and algorithms for manifold learning. This framework provides a natural semi-

supervised extension for kernel methods and resolves the problem of out-of-sample

inference in graph-based transduction. We discuss an interpretation in terms of a

family of globally defined data-dependent kernels and also address unsupervised

learning (clustering and data representation) within the same framework. Our al-

gorithms effectively exploit both manifold and cluster assumptions to demonstrate

state-of-the-art performance on various classification tasks. This chapter also re-

views other recent work on out-of-sample extension for transductive graph-based

methods.

12.1 Introduction

We start by providing some intuitions for the geometric basis of semi-supervised

learning. These intuitions are demonstrated in pictures (figures 12.1, 12.2 and 12.3).

Consider first the two labeled points (marked “+” and “−”) in the left panel of

figure 12.1. Our intuition may suggest that a simple linear separator such as the

one shown in figure 12.1 is an optimal choice for a classifier. Indeed, considerable

effort in learning theory has been invested into deriving optimality properties for

such a classification boundary.

The right panel, however, shows that the two labeled points are in fact located

on two concentric circles of unlabeled data. Looking at the right panel, it becomes

clear that the circular boundary is more natural given unlabeled data.

218 The Geometric Basis of Semi-Supervised Learning

Figure 12.1 Circle.

Figure 12.2 Curve.

Consider now the left panel in figure 12.2. In the absence of unlabeled data the

black dot (marked “?”) is likely to be classified as blue (marked “−”). The unlabeled

data, however, makes classifying it as red (marked “+”) seem much more reasonable.

A third example is shown in figure 12.3. In the left panel, the unlabeled point

may be classified as blue (−) to agree with its nearest neighbor. However, unlabeled

data shown as gray clusters in the right panel change our belief.geometry of

unlabeled data These examples show how the geometry of unlabeled data may radically change

our intuition about classifier boundaries. We seek to translate these intuitions into

a framework for learning from labeled and unlabeled examples.

Recall now the standard setting of learning from examples. Given a pattern space

X, there is a probability distribution P on X × R according to which examples are

generated for function learning. Labeled examples are (x, y) pairs drawn according

to P. Unlabeled examples are simply x ∈ X sampled according to the marginal

distribution PX of P.

As we have seen, the knowledge of the marginal PX can be exploited for better

function learning (e.g., in classification or regression tasks). On the other hand,

if there is no identifiable relation between PX and the conditional P(y|x), the

knowledge of PX is unlikely to be of use.

Two possible connections between PX and P(y|x) can be stated as the following

important assumptions (also see the tutorial introduction in chapter 1 for related

discussion):

12.1 Introduction 219

+ ?
_ + ?

_

Figure 12.3 Blobs.

1. Manifold assumption: Suppose that the marginal probability distribution un-

derlying the data is supported on a low-dimensional manifold. Then the family ofassumptions for

semi-supervised

learning

conditional distributions P (y|x) is smooth, as a function of x, with respect to the

underlying structure of the manifold.

2. Cluster assumption: The probability distribution P is such that points in the

same “cluster” are likely to have the same label.

We see that the data shown in figures 12.1 and 12.2 satisfy the manifold assump-

tion.

The picture in figure 12.3 is meant to show Gaussian clusters. The concentric

circles in figure 12.1 can also be thought of as “clusters,” although such clusters

are highly non-Gaussian and have an interesting geometric structure. One may

conjecture that many clusters in real-world data sets have such non-Gaussian

structures. This is evidenced, for example, by the frequent superiority of spectral

clustering over more traditional methods such as k-means.

In many natural situations, it is clear that the data are supported on a low-

dimensional manifold. This is often the case when points are generated by some

physical process. For example, in speech production the articulatory organs can

be modeled as a collection of tubes. The space of speech sounds is therefore

a low-dimensional manifold parameterized by lengths and widths of the tubes.

Photographs of an object from various angles form a three dimensional submanifold

of the image space. In other cases, such as in text retrieval tasks, it may be less

clear whether a low-dimensional manifold is present. However, even then, and also

for almost any imaginable source of meaningful high-dimensional data, the space of

possible configurations occupies only a tiny portion of the total volume available.

One therefore suspects that a nonlinear low-dimensional manifold may yield a useful

approximation to this structure.

To proceed with our discussion, we will make a specific assumption about the

connection between the marginal and the conditional distributions. We will assume

220 The Geometric Basis of Semi-Supervised Learning

that if two points x1, x2 ∈ X are close in the intrinsic geometry of PX, then

the conditional distributions P(y|x1) and P(y|x2) are similar. In other words, thesmoothness with

respect to

marginal

distribution

conditional probability distribution P(y|x) varies smoothly along the geodesics in

the intrinsic geometry of PX. A more formal statement for this smoothness property

is that
∫
‖∇P(y|x)‖2dμX is small, where μ is the probability distribution over the

manifold. That last quantity can be rewritten as 〈LP(y|x), P(y|x)〉, where L is the

weighted Laplacian associated to probability measure μ. We will elaborate on these

objects later in the chapter.

We will introduce a new framework for data-dependent regularization that ex-

ploits the geometry of the probability distribution. It is important to note that the

resulting algorithms will take into account both manifold and cluster assumptions.

While this framework allows us to approach the full range of learning problems from

unsupervised to supervised, we focus on the problem of semi-supervised learning.

This chapter gathers material from Belkin et al. (2004c, 2005); Sindhwani (2004);

Sindhwani et al. (2005).

12.2 Incorporating Geometry in Regularization

We will now assume that the marginal distribution PX is supported on a low-

dimensional manifold M embedded in R
N . We will be interested in constructing

spaces of functions which are attuned to the geometric structure of PX. More

specifically we will want to control the gradient of the functions of interest with

respect to the measure PX:
∫

M
‖∇Mf‖2dPX. Here the gradient is taken with respect

to the underlying Riemannian manifold M and the integral is weighted by the

measure on that manifold.

If the manifold M has no boundary or if the probability distribution PX vanishes

at the boundary, it can be shown thatLaplace-Beltrami

operator
∫

M

‖∇Mf‖2dPX =

∫

M

fLPX
(f)dPX = 〈f,LPX

(f)〉L2(PX),

where ∇M is the gradient on M and LPX
is the weighted Laplace-Beltrami

operator associated to measure PX. This operator is key to penalizing functions

according to the intrinsic geometry of the probability distribution PX.

We utilize these geometric intuitions to extend an established framework for

function learning. A number of popular algorithms such as support vector ma-

chines (SVMs), ridge regression, splines, and radial basis functions may be broadly

interpreted as regularization algorithms with different empirical cost functions and

complexity measures in an appropriately chosen reproducing kernel Hilbert space

(RKHS) (Poggio and Girosi, 1990; Vapnik, 1998; Schölkopf and Smola, 2002).

Recall that for a Mercer kernel K : X×X → R, there is an associated RKHS HK of

functions X → R with the corresponding norm ‖ ‖K . Given a set of labeled examples

(xi, yi), i = 1, . . . , l the standard framework estimates an unknown function by

12.2 Incorporating Geometry in Regularization 221

minimizinglearning in RKHS

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γ‖f‖2
K, (12.1)

where V is some loss function, such as squared loss (yi − f(xi))
2 for regularized

least squares (RLS) or the soft margin loss function max [0, 1 − yif(xi)] for SVM.

Penalizing the RKHS norm imposes smoothness conditions on possible solutions.

The classical representer theorem states that the solution to this minimization

problem exists in HK and can be written asrepresenter

theorem

f∗(x) =

l∑

i=1

αiK(xi, x). (12.2)

Therefore, the problem is reduced to optimizing over the finite dimensional space of

coefficients αi, which is the algorithmic basis for SVM, RLS, and other regression

and classification schemes.

We first consider the case when the marginal distribution is already known.

12.2.1 Marginal Distribution PX Is Known

Our goal is to extend the kernel framework by incorporating additional information

about the geometric structure of the marginal PX. We would like to ensure that

the solution is smooth with respect to both the ambient space and the marginal

distribution PX. To achieve that, we introduce an additional regularizer :manifold

regularization

given the

marginal

distribution

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γA‖f‖2
K + γI‖f‖2

I, (12.3)

where ‖f‖2
I is an appropriate penalty term that should reflect the intrinsic structure

of PX, e.g., 〈f,LPX
(f)〉L2(PX).

Here γA controls the complexity of the function in the ambient space while γI

controls the complexity of the function in the intrinsic geometry of PX. One can

derive an explicit functional form for the solution f ∗ as shown in the following

theorem under some fairly general conditions (Belkin et al., 2004c):

Theorem 12.1 Assume that the intrinsic regularization term is given by

‖f‖2
I =

∫

X

fDfdPX,

where D is a bounded operator from the RKHS associated to K to L2(PX). Then

the solution f∗ to the optimization problem in (12.3) above exists and admits the

following representation:representer

theorem given

the marginal f∗(x) =

l∑

i=1

αiK(xi, x) +

∫

X

α(y)K(x, y) dPX(y). (12.4)

222 The Geometric Basis of Semi-Supervised Learning

We note that the Laplace operator as well as any differentiable operator will

satisfy the boundedness condition, assuming that the kernel is sufficiently differen-

tiable.

The representer theorem above allows us to express the solution f ∗ directly in

terms of the labeled data, the (ambient) kernel K, and the marginal PX. If PX

is unknown, we see that the solution may be expressed in terms of an empirical

estimate of PX . Depending on the nature of this estimate, different approximations

to the solution may be developed. In the next section, we consider a particular

approximation scheme that leads to a simple algorithmic framework for learning

from labeled and unlabeled data.

12.2.2 Marginal Distribution PX Unknown

In most applications of interest in machine learning the marginal PX is not known.

Therefore we must attempt to get empirical estimates of PX and ‖ ‖I . Note that

in order to get such empirical estimates it is sufficient to have unlabeled examples.

As discussed before, the natural penalty on a Riemannian manifold is the Laplace

operator. The optimization problem then becomes

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γA‖f‖2
K + γI

∫

M

〈∇Mf,∇Mf〉.

It can be shown that the Laplace-Beltrami operator on a manifold can be

approximated by graph Laplacian using the appropriate adjacency matrix (see

(Belkin, 2003; Lafon, 2004) for more details).

Thus, given a set of l labeled examples {(xi, yi)}l
i=1 and a set of u unlabeled

examples {xj}j=l+u
j=l+1 , we consider the following optimization problem :manifold

regularization

given unlabeled

data
f∗ = argmin

f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γA‖f‖2
K +

γI

(u + l)2

l+u∑

i,j=1

(f(xi) − f(xj))
2Wij

= argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γA‖f‖2
K +

γI

(u + l)2
fT Lf , (12.5)

where Wij are edge weights in the data adjacency graph, f = [f(x1), . . . , f(xl+u)]T ,

and L is the graph Laplacian given by L = D − W . Here, the diagonal matrix Dgraph Laplacian

is given by Dii =
∑l+u

j=1 Wij . The normalizing coefficient 1
(u+l)2 is the natural scale

factor for the empirical estimate of the Laplace operator (on a sparse adjacency

graph, one may normalize by
∑l+u

i,j=1 Wij instead). The following version of the

representer theorem shows that the minimizer has an expansion in terms of both

labeled and unlabeled examples and is a key to our algorithms.

12.2 Incorporating Geometry in Regularization 223

Theorem 12.2 The minimizer of optimization problem (12.5) admits an expansion

representer

theorem given

unlabeled data f∗(x) =
l+u∑

i=1

αiK(xi, x) (12.6)

in terms of the labeled and unlabeled examples.

The proof is a variation of a standard orthogonality argument (Schölkopf and

Smola, 2002).

Remark Several natural choices of ‖ ‖I exist. Some examples are:

1. Iterated Laplacians Lk. Differential operators Lk and their linear combinations

provide a natural family of smoothness penalties.

2. Heat semigroup e−Lt is a family of smoothing operators corresponding to

the process of diffusion (Brownian motion) on the manifold. For corresponding

operators on graphs, see (Kondor and Lafferty, 2002). One can take ‖f‖2
I =∫

M
f eLt(f). We note that for small values of t the corresponding Green’s function

(the heat kernel of M) can be approximated by a sharp Gaussian in the ambient

space.

3. Squared norm of the Hessian (cf. (Donoho and Grimes, 2003)). While the

Hessian H(f) (the matrix of second derivatives of f) generally depends on the

coordinate system, it can be shown that the Frobenius norm (the sum of squared

eigenvalues) of H is the same in any geodesic coordinate system and hence is

invariantly defined for a Riemannian manifold M. Using the Frobenius norm of

H as a regularizer presents an intriguing generalization of thin-plate splines. We

also note that L(f) = tr(H(f)).

Remark Note that K restricted to M (denoted by KM) is also a kernel defined

on M with an associated RKHS HM of functions M → R. While this might suggest

‖f‖I = ‖fM‖KM
(fM is f restricted to M) as a reasonable choice for ‖f‖I, it

turns out, that for the minimizer f ∗ of the corresponding optimization problem,

we get ‖f∗‖I = ‖f∗‖K , yielding the same solution as standard regularization,

although with a different γ. This observation follows from the restriction properties

of RKHS (Belkin et al., 2004c). Therefore it is impossible to have an out-of-

sample extension without two different measures of smoothness. On the other hand,

a different ambient kernel restricted to M can potentially serve as the intrinsic

regularization term. For example, a sharp Gaussian kernel can be used as an

approximation to the heat kernel on M.

The representer theorem allows us to convert the optimization problem in (12.5)

into a finite dimensional problem of estimating the (l + u) coefficients α∗ for the

expansion above. A family of algorithms can now be developed with different choices

of loss functions, ambient kernels, graph regularizers, and optimization strategies.

224 The Geometric Basis of Semi-Supervised Learning

12.3 Algorithms

12.3.1 Semi-Supervised Classification

We now present solutions to the optimization problem posed in (12.5). To fix

notation, we assume we have l labeled examples {(xi, yi)}l
i=1 and u unlabeled

examples {xj}j=l+u
j=l+1 . We use K interchangeably to denote the kernel function or

the Gram matrix.

Laplacian Regularized Least Squares (LapRLS) The Laplacian regularized

least squares algorithm solves (12.5) with the squared loss function: V (xi, yi, f) =

[yi − f(xi)]
2. Since the solution is of the form given by (12.6), the objective function

can be reduced to a convex differentiable function of the (l + u)-dimensional

expansion coefficient vector α = [α1, . . . , αl+u]T whose minimizer is given byLaplacian RLS

α∗ = (JK + γAlI +
γI l

(u + l)2
LK)−1Y. (12.7)

Here, K is the (l + u) × (l + u) Gram matrix over labeled and unlabeled points;

Y is an (l + u) dimensional label vector given by Y = [y1, . . . , yl, 0, . . . , 0]; and J is

an (l + u) × (l + u) diagonal matrix given by J = diag(1, . . . , 1, 0, . . . , 0) with the

first l diagonal entries as 1 and the rest 0.

Note that when γI = 0, (12.7) gives zero coefficients over unlabeled data. The

coefficients over labeled data are exactly those for standard RLS.

Laplacian Support Vector Machines (LapSVM) Laplacian SVMs solve

the optimization problem in (12.5) with the soft-margin loss function defined as

V (xi, yi, f) = max [0, 1 − yif(xi)] , yi ∈ {−1, +1}. Introducing slack variables and

using standard Lagrange multiplier techniques used for deriving SVMs (Vapnik,

1998), we first arrive at the following quadratic program in l dual variables β :

β⋆ = max
β∈Rl

l∑

i=1

βi −
1

2
βT Qβ (12.8)

subject to the contraints :
∑l

i=1 yiβi = 0, 0 ≤ βi ≤ 1
l , i = 1, ...l , where

Q = Y JK(2γAI + 2
γI

(u + l)2
LK)−1JT Y. (12.9)

Here, Y is the diagonal matrix Yii = yi, K is the Gram matrix over both the labeled

and the unlabeled data; L is the data adjacency graph Laplacian; J is an l× (l +u)

matrix given by Jij = 1 if i = j, xi is a labeled example, and Jij = 0 otherwise. To

obtain the optimal expansion coefficient vector α∗ ∈ R
(l+u), one has to solve the

following linear system after solving the quadratic program above :Laplacian SVM

12.3 Algorithms 225

Table 12.1

Laplacian SVM/RLS

Input: l labeled examples {(xi, yi)}l
i=1, u unlabeled examples {xj}l+u

j=l+1

Output: Estimated function f : R
n → R

Step 1 � Construct data adjacency graph with (l + u) nodes using, e.g., k

-nearest neighbors. Choose edge weights Wij , e.g., binary weights or

heat kernel weights Wij = e−‖xi−xj‖2/4t.

Step 2 � Choose a kernel function K(x, y). Compute the Gram matrix

Kij = K(xi, xj).

Step 3 � Compute graph Laplacian matrix : L = D − W where D is a

diagonal matrix given by Dii =
∑l+u

j=1 Wij .

Step 4 � Choose γA and γI .

Step 5 � Compute α∗ using (12.7) for squared loss (Laplacian RLS) or using

Eqs. 12.9 and 12.10 together with the SVM QP solver for soft margin

loss (Laplacian SVM).

Step 6 � Output function f∗(x) =
∑l+u

i=1 α∗
i K(xi, x).

Equivalently, after step 4 construct the kernel function K̃(x, y) given

by Eq. 12.15, and use it in standard SVM/RLS (or with other

suitable kernel methods).

α∗ = (2γAI + 2
γI

(u + l)2
LK)−1JT Y β⋆. (12.10)

One can note that when γI = 0, the SVM QP and Eqs. 12.9 and 12.10, give

zero expansion coefficients over the unlabeled data. The expansion coefficients over

the labeled data and the Q matrix are as in standard SVM, in this case. Laplacian

SVMs can be easily implemented using standard SVM software and packages for

solving linear systems.

In section 12.4, we will discuss a data-dependent kernel defined using unlabeled

examples (Sindhwani et al., 2005), with which standard supervised SVM/RLS

implement Laplacian SVM/RLS. In table 12.1, we outline these algorithms.

The choice of the regularization parameters γA, γI is a subject of future research.

If there are enough labeled data, they can be be based on cross-validation or

performance on a held-out test set. In figure 12.4 we provide an intuition toward

the role of these parameters on a toy two-moons data set. When γI = 0, Laplacianeffect of

increasing γI SVM recovers standard supervised SVM boundaries. As γI is increased, the effect

of unlabeled data increases and the classification boundaries are appropriately

adjusted.

In figure 12.5 we plot the learning curves for Laplacian SVM/RLS on a two-class

226 The Geometric Basis of Semi-Supervised Learning

1 0 1 2

1

0

1

2

γ
A
 = 0.03125 γ

I
 = 0

SVM

1 0 1 2

1

0

1

2

Laplacian SVM

γ
A
 = 0.03125 γ

I
 = 0.01

1 0 1 2

1

0

1

2

Laplacian SVM

γ
A
 = 0.03125 γ

I
 = 1

Figure 12.4 Two moons data set: Laplacian SVM with increasing intrinsic regulariza-
tion.

20 40 60 80 100 120 140 160 180 200 220

0.05

0.1

0.15

0.2

0.25

SVM/Laplacian SVM

Number of Labeled Examples

E
rr

o
r

R
a
te

SVM (Unlabeled)

SVM (Test)

LapSVM (Unlabeled)

LapSVM (Test)

50 100 150 200

0.05

0.1

0.15

0.2

0.25

RLS/Laplacian RLS

Number of Labeled Examples

E
rr

o
r

R
a
te

RLS (Unlabeled)

RLS (Test)

LapRLS (Unlabeled)

LapRLS (Test)

Figure 12.5 Image classification: Laplacian SVM/RLS performance with respect to
number of labeled examples on unlabeled and test data.

image recognition problem. In many such real-world application settings, one may

expect significant benefit from utilizing unlabeled data and high-quality out-of-

sample extensions with these algorithms. For further empirical results see (Belkin

et al., 2004c; Sindhwani et al., 2005) and elsewhere in this book.

12.3.2 Unsupervised Learning and Data Representation

Regularized Spectral Clustering The unsupervised case can be viewed as a

special case of semi-supervised learning where one is given a collection of unlabeled

data points x1, . . . , xu and no labeled examples. Our basic algorithmic framework

embodied in the optimization problem in (12.3) has three terms: (i) fit to labeled

12.3 Algorithms 227

data, (ii) extrinsic regularization, and (iii) intrinsic regularization. Since no labeled

data are available, the first term does not arise anymore. Therefore we are left with

the following optimization problem:

min
f∈HK

γA‖f‖2
K + γI‖f‖2

I . (12.11)

Of course, only the ratio γA

γI
matters. As before, ‖f‖2

I can be approximated using

the unlabeled data. Choosing ‖f‖2
I =

∫
M

〈∇Mf,∇Mf〉 and approximating it by the

empirical Laplacian, we are left with the following optimization problem :Clustering

f∗ = argmin
P

i f(xi)=0;
P

i f(xi)
2=1

f∈HK

γ‖f‖2
K +

∑

i∼j

(f(xi) − f(xj))
2. (12.12)

Note that without the additional constraints (cf. (Belkin et al., 2004b)) the above

problem gives degenerate solutions.

As in the semi-supervised case, a version of the empirical representer theorem

holds showing that the solution to (12.12) admits a representation of the form

f∗ =

u∑

i=1

αiK(xi, ·).

By substituting back in (12.12), we come up with the following optimization

problem:

α = argmin
1T Kα=0

αT K2α=1

γ‖f‖2
K +

∑

i∼j

(f(xi) − f(xj))
2,

where 1 is the vector of all ones and α = (α1, . . . , αu) and K is the corresponding

Gram matrix.

Letting P be the projection onto the subspace of R
u orthogonal to K1, one

obtains the solution for the constrained quadratic problem, which is given by the

generalized eigenvalue problem.eigenvalue

problem
P (γK + KLK)Pv = λPK2Pv. (12.13)

The final solution is given by α = Pv, where v is the eigenvector corresponding to

the smallest eigenvalue.

The method sketched above is a framework for regularized spectral clustering.

The regularization parameter γ controls the smoothness of the resulting function ineffect of

increasing γ the ambient space. We also obtain a natural out-of-sample extension for clustering

points not in the original data set. Figure 12.5 shows this method on a toy two-

moons clustering problem. Unlike recent work (Bengio et al., 2004b; Brand, 2003)

on out-of-sample extensions, our method is based on a Representer theorem for

RKHS.

228 The Geometric Basis of Semi-Supervised Learning

1 0 1 2

1

0

1

2

γ = 1e 06
−1 0 1 2

−1

0

1

2

 γ = 0.0001
−1 0 1 2

−1

0

1

2

 γ = 0.1

Figure 12.6 Two moons data set: regularized clustering

Regularized Laplacian Eigenmaps One can take multiple eigenvectors of the

system in (12.13) and represent a point x in R
m asdimensionality

reduction

x →
[

u∑

i=1

α1
i K(xi, x), . . . ,

u∑

i=1

αm
i K(xi, x)

]
,

where (αj
1 . . . αj

u) is the jth eigenvector.

This leads to a new method for dimensionality reduction and data representation

that provides a natural out-of-sample extension of Laplacian eigenmaps (Belkin,

2003). The new representation of the data in R
m is optimal in the sense that it best

preserves its local structure (as estimated by the graph) in the original ambient

space.

12.3.3 Fully Supervised Learning

The fully supervised case represents the other end of the spectrum of learning. Since

standard supervised algorithms (SVM and RLS) are special cases of manifold regu-

larization, our framework is also able to deal with a labeled data set containing no

unlabeled examples. Additionally, manifold regularization can augment supervised

learning with intrinsic regularization, possibly in a class-dependent manner, which

suggests the following learning problem:

f∗ = argmin
f∈HK

1

l

l∑

i=1

V (xi, yi, f) + γA‖f‖2
K + γ+

I fT
+L+f+ + γ−

I fT
−L−f−. (12.14)

Here we introduce two intrinsic regularization parameters γ+
I , γ−

I and regularizesupervised

manifold

regularization

separately for the two classes : f+, f− are the vectors of evaluations of the function

f , and L+, L− are the graph Laplacians, on positive and negative examples

respectively. The solution to the above problem for RLS and SVM can be obtained

by replacing γIL by the block-diagonal matrix

(
γ+

I L+ 0

0 γ−
I L−

)
in the Laplacian

SVM and Laplacian RLS algorithms.

12.4 Data-Dependent Kernels for Semi-Supervised Learning 229

12.4 Data-Dependent Kernels for Semi-Supervised Learning

By including an intrinsic regularization term ‖f‖I in addition to the prior measure

of complexity ‖f‖K of a function f in the RKHS HK , the algorithmic framework

presented above reflects how unlabeled data may alter our complexity beliefs. Thiswarping an

RKHS data-dependent modification of the norm can be viewed as an attempt to appro-

priately warp an RKHS to conform to the geometry of the marginal distribution

(for a discussion, see (Sindhwani et al., 2005)). This is made precise in the following

discussion. The set of functions in HK has an associated inner product 〈f, g〉
HK

for

f, g ∈ HK . Given unlabeled data, the space of functions H̃K̃ containing functions

in HK but with the following modified inner product

〈f, g〉
H̃K̃

= 〈f, g〉
H

+
γI

γA
fT Lg

can be shown to be an RKHS with an associated kernel K̃. The regularization

term γA‖f‖H̃K̃
in this RKHS provides the same complexity penalty as the joint

intrinsic and ambient regularization terms in HK . Thus, once the kernel K̃ is

available, one can employ the standard machinery of kernel methods designed for

supervised learning for semi-supervised inference. The form of the new kernel K̃

can be derived in terms of the kernel function K using reproducing properties of an

RKHS and orthogonality arguments (see (Sindhwani, 2004; Sindhwani et al., 2005)

for a derivation) and is given bykernels for

semi-supervised

learning
K̃(x, z) = K(x, z) − kT

x (I +
γI

γA
LK)−1Lkz, (12.15)

where kx (and similarly kz) denotes the vector [K(x1, x), . . . , K(xl+u, x)]
T
. The

standard representer theorem can be now be invoked to show that the minimizer

of optimization problem (12.5) admits the following expansion in terms of labeled

examples only:

f∗(x) =

l∑

i=1

αiK̃(xi, x). (12.16)

With the new kernel K̃ , this representer theorem reduces the minimization

problem (12.5) to that of estimating the l expansion coefficients α∗. In addition toother algorithms

recovering the algorithms in section 12.3, this kernel can also be used to implement,

e.g., semi-supervised extensions of support vector regression, one-class SVM, and

Gaussian processes (see (Sindhwani et al., 2006)).

To develop an intuition toward how the intrinsic norm warps the structure of an

RKHS, consider the pictures shown in figure 12.4. A practitioner of kernel methods

would approach the two-circles problem posed in figure 12.1 by choosing a kernel

function K(x, y), and then taking a particular linear combination of this kernel

230 The Geometric Basis of Semi-Supervised Learning

(c) classifier learnt
in the RKHS

(a) gaussian kernel centered
on labeled point 1

(b) gaussian kernel centered
on labeled point 2

Figure 12.7 Learning in an RKHS.

(c) classifier learnt
in the deformed RKHS

(a) deformed kernel centered
on labeled point 1

(b) deformed kernel centered
on labeled point 2

Figure 12.8 Warping an RKHS.

centered at the two labeled points in order to construct a classifier. Figure 12.7 (a,b)

shows this attempt with the popular Gaussian kernel. The resulting linear decision

surface, shown in figure 12.7 (c), is clearly inadequate for this problem.warping

interpretation in

pictures

In figure 12.8 (a,b) we see level sets for the deformed kernel K̃ centered on the

two labeled points in the two-circles problem.

The kernel deforms along the circle under the influence of the unlabeled data.

Using this kernel, instead of K(x, y), produces a satisfactory class boundary with

just two labeled points, as shown in figure 12.8 (c).

The procedure described above is a general nonparametric approach for con-

structing data-dependent kernels for semi-supervised learning. This approach differs

from prior constructions that have largely focussed on data-dependent methods for

parameter selection to choose a kernel from some parametric family, or by defining

a kernel matrix on the data points alone (transductive setting).

12.5 Linear Methods for Large-Scale Semi-Supervised Learning 231

12.5 Linear Methods for Large-Scale Semi-Supervised Learning

To turn semi-supervised learning into a technology, one needs to address issues of

scalability of algorithms and applicability to large data sets. The algorithms we

have described deal with dense matrices of size n × n and have O(n3) training

complexity with naive implementations. The expansion over labeled or unlabeled

examples is in general not sparse, even for Laplacian SVMs. One can possibly

employ, for example, various reduced set methods, low-rank kernel approximations,

or sparse greedy methods (see (Schölkopf and Smola, 2002) for a discussion of

general implementation issues in kernel methods) for efficient implementation of

these algorithms.

Due to their potential for dealing with massive data sets and widespread appli-

cability, linear semi-supervised methods generate special interest. The algorithmslinear manifold

regularization described above can easily be specialized for constructing linear classifiers by choos-

ing the linear kernel K(x, y) = xT y. However, if the data-dimensionality d is much

smaller than the number of examples or the data are highly sparse, one can much

more efficiently solve the primal problem directly, once the graph regularizer is

constructed. We can learn a weight vector w ∈ R
d defining the linear classifier

f(x) = sign(wT x) as follows:

w⋆ = argmin
w∈Rd

1

l

l∑

i=1

V (xi, yi, w
T xi) + γA‖w‖2 +

γI

(u + l)2
wT XT LXw. (12.17)

Here, X is the (l + u) × d data matrix.

For linear Laplacian RLS, taking V to be the squared loss and setting the gradient

of the objective function to 0, we immediately obtain a linear system that can be

solved to obtain the desired weight vector:linear Laplacian

RLS

(XT
l Xl + γAlI +

γI l

(l + u)2
XT LX)w = XT

l Y. (12.18)

Here Xl is the submatrix of X corresponding to labeled examples and Y is the

vector of labels. This is a d× d system which can be easily solved when d is small.

When d is large but feature vectors are highly sparse, we can employ conjugate

gradient (CG) methods to solve this system. CG techniques are Krylov methods

that involve repeated multiplication of a candidate solution z by A for solving a

linear system Ax = b. The matrix A need not be explicitly constructed so long

as the matrix vector product Az can be computed. In the case of linear Laplacian

RLS, we can construct the matrix-vector product fast due to the sparsity of X and

L.1

1. Fast matrix-vector products can also be formed for dense graph regularizers given by
a power series in the (sparse) graph Laplacian

232 The Geometric Basis of Semi-Supervised Learning

For linear Laplacian SVMs, we can rewrite problem 12.17 as

w∗ = argmin
w inRd

γAwT TT Tw +
1

l

l∑

i=1

max
[
0, 1 − yi(w

T xi)
]

in terms of the Cholesky factorization TT T of the positive definite matrix (γAI +
γI

(l+u)2 XT LX). Changing variables by w̃ = T T w and x̃ = T−1x, we can convert

the above problem into a standard SVM running only on the labeled examples

that are preprocessed with T−1. When d is small, the preprocessing matrix can be

computed cheaply. The reparameterized SVM then runs only on a small numberlinear Laplacian

SVM of labeled examples and returns a weight vector w̃∗. We obtain the solution of

the original problem by setting w∗ =
(
T T

)−1
w̃∗. We note in passing that the

inner product in the preprocessed space is given by x̃T z̃ = xT (TT T)−1z. An

application of the Woodbury formula to compute the inverse (TT T)−1 followed by

appropriate manipulations gives a simple “feature-space” derivation of the data-

dependent kernel in section 12.4. For high-dimensional sparse data sets, we can use

the large-scale training algorithm in (Keerthi and DeCoste, 2005) for L2-SVM. At

the core of this algorithm are RLS iterations implemented using conjugate gradient

techniques. In conjunction with linear Laplacian RLS for large sparse data sets,

this algorithm can also be extended for large-scale semi-supervised learning.

12.6 Connections to Other Algorithms and Related Work

The broad connections of our approach to graph-based learning techniques and

kernel methods are summarized in table 12.2 through a comparison of objectives.

When γI = 0, our algorithms ignore unlabeled data and perform standard regular-

ization, e.g in SVMs and RLS. By optimizing over an RKHS of functions defined

everywhere in the ambient space, we get out-of-sample extension for graph regu-

larization, when γA → 0, γI > 0. In the absence of labeled examples, we perform

a regularized version of spectral clustering that is often viewed as a relaxation of

the discrete graph min-cut problem. We can also obtain useful data representations

within the same framework by regularized Laplacian eigenmaps.

The conceptual framework of our work is close, in spirit, to the measure-based

regularization approach of (Bousquet et al., 2004). The authors consider a gradient-

based regularizer that encourages smoothness with respect to the data density.

While Bousquet et al. (2004) use the gradient ∇f(x) in the ambient space, we

use the gradient over a submanifold ∇Mf . In a situation where the data truly

lie on or near a submanifold M, the difference between these two penalizers can

be significant since smoothness in the normal direction to the data manifold is

irrelevant to classification or regression.

The intuition of incorporating a graph-based regularizer in the design of semi-

supervised variants of inductive algorithms has also been explored in (Yu et al.,

2004; Krishnapuram et al., 2004; Kegl and Wang, 2004). In (Yu et al., 2004), a

12.6 Connections to Other Algorithms and Related Work 233

Table 12.2 Objective functions for comparison (in the third column for unsupervised
algorithms, additional constraints are added to avoid trivial or unbalanced solutions). In
addition to these learning problems, the framework also provides the regularized Laplacian
eigenmaps algorithm for dimensionality reduction and data representation.

Supervised Partially Supervised Clustering

Kernel-based Classifiers Graph Regularization Graph Min-cut

argminf∈HK
argminf∈R(l+u) argminf∈{−1,+1}u

1
l

∑l
i=1 V (yi, f(xi))

1
l

∑l
i=1 V (yi, fi) + γfT Lf 1

4

∑u
i,j=1 Wij(fi − fj)

2

+γ‖f‖2
K Out-of-sample Extn. Spectral Clustering

argminf∈HK
argminf∈Ru

1
2 f

T Lf
1
l

∑l
i=1 V (yi, fi) + γfT Lf Out-of-sample Extn.

Manifold Regularization argminf∈HK

1
2 f

T Lf

argminf∈HK
Reg. Spectral Clust.

1
l

∑l
i=1 V (yi, f(xi))+ argminf∈HK

γA‖f‖2
K + γI

(l+u)2 f
T Lf 1

2 f
T Lf + γ‖f‖2

K

least-squares algorithm is proposed that provides an out-of-sample extension for

graph transduction in the span of a fixed set of basis functions {φi : X → R}s
i=1.

Thus, the optimization problem in Eq. 12.5 is solved over this span for the squared

loss leading to a linear system such as Eq. 12.18 (set Xij = φj(xi) and γA = 0)

whose size is given by the number of basis functions s. For a small set of basis

functions, this system can be solved more efficiently. Yu et al. (2004) also discuss

data representation within this framework.

In (Krishnapuram et al., 2004), the authors impose a prior derived from the

graph Laplacian, over parameters of a multinomial logistic regression model. For

an r-class problem, the class probabilities are modeled as

P (y(j) = 1|x) =
ew(i)T x

∑r
i=1 ew(i)T x

1 ≤ j ≤ r,

where y(j) is an indicator variable for class j and w(i) ∈ R
d is the weight vector for

class i. The prior on weight vector w(i) is given by

P (w(i)) ∝ exp

⎧
⎨

⎩
−w(i)T

(
γ

(i)
I XT LX + D(i)

)
w(i)T

2

⎫
⎬

⎭ ,

where D(i) is a parameterized diagonal matrix providing extra regularization similar

to the ambient penalty term in manifold regularization. Bayesian inference is per-

formed to learn the maximum a posteriori (MAP) estimate of the model parameters

with an expectation-maximization algorithm.

In (Kegl and Wang, 2004), an extension of the Adaboost algorithm is proposed

234 The Geometric Basis of Semi-Supervised Learning

(also discussed elsewhere in this book) that implements similar intuitions within

the framework of boosting techniques. In (Altun et al., 2005), a generalization of

the problem in Eq. 12.5 is presented for semi-supervised learning of structured

variables.

By introducing approximations to avoid graph recomputation, methods for out-

of-sample extension have also been suggested without explicitly operating in an

ambiently defined function or model space. In (Delalleau et al., 2005) an induction

formula is derived by assuming that the addition of a test point to the graph does

not change the transductive solution over the unlabeled data. In other words, if

f = [f1 . . . fl+u ft] denotes a function defined on the augmented graph, with ft as

its value on the node corresponding to the test point, then minimizing the objective

function for graph regularization (with L as the regularizer) keeping the values on

the original nodes fixed, one can obtain a Parzen windows expression for ft:

ft =

∑
i Wtifi∑
i Wti

,

where W denotes the adjacency matrix as before. In (Zhu et al., 2003c), a test point

is classified according to its nearest neighbor on the graph, whose classification is

available after transductive inference. In (Chapelle et al., 2003), graph kernels are

constructed by modifying the spectrum of the Gram matrix of a kernel evaluated

over labeled and unlabeled examples. Unseen test points are approximated in the

span of the labeled and unlabeled data, and this approximation is used to extend

the graph kernel.

The regularized Laplacian eigenmap algorithms presented in section 12.3.2 have

also been simultaneously and independently developed by Vert and Yamanishi

(2004) in the context of extending a partially known graph. The graph inference

problem is posed as follows: Suppose a graph G = (V, E) with vertices V and edges

E is observed and is known to be a subgraph of an unknown graph G′ = (V ′, E′)
with V ⊂ V ′ and E ⊂ E′. Given the vertices V ′ − V , infer the edges E′ − E. If

the vertices v are elements of some set V on which a kernel function K : V × V is

defined, then one can infer the graph in two steps: Find a map ψ : V → R
m and

induce a nearest-neighbor graph on the embedded points. To find the map ψ in

the RKHS corresponding to K, one can set up an optimization problem (similar to

that in regularized classification), involving a graph Laplacian-based “data fit” term

that measures how well ψ preserves the local structure of the observed graph and

the RKHS regularizer that provides ambient smoothness. This is also the objective

function of regularized Laplacian eigenmaps, and involes solving the generalized

eigenvalue problem (12.13) for multiple eigenvectors.

12.7 Future Directions

We have discussed a general framework for incorporating geometric structures in

the design of learning algorithms. Our framework may be extended to include

12.7 Future Directions 235

additional domain structure, e.g., in the form of invariances and structured outputs.

Many directions are being pursued toward improving the scalability and efficiency

of our algorithms, while developing extensions to handle unlabeled data in, e.g.,

support vector regression, one-class SVMs, and Gaussian processes. We plan to

pursue applications of these methods to a variety of real-world learning tasks, and

investigate issues concerning generalization analysis and model selection.

13 Discrete Regularization

Dengyong Zhou dengyong.zhou@tuebingen.mpg.de

Bernhard Schölkopf bernhard.schoelkopf@tuebingen.mpg.de

Many real-world machine learning problems are situated on finite discrete sets, in-

cluding dimensionality reduction, clustering, and transductive inference. A variety

of approaches for learning from finite sets has been proposed from different motiva-

tions and for different problems. In most of those approaches, a finite set is modeled

as a graph, in which the edges encode pairwise relationships among the objects in

the set. Consequently many concepts and methods from graph theory are applied,

in particular, graph Laplacians.

In this chapter we present a systemic framework for learning from a finite set rep-

resented as a graph. We develop discrete analogues of a number of differential oper-

ators, and then construct a discrete analogue of classical regularization theory based

on those discrete differential operators. The graph Laplacian-based approaches are

special cases of this general discrete regularization framework. More importantly,

new approaches based on other different differential operators are derived as well.

13.1 Introduction

Many real-world machine learning problems can be described as follows: given a set

of objects X = {x1, x2, . . . , xl, xl+1, . . . , xn} from a domain X (e.g., R
d) in which the

first l objects are labeled as y1, . . . , yl ∈ Y = {1,−1}, the goal is to predict the labels

of remaining unlabeled objects indexed from l + 1 to n. If the objects to classify

are totally unrelated to each other, we cannot make any prediction statistically

better than random guessing. Typically we may assume that there exist pairwise

relationships among data. For example, given a finite set of vectorial data, the

pairwise relationships among data points may be described by a kernel (Schölkopf

and Smola, 2002). A data set endowed with pairwise relationships can be naturally

modeled as a weighted graph. The vertices of the graph represent the objects, andweighted graph

the weighted edges encode the pairwise relationships. If the pairwise relationships

238 Discrete Regularization

Figure 13.1 The relations among induction, deduction, and transduction.

are symmetric, the graph is undirected; otherwise, the graph is directed. A typical

example for directed graphs is the World Wide Web (WWW), in which hyperlinks

between webpages may be thought of as directed edges.

Any supervised learning algorithm can be applied to the above inference problem,

e.g., by training a classifier f : X → Y with the set of pairs {(x1, y1), . . . , (xl, yl)},
and then using the trained classifier f to predict the labels of the unlabeled objects.

Following this approach, one will have estimated a classification function defined on

the whole domain X before predicting the labels of the unlabeled objects. Accordingtransductive

inference to (Vapnik, 1998) (see also chapter 24), estimating a classification function defined

on the whole domain X is more complex than the original problem which only

requires predicting the labels of the given unlabeled objects, and a better approach

is to directly predict the labels of the given unlabeled objects. Therefore here

we consider estimating a discrete classification function which is defined on the

given objects X only. Such an estimation problem is called transductive inference

(Vapnik, 1998). In psychology, transductive reasoning means linking particular to

particular with no consideration of the general principles. It is generally used by

young children. In contrast, deductive reasoning, which is used by adults and older

children, means the ability to come to a specific conclusion based on a general

premise (cf. figure 13.1).

It is well known that many meaningful inductive methods such as support

vector machines (SVMs) can be derived from a regularization framework, which

minimizes an empirical loss plus a regularization term. Inspired by this work, wediscrete

regularization

theory

define discrete analogues of a number of differential operators, and then construct

a discrete analogue of classical regularization theory (Tikhonov and Arsenin, 1977;

Wahba, 1990) using the discrete operators. Much existing work, including spectral

clustering, transductive inference, and dimensionality reduction can be understood

13.2 Discrete Analysis 239

in this framework. More importantly, a family of new approaches is derived.

13.2 Discrete Analysis

In this section, we first introduce some basic notions on graph theory, and then

propose a family of discrete differential operators, which constitute the basis of the

discrete regularization framework presented in the next section.

13.2.1 Preliminaries

weighted graph

A graph G = (V, E) consists of a finite set V, together with a subset E ⊆ V × V.

The elements of V are the vertices of the graph, and the elements of E are the

edges of the graph. We say that an edge e is incident on vertex v if e starts from

v. A self-loop is an edge which starts and ends at the same vertex. A path is a

sequence of vertices (v1, v2, . . . , vm) such that [vi−1, vi] is an edge for all 1 < i ≤ m.

A graph is connected when there is a path between any two vertices. A graph is

undirected when the set of edges is symmetric, i.e., for each edge [u, v] ∈ E we also

have [v, u] ∈ E. In the following, the graphs are always assumed to be connected,

undirected, and have no self-loops or multiple edges; for an example, see figure 13.2.

A graph is weighted when it is associated with a function w : E → R+ which

is symmetric, i.e. w([u, v]) = w([v, u]), for all [u, v] ∈ E. The degree function

d : V → R+ is defined to be

d(v) :=
∑

u∼v

w([u, v]),

where u ∼ v denote the set of the vertices adjacent with v, i.e. [u, v] ∈ E. LetHilbert spaces

H(V) denote the Hilbert space of real-valued functions endowed with the usual

inner product

〈f, g〉H(V) :=
∑

v∈V

f(v)g(v),

for all f, g ∈ H(V). Similarly define H(E). In what follows, we will omit the

subscript of inner products if we do not think it is necessary. Note that function

h ∈ H(E) have not to be symmetric. In other words, we do not require h([u, v]) =

h([v, u]).

13.2.2 Gradient and Divergence Operators

We define the discrete gradient and divergence operators, which can be thought of

as discrete analogues of their counterparts in the continuous case.

240 Discrete Regularization

Figure 13.2 An undirected graph.

Definition 13.1 The graph gradient is an operator ∇ : H(V) → H(E) defined by

(∇f)([u, v]) :=

√
w([u, v])

d(v)
f(v) −

√
w([u, v])

d(u)
f(u), for all [u, v] ∈ E. (13.1)

graph gradient
The gradient measures the variation of a function on each edge. Clearly,

(∇f)([u, v]) = −(∇f)([v, u]), (13.2)

i.e., ∇f is skew-symmetric.

Remark 13.2 An obvious problem is why we define a graph gradient as Eq 13.1.

In the uniform 2-dimensional lattice case, a natural discrete gradient is defined by

(∇f)([i, i + 1]) = f(i + 1) − f(i),

where i denotes the index of a node of the lattice. Unlike the lattice case, the problem

that we have to deal with here is the irregularity of a general graph. Intuitively, in

our definition, before computing the variation of a function between two adjacent

vertices, we break the function value at each vertex among its adjacent edges, and

the value assigned to each edge is proportional to the edge weight. Mathematically,

such a definition can make us finally recover the well-known graph Laplacian in a

way parallel to continuous case (see section 13.2.3).

We may also define the graph gradient at each vertex. Given a function f ∈ H(V)

and a vertex v, the gradient of f at v is defined by ∇f(v) := {(∇f)([v, u])|[v, u] ∈
E}. We also often denote ∇f(v) by ∇vf. Then the norm of the graph gradient ∇f

at vertex v is defined bydiscrete

p-Dirichlet form

13.2 Discrete Analysis 241

‖∇vf‖ :=

(∑

u∼v

(∇f)2([u, v])

) 1
2

,

and the p-Dirichlet form of the function f is defined by

Sp(f) :=
1

2

∑

v∈V

‖∇vf‖p.

Intuitively, the norm of the graph gradient measures the roughness of a function

around a vertex, and the p-Dirichlet form the roughness of a function over the

graph. In addition, we define ‖∇f([v, u])‖ := ‖∇vf‖. Note that ‖∇f‖ has been

defined in the space H(E) as ‖∇f‖ = 〈∇f,∇f〉1/2
H(E).

Definition 13.3 The graph divergence is an operator div : H(E) → H(V) which

satisfies

〈∇f, h〉H(E) = 〈f,− div h〉H(V), for all f ∈ H(V), h ∈ H(E). (13.3)

graph divergence
In other words, − div is defined to be the adjoint of the graph gradient. Equa-

tion (13.3) can be thought of as a discrete analogue of the Stokes theorem.1 Note

that the inner products in the left and right sides of (13.3) are respectively in the

spaces H(E) and H(V).

Proposition 13.4 The graph divergence can be computed as

(div h)(v) =
∑

u∼v

√
w([u, v])

d(v)

(
h([v, u]) − h([u, v])

)
, (13.4)

1. Given a compact Riemannian manifold (M, g) with a function f ∈ C∞(M) and a vector
field X ∈ X(M), it follows from the Stokes theorem that

R

M
〈∇f, X〉 = −

R

M
(div X)f.

242 Discrete Regularization

Proof

〈∇f, h〉 =
∑

[u,v]∈E

∇f([u, v])h([u, v])

=
∑

[u,v]∈E

(√
w([u, v])

d(v)
f(v) −

√
w([u, v])

d(u)
f(u)

)
h([u, v])

=
∑

[u,v]∈E

√
w([u, v])

d(v)
f(v)h([u, v]) −

∑

[u,v]∈E

√
w([u, v])

d(u)
f(u)h([u, v])

=
∑

r∈V

∑

u∼r

√
w([u, r])

d(r)
f(r)h([u, r]) −

∑

r∈V

∑

v∼r

√
w([r, v])

d(r)
f(r)h([r, v])

=
∑

r∈V

f(r)

(∑

u∼r

√
w([u, r])

d(r)
h([u, r]) −

∑

v∼r

√
w([r, v])

d(r)
h([r, v])

)

=
∑

r∈V

f(r)
∑

u∼r

√
w([u, r])

d(r)

(
h([u, r]) − h([r, u])

)
.

The last equality implies (13.4).
net flow

Intuitively, the divergence measures the net outflow of function h at each vertex.

Note that if h is symmetric, then (div h)(v) = 0 for all v ∈ V.

13.2.3 Laplace Operator

In this section, we define the graph Laplacian, which can be thought of as discrete

analogue of the Laplace-Beltrami operator on Riemannian manifolds.

Definition 13.5 The graph Laplacian is an operator ∆ : H(V) → H(V) defined

by 2

∆f := −1

2
div(∇f). (13.5)

graph Laplacian
Substituting (13.1) and (13.4) into (13.5), we have

(∆f)(v) =
1

2

∑

u∼v

√
w([u, v])

d(v)

(
(∇f)([u, v]) − (∇f)([v, u])

)

=
∑

u∼v

√
w([u, v])

d(v)

(√
w([u, v])

d(v)
f(v) −

√
w([u, v])

d(u)
f(u)

)

= f(v) −
∑

u∼v

w([u, v])√
d(u)d(v)

f(u). (13.6)

2. The Laplace-Beltrami operator ∆ : C∞(M) → C∞(M) is defined to be ∆f =
−div(∇f). The additional factor 1/2 in (13.5) is due to each edge being counted twice.

13.2 Discrete Analysis 243

self-adjoint

positive definite

The graph Laplacian is a linear operator because both the gradient and divergence

operators are linear. Furthermore, the graph Laplacian is self-adjoint,

〈∆f, g〉 =
1

2
〈− div(∇f), g〉 =

1

2
〈∇f,∇g〉 =

1

2
〈f,− div(∇g)〉 = 〈f,∆g〉,

and positive semi-definite:

〈∆f, f〉 =
1

2
〈− div(∇f), f 〉 =

1

2
〈∇f,∇f〉 = S2(f) ≥ 0. (13.7)

It immediately follows from (13.7) that

Theorem 13.6 2∆f = DfS2.

Remark 13.7 Equation (13.6) shows that our graph Laplacian defined by (13.5)

is identical to the Laplace matrix in (Chung, 1997) defined to be ∆ = D−1/2(D −
W)D−1/2, where D is a diagonal matrix with D(v, v) = d(v), and W a matrix

with W (u, v) = w([u, v]) if [u, v] is an edge and W (u, v) = 0 otherwise. It is worthLaplace matrix

mentioning that the matrix L = D − W is often referred to as the combinatorial

(or unnormalized) graph Laplacian, or simply the graph Laplacian. Obviously, this

Laplacian can also be derived in a similar way. Specifically, define a graph gradient

by

(∇f)([u, v]) :=
√

w([u, v])(f(v) − f(u)), for all [u, v] ∈ E,

and then the rest proceeds as the above.

Remark 13.8 For the connection between graph Laplacians (including the Lapla-

cian we presented here) and the usual Laplacian in continuous case, we refer the

reader to (von Luxburg et al., 2005; Hein et al., 2005; Bousquet et al., 2004). Theconvergence

main point is that, if we assume the vertices of a graph are identically and indepen-

dently sampled from some unknown but fixed distribution, when the sampling size

goes to infinity, the combinatorial graph Laplacian does not converge to the usual

Laplacian unless the distribution is uniform.

13.2.4 Curvature Operator

In this section, we define the graph curvature which can be regarded as a discrete

analogue of the mean curvature in continuous case.

Definition 13.9 The graph curvature is an operator κ : H(V) → H(V) defined by

κf := −1

2
div

(∇f

‖∇f‖

)
. (13.8)

graph curvature

244 Discrete Regularization

Substituting (13.1) and (13.4) into (13.8), we obtain

(κf)(v) =
∑

u∼v

√
w([u, v])

d(v)

(∇f

‖∇f‖([u, v]) − ∇f

‖∇f‖([v, u])

)

=
∑

u∼v

w([u, v])√
d(v)

[
1

‖∇uf‖

(
f(v)√
d(v)

− f(u)√
d(u)

)
− 1

‖∇vf‖

(
f(u)√
d(u)

− f(v)√
d(v)

)]

=
1

2

∑

u∼v

w([u, v])√
d(v)

(
1

‖∇uf‖ +
1

‖∇vf‖

)(
f(v)√
d(v)

− f(u)√
d(u)

)
. (13.9)

Unlike the graph Laplacian (13.5), the graph curvature is a nonlinear operator.

As in theorem 13.6, we have

Theorem 13.10 κf = DfS1.

Proof

(DfS1)(v) =
∑

u∼v

[
w([u, v])

‖∇uf‖

(
f(v)

d(v)
− f(u)√

d(u)d(v)

)
+

w([u, v])

‖∇vf‖

(
f(v)

d(v)
− f(u)√

d(u)d(v)

)]

=
∑

u∼v

w([u, v])

(
1

‖∇uf‖ +
1

‖∇vf‖

)(
f(v)

d(v)
− f(u)√

d(u)d(v)

)

=
∑

u∼v

w([u, v])√
d(v)

(
1

‖∇uf‖ +
1

‖∇vf‖

)(
f(v)√
d(v)

− f(u)√
d(u)

)
.

Comparing the last equality with (13.9) completes the proof.

13.2.5 p-Laplace Operator

In this section, we generalize the graph Laplacian and curvature to an operator,

which can be thought of as the discrete analogue of the p-Laplacian in continuous

case (Hardt and Lin, 1987; Heinonen et al., 1993).

Definition 13.11 The graph p-Laplacian is an operator ∆p : H(V) → H(V)

defined by

∆pf := −1

2
div(‖∇f‖p−2∇f). (13.10)

graph

p-Laplacian
Clearly, ∆1 = κ, and ∆2 = ∆. Substituting (13.1) and (13.4) into (13.10), we

obtain

(∆pf)(v) =
1

2

∑

u∼v

w([u, v])√
d(v)

(‖∇uf‖p−2+‖∇vf‖p−2)

(
f(v)√
d(v)

− f(u)√
d(u)

)
, (13.11)

which generalizes (13.6) and (13.9).

As before, it can be shown that

Theorem 13.12 p∆pf = DfSp.

13.3 Discrete Regularization 245

Remark 13.13 There is much literature on the p-Laplacian in continuous case.

We refer the reader to (Heinonen et al., 1993) for a comprehensive study. There

is also some work on the discrete analogue of the p-Laplacian, e.g., see (Yamasaki,

1986), where it is defined as

∆pf(v) =
1

gp(v)

∑

u∼v

wp−1([u, v])|f(u) − f(v)|p−1 sign(f(u) − f(v)),

where gp(v) =
∑

u∼v wp−1([u, v]) and p ∈ [2,∞[. Note that p = 1 is not allowed.

13.3 Discrete Regularization

Given a graph G = (V, E) and a label set Y = {1,−1}, the vertices v in a subset

S ⊂ V are labeled as y(v) ∈ Y. Our goal is to label the remaining unlabeled vertices,

i.e., the vertices in the complement of S. Assume a classification function f ∈ H(V),

which assigns a label sign f(v) to each vertex v ∈ V. Obviously, a good classification

function should vary as slowly as possible between closely related vertices while

changing the initial label assignment as little as possible.discrete

regularization Define a function y ∈ H(V) with y(v) = 1 or −1 if vertex v is labeled as positive or

negative respectively, and 0 if it is unlabeled. Thus we may consider the optimization

problem

f∗ = argmin
f∈H(V)

{Sp(f) + μ‖f − y‖2}, (13.12)

where μ ∈]0,∞[is a parameter specifying the tradeoff between the two competing

terms. It is not hard to see that the objective function is strictly convex, and hence

by standard arguments in convex analysis the optimization problem has a unique

solution.

13.3.1 Regularization with p = 2

When p = 2, the following equation can derived from theorem 13.6.

Theorem 13.14 The solution of (13.12) satisfies that

∆f∗ + μ(f∗ − y) = 0.

The equation in the theorem can be thought of as discrete analogue of the Euler-

Lagrange equation. It is easy to see that we can obtain a closed-form solution

f∗ = μ(∆ + μI)−1y, where I denotes the identity operator. Define the functionheat diffusion

c : E → R+ by

c([u, v]) =
1

1 + μ

w([u, v])√
d(u)d(v)

, if u
= v; and c([v, v]) =
μ

1 + μ
. (13.13)

246 Discrete Regularization

We can show that the iteration

f (t+1)(v) =
∑

u∼v

c([u, v])f (t)(v) + c([v, v])y(v), for all v ∈ V, (13.14)

where t indicates the iteration step, converges to a closed-form solution (Zhou

et al., 2004). Moreover, the iterative result is independent of the setting of the

initial value. The iteration can be intuitively thought of as a sort of information

diffusion. At every step, each node receives the values from its neighbors, which

are weighted by the normalized pairwise relationships. At the same time, they also

retain some fraction of their values. The relative amount by which these updates

occur is specified by the coefficients defined in (13.13). In what follows, this iteration

approach will be generalized to arbitrary p.

Remark 13.15 It is easy to see that the regularizer of p = 2 can be rewritten into

1

2

∑

u,v

w([u, v])

(
f(u)√
d(u)

− f(v)√
d(v)

)2

, (13.15)

which we earlier suggested for transductive inference (Zhou et al., 2004). A closelyunnormalized

regularizer related one is

1

2

∑

u,v

w([u, v])(f(u) − f(v))2, (13.16)

which appeared in (Joachims, 2003; Belkin et al., 2004a; Zhu et al., 2003b). From

the point of view of spectral clustering, (13.15) can be derived from the normalized

cut (Shi and Malik, 2000), and corresponds to the (normalized) graph Laplacian

(13.5); and (13.16) is derived from the ratio cut (Hagen and Kahng, 1992), and

corresponds to the combinatorial graph Laplacian (see also remark 13.7). On many

real-world experiments, a remarkable difference between these two regularizers is

that the transductive approaches based on (13.16) (Joachims, 2003; Zhu et al.,

2003b) strongly depend on the prior knowledge of proportion among different classes

while the approach based on (13.15) (Zhou et al., 2004) can work well without such

prior knowledge. For more details, we refer the reader to chapter 21 (Analysis of

Benchmarks) and chapter 11 (Label Propagation and Quadratic Criterion).

Remark 13.16 One can construct many other similar regularizers. For instance,locally linear

embedding

regularizer

one might consider (Roweis and Saul, 2000)

1

2

∑

u,v

(
f(v) −

∑

u∼v

p([u, v])f(u)

)2

, (13.17)

where the function p : E → R+ is defined to be p([u, v]) = w([u, v])/d(u). Note that

p is not symmetric. This regularizer measures the difference of function f at vertex

v, and the average of f on the neighbors of v.

13.3 Discrete Regularization 247

13.3.2 Regularization with p = 1

When p = 1, it follows from theorem 13.10 that

Theorem 13.17 The solution of (13.12) satisfies that

κf∗ + 2μ(f∗ − y) = 0.

As we have mentioned before, the curvature κ is a nonlinear operator, and we are

not aware of any closed-form solution for this equation. However, we can construct

an iterative algorithm to obtain the solution. Substituting (13.9) into the equation

in the theorem, we have

∑

u∼v

w([u, v])√
d(v)

(
1

‖∇uf∗‖ +
1

‖∇vf∗‖

)(
f∗(v)√

d(v)
− f∗(u)√

d(u)

)
+2μ(f∗(v)− y(v)) = 0.

(13.18)

Define the function m : E → R+ by

m([u, v]) = w([u, v])

(
1

‖∇uf∗‖ +
1

‖∇vf∗‖

)
. (13.19)

Then

∑

u∼v

m([u, v])√
d(v)

(
f∗(v)√

d(v)
− f∗(u)√

d(u)

)
+ 2μ(f∗(v) − y(v)) = 0,

which can be transformed into
(∑

u∼v

m([u, v])

d(v)
+ 2μ

)
f∗(v) =

∑

u∼v

m([u, v])√
d(u)d(v)

f∗(u) + 2μy(v).

Define the function c : E → R+ bycurvature flow

c([u, v]) =

m([u, v])√
d(u)d(v)

∑
u∼v

m([u, v])

d(v)
+ 2μ

, if u
= v, (13.20)

and

c([v, v]) =
2μ

∑
u∼v

m([u, v])

d(v)
+ 2μ

. (13.21)

Then

f∗(v) =
∑

u∼v

c([u, v])f∗(v) + c([v, v])y(v). (13.22)

248 Discrete Regularization

Thus we can use the iteration

f (t+1)(v) =
∑

u∼v

c(t)([u, v])f (t)(v) + c(t)([v, v])y(v), for all v ∈ V (13.23)

to obtain the solution, in which the coefficients c(t) are updated according to (13.20)

and (13.19). It can be shown that this iterative result is independent of the setting of

the initial value. Compared with the iterative algorithm (13.14) in the case of p = 2,

the coefficients in the present method are adaptively updated at each iteration, in

addition to the function being updated.

13.3.3 Regularization with Arbitrary p

For arbitrary p, it follows from theorem 13.12 that

Theorem 13.18 The solution of (13.12) satisfies that

p∆pf
∗ + 2μ(f∗ − y) = 0.

We can construct a similar iterative algorithm to obtain the solution. Specifically,general diffusion

f (t+1)(v) =
∑

u∼v

c(t)([u, v])f (t)(v) + c(t)([v, v])y(v), for all v ∈ V, (13.24)

where

c(t)([u, v]) =

m(t)([u, v])√
d(u)d(v)

∑
u∼v

m(t)([u, v])

d(v)
+

2μ

p

, if u
= v, (13.25)

and

c(t)([v, v]) =

2μ

p

∑
u∼v

m(t)([u, v])

d(v)
+

2μ

p

, (13.26)

and

m(t)([u, v]) =
w([u, v])

p
(‖∇uf (t)‖p−2

+ ‖∇vf
(t)‖p−2

). (13.27)

It is easy to see that the iterative algorithms in sections 13.3.1 and 13.3.2 are the

special cases of this general one with p = 2 and p = 1 respectively. Moreover, it is

interesting to note that p = 2 is a critical point.

13.4 Conclusion 249

13.4 Conclusion

In this chapter, we proposed the discrete analogues of a family of differential

operators, and the discrete analogue of classical regularization theory based on

those discrete differential operators. A family of transductive inference algorithms

corresponding to different discrete differential operators was naturally derived from

the discrete regularization framework.

There are many possible extensions to this work. One may consider defining dis-

crete high-order differential operators, and then building a regularization framework

that can penalize high-order derivatives. One may also develop a parallel framework

on directed graphs (Zhou et al., 2005b), which model many real-world data struc-

tures, such as the World Wide Web. Finally, it is of interest to explore the properties

of the graph p-Laplacian as the nonlinear extension of the usual graph Laplacian,

since the latter has been intensively studied, and has many nice properties (Chung,

1997).

14 Semi-Supervised Learning with Conditional

Harmonic Mixing

Christopher J. C. Burges Chris.Burges@microsoft.com

John C. Platt jplatt@microsoft.com

Recently graph-based algorithms, in which nodes represent data points and links

encode similarities, have become popular for semi-supervised learning. In this

chapter we introduce a general probabilistic formulation called conditional harmonic

mixing (CHM), in which the links are directed, a conditional probability matrix is

associated with each link, and where the numbers of classes can vary from node

to node. The posterior class probability at each node is updated by minimizing

the Kullback-Leibler (KL) divergence between its distribution and that predicted

by its neighbors. We show that for arbitrary graphs, as long as each unlabeled

point is reachable from at least one training point, a solution always exists, is

unique, and can be found by solving a sparse linear system iteratively. This result

holds even if the graph contains loops, or if the conditional probability matrices

are not consistent. We show how, given a classifier for a task, CHM can learn its

transition probabilities. Using the Reuters database, we show that CHM improves

the accuracy of the best available classifier, for small training set sizes.

14.1 Introduction

Graphical models provide a powerful framework for approaching machine learning

problems. Two common examples are probabilistic graphical models (Jordan, 1999)

and semi-supervised learning on graphs (see chapter 11 and (Zhu and Ghahramani,

2002; Zhu et al., 2003b; Zhou et al., 2004)) and which we refer to here as Laplacian

SSL. Graphs have been used as a general representation of preference relations

in ranking problems (Dekel et al., 2004) and play a role in various approaches to

dimensional reduction (Burges, 2005). In this chapter, we propose a new graph-conditional

harmonic mixing based approach to semi-supervised learning called conditional harmonic mixing

(CHM).

252 Semi-Supervised Learning with Conditional Harmonic Mixing

Probabilistic graphical models such as Bayes nets write a probability distribution as

a product of conditionals, which live on the nodes; the arcs encode conditional in-

dependence assumptions. Laplacian semi-supervised learning (SSL) is more closely

related to random walks on networks (Doyle and Snell, 1984): each arc encodes the

similarity between the nodes at its endpoints, and the goal is to use neighborhood

structure to guide the choice of classification (or regression, clustering, or ranking)

function. For Laplacian SSL models, the probabilistic interpretation is somewhat

indirect (Zhu et al., 2003b); for probabilistic graphical models, it is central. In

CHM we propose an intermediate model, where both a probabilistic interpretation

and Laplacian SSL are central. In CHM, no attempt is made to model an overall

joint density; we are only interested, ultimately, in the class-conditional posteriors.

Although it is assumed that there exists some underlying joint, the model itself

is viewed as an approximation; in particular, the conditional probabilities may be

approximations, and as a result, inconsistent (i.e., no joint may exist for which

they are the conditionals). This results in some striking differences between CHM

and well-known probabilistic graphical models such as Bayes nets: for example, in

CHM, the process of learning the posteriors, given the conditionals, converges to

a global optimum via a straightforward iterative optimization procedure, whatever

the structure of the graph (in particular, even if there are loops), provided only that

there exists a path to each unlabeled point from at least one labeled point. In this

regard, CHM is similar to dependency networks (Heckerman et al., 2001). In CHM,

as in Laplacian SSL, each node corresponds to a random variable, but unlike the

original Laplacian SSL, the arcs are directed , and each arc carries a matrix whichdirected graphs

models a conditional probability.1 The matrices can even be rectangular, which

corresponds to the posteriors at different nodes corresponding to different numbers

of classes for that random variable. We will also investigate learning the condi-

tional probability matrices themselves from data. In this chapter we will consider

CHM models for classification, but the same ideas could be extended for regression,

clustering, ranking, etc.

14.1.1 Conditional Harmonic Mixing: Motivation

CHM is a highly redundant model, in that for a “perfect” CHM model of a given

problem, the posterior for a given node can be computed from the posterior at any

adjacent node, together with the conditional probability matrix on the arc joining

them. However this is an idealization: CHM handles this by asking that the posterior

at a given node be that distribution such that the number of bits needed to describe

the distributions predicted at that node, by the adjacent nodes, is minimized. This

is accomplished by minimizing a Kullback-Leibler (KL) divergence (see below).Kullback-Leibler

divergence Building on an idea proposed in Zhu et al. (2003b), CHM can also be used to

improve the accuracy of another, given base classifier.

1. Recently, Zhou et al. (2005b) have extended Laplacian SSL to the case of directed arcs.

14.1 Introduction 253

In the graphical approaches to semi-supervised learning of Zhu and Ghahramani

(2002); Zhu et al. (2003b), and Zhou et al. (2004) (see also chapter 11), the

underlying intuition is that the function should vary smoothly across the graph,

so that closely clustered points tend to be assigned similar function values (the

“clustering assumption”). This leads to the use of undirected arcs in the graph,

since the graph is used essentially to model the density. However, there is a second

intuition that we wish to add, and that is of the propagation of information.

Consider the graph shown in figure 14.1, left panel (in this chapter, filled (unfilled)

circles represent labeled (unlabeled) points), where both arcs have the same weight.

In the harmonic solutions of Zhu and Ghahramani (2002); Zhu et al. (2003b), and

Zhou et al. (2004), the state of node 2 is the weighted average of its neighbors.

However, in this particular graph, it seems strange to have node 2 care about the

state of node 3, since from the information propagation point of view, all of the

label information propagates out from node 1, and all label information about node

3 has already passed through node 2. By making the arcs directed, as in the right

panel, this problem can be addressed with no loss of generality, since an undirected

arc between nodes A and B can be simulated by adding arcs A→B and B→A.

1 2 3 1 2 3

Figure 14.1 Directional arcs for information flow.

A second reason for using directed arcs is that the relations between points can

themselves be asymmetric (even if both are unlabeled). For example, in k-nearest

neighbor, if point A is the nearest neighbor of point B, point B need not be that of

point A. Such asymmetric relations can be captured with directed arcs.

CHM shares with Laplacian SSL the desirable property that its solutions areharmonic

solutions harmonic, and unique, and can be computed iteratively and efficiently. It shares with

Bayesian graphical models the desirable property that it is a probabilistic model

from the ground up. We end this section with a simple but useful observation, but

first we must introduce some notation. Suppose nodes i and j (i, j ∈ {1, . . . , N}) are

connected by a directed arc from i to j (throughout, we will index nodes by i, j, k

and vector indices by a, b). We will represent the posterior at any node k as the

vector P (Xk = Ma) ≡ Pk (so that Pk is a vector indexed by a), and the conditional

on the arc as P (Xj |Xi, G) ≡ Pji (so that Pji is a matrix indexed by the class index

at node j and the class index at node i). Then the computation of i’s prediction of

the posterior at j is just the matrix vector multiply PjiPi
.
=

∑
b(Pji)ab(Pi)b. Note

that all conditional matrices are also conditioned on the training data, the graph

structure, and other factors, which we denote collectively by G. We emphasize that

the number of classes at different nodes can differ, in which case the conditional

matrices joining them will be rectangular. Note also that the Pji are column

254 Semi-Supervised Learning with Conditional Harmonic Mixing

stochastic matrices. Similarly we will call any vector whose components are a

non-negative partition of unity a stochastic vector. Then we have the following

observation.

Proposition 14.1 Given any two stochastic vectors Pi and Pj, there always exists

a conditional probability matrix Pij such that Pi = PijPj.

This follows trivially from the choice (Pij)ab = (Pi)a ∀b, and just corresponds to

the special case that the probability vectors Pi and Pj are independent. This shows

that CHM is able, in principle, to model any set of posteriors on the nodes, and

that some form of regularization will therefore be needed if we expect, for example,

to learn nontrivial matrices Pij given a set of posteriors Pi. We will impose this

regularization by partitioning the Na arcs in the graph into a small number n of

equivalence classes, where n ≪ Na, such that arcs in a given equivalence class are

to have the same Pij . In this chapter, we will use nearest-neighbor relations to

determine the equivalence classes.

14.1.2 Related Work

Zhu and Ghahramani (2002); Zhu et al. (2003b), and Zhou et al. (2004) introduce

Laplacian SSL for transductive learning using graphs (see also chapter 11). Eachtransductive

learning link is given a scalar weight that measures the similarity between the data points

attached to the nodes at that link’s endpoints, and each node has a scalar value. The

objective function is a weighted sum of squared differences in function values be-

tween pairs of nodes, with positive weights; minimizing this encourages the modeled

function to vary slowly across nodes. The solution is a harmonic function (Doyleharmonic

function and Snell, 1984) in which each function value is the weighted sum of neighboring

values. The function is thresholded to make the classification decision. In contrast

to Laplacian SSL, at the solution, for nondiagonal conditional probability matri-

ces, the CHM conditional harmonic property generates extra additive terms in the

function on the nodes, which are not present in the Gaussian field solution (which

is homogeneous in the function values). The two methods coincide only when the

random variables at all nodes correspond to just two classes, when the conditional

probability matrices in CHM are 2 × 2 unit matrices, where all the weights in the

Gaussian random field are unity, and where all nodes are joined by directed arcs

in both directions. Finally, one concrete practical difference is that CHM can han-

dle one-sided classification problems, where training data from only one class are

available, by using conditional posterior matrices other than unit matrices. In this

case, the objective function in (Zhu et al., 2003b) is minimized by attaching the

same label to all the unlabeled data. However, either method can handle one-sided

classification problems by leveraging results from an existing one-sided classifier;

we will explore this method below.

Zhu et al. (2003c) embed the label propagation work in a probabilistic framework

by showing that the model can be viewed in terms of Gaussian processes. However,Gaussian process

to establish the connection, extra assumptions and approximations are required: the

14.2 Conditional Harmonic Mixing 255

inverse covariance matrix must be regularized; an extra set of unobserved random

variables, which give rise to the labels via a sigmoid conditional, are introduced; and

the posteriors must be approximated (the authors use the Laplace approximation).

CHM, by contrast, is inherently a probabilistic model.

Directed graph models for semi-supervised learning were also considered in (Zhou

et al., 2005b). However, in that work, the kinds of graphs considered were specific

to a weblike application, with nodes split into hubs and authorities, and with the

fundamental assumption that the similarity of two nodes in the graph is defined by

their colinkage (either from parents or children). Again, the aim of the model is to

require that the modeled function vary slowly across “similar” nodes, so the notion

of information propagation described above does not play a direct role; the model

is also not a probabilistic one. More recently, semi-supervised learning on directed

graphs was also studied from a more general point of view in (Zhou et al., 2005a).

Finally we emphasize the main differences between CHM and probabilistic graphical

models such as Bayes nets and Markov random fields (MRFs). Belief nets and MRFsBayes nets

use the graph structure to encode conditional independence assumptions about the

random variables in the model, whereas CHM uses the (redundant) graph structure

to model both the flow of information from the training data, and the smoothness

assumptions on the functions being modeled. Evaluating belief nets (for example,

using belief propagation) in the presence of loops in the graph gets complicated

quickly, whereas, as we shall see, CHM converges under general conditions, even

in the presence of loops. However, both approaches share the fact that they are

probabilistic models.

14.2 Conditional Harmonic Mixing

The structure of the CHM graph will depend on the problem at hand; however,

all graphs share the weak constraint that for every2 test node i, there must exist

a path in the graph joining i with a training node. We will refer to such nodes as

label-connected, and to the graph as a whole as label-connected if every test node

in the graph is label-connected. A neighbor of a given node i is defined to be any

node which is adjacent to node i, where “adjacent” means that there exists an arc

from j to i.

We use the following notation: we assume that the random variable at node i has

Mi states (or classes), and that the arc from node i to node j carries an Mj × Mi

conditional probability matrix Pji. We adopt the convention that Pji is the Mj×Mi

matrix of all zeros if there is no arc from node i to node j. We denote the posterior

at node i by the vector Pi ∈ R
Mi for unlabeled nodes, and by Qi ∈ R

Mi for labeled

2. For readability we use the indices i, j to denote the nodes themselves, since these
quantities appear frequently as subscripts. We use the terms “test node” and “unlabeled
node” interchangeably.

256 Semi-Supervised Learning with Conditional Harmonic Mixing

nodes. Denote the set of labeled nodes by L, with l
.
= |L|, and the set of unlabeled

nodes by U, with u
.
= |U|, let M(i) (N(i)) denote the set of indices of labeled

(unlabeled) nodes adjacent to node i, and define I = M ∪ N with n(i)
.
= ‖I(i)‖.

Finally, for node i, let p(i) be the number of incoming arcs from adjacent test nodes,

and let q(i) be the number of incoming arcs from adjacent train nodes.

14.2.1 The CHM Update Rule

A given node in the graph receives an estimate of its posterior from each of

its neighbors. These estimates may not agree. Suppose that the hypothesized

distribution at node i is Qi, and let the estimates from its n(i) neighbors be Pj , j ∈
I(i), so that Pj = PjkPk for each k ∈ I(i). Given Qi, the number of bits required toKullback-Leibler

divergence describe the distributions Pj is
∑

j{H(Pj)+D(Pj |Qi)}, where H is the entropy and

D the KL divergence. Since we wish to use Qi to describe the combined distributions

Pj as closely as possible, we require that this number of bits be minimized. For fixed

Pj , this is accomplished by setting (Qi)a = (1/n(i))
∑n(i)

j=1(Pj)a. A function on a

graph is called harmonic (Doyle and Snell, 1984; Zhu et al., 2003b) if at each internalharmonic

function node the value of the function is the (possibly weighted) mean of the values at its

neighboring points (an internal node, as opposed to a boundary node, is one whose

function value is not fixed; below we will just use the terms “unlabeled node” and

“labeled node” for internal and boundary nodes). Assuming that a solution exists,

then at the solution, the posterior at a given node is the weighted mean of the

posteriors of its neighbors, where the weights are conditional probability matrices;

hence the name “conditional harmonic mixing.”

14.3 Learning in CHM Models

14.3.1 A Simple Model

It is useful to examine a simple model to fix ideas and to demonstrate a simple

convergence proof. Consider the three-point graph shown in figure 14.2, with one

labeled and two unlabeled nodes, and where to simplify the exposition we take the

number of classes at each node to be C.

The consistency conditions arising from the above update rule are

(
−1 1

2P12
1
2P13

1
2P21 −1 1

2P23

)
⎛
⎜⎜⎝

P1

P2

P3

⎞
⎟⎟⎠ = 0, (14.1)

where P3 = (1, 0, 0, . . .) and where the ones in the matrices represent unit matrices.

We wish to prove four properties of these equations, for any choice of conditional

probability matrices P23, P21, P12, and P13: first, that a solution always exists;

second, that it is unique; third, that it results in stochastic vectors for the solution

14.3 Learning in CHM Models 257

1

2

P12

P13

P23

P21 3

Figure 14.2 A simple three-point CHM graph.

P2 and P3; and fourth, that Jacobi iterates will converge to it (by solving with Jacobi

iterates, we will be able to take advantage of the sparseness of larger problems, as

we will see below). Rearranging, we have

(
1 − 1

2P12

− 1
2P21 1

)(
P1

P2

)
=

1

2

(
P13P3

P23P3

)
. (14.2)

The equations will always take this general form, where the matrix on the left is

square (but not necessarily symmetric) and of side Cu, and where the left-hand

side depends only on the unlabeled points (whose posteriors we wish to find) and

the right, only on the labeled points. Define

b
.
=

1

2

(
P13P3

P23P3

)
, M

.
=

(
1 0

0 1

)
, N

.
=

(
0 1

2P12

1
2P21 0

)
(14.3)

and consider the following iterative algorithm for finding the solution, where x(0)

is arbitrary:

Mx(k+1) = Nx(k) + b. (14.4)

With the above definitions, this is a Jacobi iteration (Golub and Van Loan, 1996,

p. 510), and we have:

Theorem 14.2 (Golub and Van Loan (1996, Theorem 10.1.1)) Suppose

b ∈ R
d and ∆

.
= M − N ∈ R

d×d is nonsingular. If M is nonsingular and the

spectral radius of M−1N satisfies the inequality ρ(M−1N) < 1, then the iterates

x(k) defined by (14.4) converge to x = ∆−1b for any starting vector x.

Since N here is one-half times a column-stochastic matrix, its eigenvalues havestochastic vectors

and matrices absolute value at most 1
2 , so ρ(M−1N) < 1. Hence for this graph, a solution

always exists and is unique. If we start with stochastic vectors everywhere (chosen

arbitrarily on the unlabeled nodes), then they will remain stochastic since each

Jacobi iterate maintains this property, and the solution will be stochastic.3 Note

3. In fact this is true even if the initial vectors on the unlabeled nodes are chosen

258 Semi-Supervised Learning with Conditional Harmonic Mixing

also that the matrix M−N is diagonally dominant, and so has an inverse. However,

for the general case, N may not be proportional to a column stochastic matrix, and

furthermore M − N may not be diagonally dominant; we will need a more general

argument.

14.3.2 A General Convergence Proof

At the CHM solution, for each node i, we have the consistency conditions

Pi −
1

p(i) + q(i)

⎛

⎝
∑

j∈N(i)

PijPj

⎞

⎠ =
1

p(i) + q(i)

⎛

⎝
∑

j∈M(i)

PijQj

⎞

⎠ , (14.5)

where the right-hand side is defined to be zero if M(i) = ∅. Let p =
∑

i∈U Mi, and

define a block matrix A ∈ R
p×p with ones along the diagonal and whose off-diagonal

elements, which are either zero matrices or are the matrices 1
p(i)+q(i)Pij , are chosen

so that (14.5) can be written as

AP = Q, (14.6)

where P, Q ∈ R
p. Note that the right-hand side of (14.6) is determined by the

training data, that all conditional probability matrices associated with unlabeled-

unlabeled arcs are in A, and that all conditional probability matrices associated

with labeled-unlabeled arcs are in Q. Thus (14.5) corresponds to the ith row of

(14.6) and encapsulates Mi equations. Define the kth Jacobi iterate byJacobi iterations

P
(k)
i =

1

p(i) + q(i)

⎛

⎝
∑

j∈N(i)

PijP
(k−1)
j

⎞

⎠ +
1

p(i) + q(i)

⎛

⎝
∑

j∈M(i)

PijQj

⎞

⎠ . (14.7)

Referring to theorem 14.2, we see that in this case, A
.
= M − N where M = I and

Nij
.
= 1

p(i)+q(i)Pij (recall that we define Pij to be the matrix of all zeros, if there is

no arc from node j to node i), and b is the second term on the right-hand side of

(14.7). Then the kth Jacobi iterate takes the form MP (k) = NP (k−1) + b. We can

now state:

Theorem 14.3 Consider a label-connected CHM graph with l labeled nodes. As-

sume that the vectors at the labeled nodes are fixed and stochastic. Then a solution

to the corresponding CHM equations, (14.6), always exists and is unique. Further-

more, at the solution, the vector P ∗
i ∈ R

Mi at the ith unlabeled node is stochastic for

all i, and the Jacobi iterates on the graph will always converge to the same solution,

regardless of the initial values given to the Pi.

We present the proof in the proof-style advocated by Lamport (1993).

arbitrarily, by theorem 14.2, since the solution is unique.

14.3 Learning in CHM Models 259

Proof

1. Assume: the CHM graph is label-connected.

2. ρ(N) < 1.

2.1. Proof Consider the eigenvalue equation:

Nµ = λµ. (14.8)

Just as we view N as a block matrix whose ith, jth element is the matrix
1

p(i)+q(i)Pij , similarly view µ as a vector whose ith element is a vector of

dimension Mi. Then let µi be that component of µ whose L1 norm is largest (or

any such component if there are more than one) and consider the corresponding

rows of (14.8), which encapsulates the Mi equations

1

p(i) + q(i)

⎛

⎝
∑

j∈N(i)

Pijµj

⎞

⎠ = λµi. (14.9)

2.1.1 Assume: q(i) > 0 and i : ‖µi‖1 ≥ ‖µj‖1 ∀j.

2.1.1.1 Since Pij is column stochastic, it has unit L1 norm. Thus
∥∥∥∥∥∥

∑

j∈N(i)

Pijµj

∥∥∥∥∥∥
1

≤
∑

j∈N(i)

∥∥Pijµj

∥∥
1

≤
∑

j∈N(i)

‖Pij‖1

∥∥µj

∥∥
1

=
∑

j∈N(i)

‖µj‖1

≤ p(i)‖µi‖1.

where ‖ · ‖1 denotes the L1 norm, and where the second line follows

from an inequality satisfied by all p norms (Golub and Van Loan,

1996). Since by assumption q(i) ≥ 1, taking the L1 norm of both

sides of (14.9) gives |λ| < 1.

2.1.2 Assume: q(i) = 0 and i : ‖µi‖1 ≥ ‖µj‖1 ∀j.

2.1.2.1 The argument of 2.1.1.1, but with q(i) = 0, gives |λ| ≤ 1, and

if |λ| = 1, then each µj appearing in the sum must have L1 norm

260 Semi-Supervised Learning with Conditional Harmonic Mixing

equal to ‖µi‖1, since for |λ| = 1,

‖µi‖1 =
1

p(i)

∥∥∥∥∥∥

∑

j∈N(i)

Pijµj

∥∥∥∥∥∥
1

≤ 1

p(i)

∑

j∈N(i)

‖Pijµj‖1

≤ 1

p(i)

∑

j∈N(i)

‖µj‖1 ≤ ‖µi‖1

where the last step follows from the assumption that µi has largest

L1 norm. Thus for each j ∈ N(i), we can repeat the above argument

with µj on the right-hand side of (14.9), and the argument can then

be recursively repeated for each k ∈ N(j), until (14.9) has been

constructed for every node for which a path exists to node i. However

since the graph is label-connected, that set of nodes will include a

test node which is adjacent to a train node. The previous argument,

which assumed that q > 0, then shows that |λ| < 1. Thus, in general

for any label-connected CHM graph, |λ| < 1, and so ρ(N) < 1.

3. A is nonsingular.

3.1 Proof Since ρ(N) < 1, the eigenvalues of N all lie strictly within the unit

circle centered on the origin in the complex plane C. Since N = 1 − A (cf.

(14.6)), if e is an eigenvector of A with eigenvalue λ, then it is an eigenvector

of N with eigenvalue 1−λ, and so since 1−λ lies strictly within the unit circle

centered on the origin in C, λ itself lies strictly within the unit circle centered

on the point {1, 0} ∈ C, so λ
= 0. Hence none of A’s eigenvalues vanish, and A

is nonsingular.

4. A solution to the CHM equations exists and is unique.

4.1 Proof Since A is nonsingular, AP = Q has unique solution P = A−1Q.

5. At the solution, the random vector Pi ∈ R
Mi at each unlabeled node is stochastic,

regardless of its initial value.

5.1 Proof For all unlabeled nodes, choose P
(0)
i to be that stochastic vector

whose first component is 1 and whose remaining components vanish. Then from

(14.7), by construction P
(k)
i is stochastic for all k. Hence from theorem 14.2 and

steps 2 and 3 above, the Jacobi iterates will converge to a unique solution, and

at that solution the Pi will be stochastic for all i ∈ N. Finally, by theorem 14.2,

the same (unique) solution will be found regardless of the initial values of the

Pi.

We emphasize the following points:

1. The theorem makes no assumptions on the conditional probability matrices,conditional

probability

matrices

14.4 Incorporating Prior Knowledge 261

beyond the requirement that they be column stochastic. In particular, it does not

assume that the conditional probability matrices on the graph are consistent, that is,

that there exists a joint probability from which all conditionals (or even any subset

of them) could be derived by performing appropriate marginalizations. The CHM

algorithm can therefore be applied using measured estimates of the conditional

probability matrices, for which no precise joint exists.

2. In general A is not symmetric (and need not be row- or column-diagonally

dominant).

3. No structure is imposed on the graph beyond its being label-connected. In

particular, the graph can contain loops.

4. The numbers of classes at each node can differ, in which case the conditional

probability matrices will be rectangular.

5. The model handles probabilistic class labels, that is, the Qi can be arbitrary

stochastic vectors.

6. To improve convergence, Gauss-Seidel iterations should be used, instead ofGauss-Seidel

iterations Jacobi iterations. For Gauss-Seidel iterations, the error tends to zero like ρ(M−1N)k

(Golub and Van Loan, 1996, p. 514).

14.4 Incorporating Prior Knowledge

Suppose that we are given the outputs of a given classifier on the data set. The

classifier was trained on the available labeled examples, but the amount of training

data is limited and we wish to use SSL to improve the results. We can adopt an

idea proposed in (Zhu et al., 2003b), and for each node in the graph, attach an

additional, labeled node, whose label is the posterior predicted for that data point.

In fact CHM allows us to combine several classifiers in this way. This mechanism has

the additional advantage of regularizing the CHM smoothing: the model can apply

more, or less, weight to the original classifier outputs, by adjusting the conditionals

on the arcs. Furthermore, for graphs that fall into several components, some of

which are not label-connected, this method results in sensible predictions for the

disconnected subgraphs; the CHM relaxation can be performed even for subgraphs

containing no labeled data, since the base classifier still makes predictions for those

nodes. In the context of CHM, for brevity we call this procedure of leveraging a baselifting

classifier over a graph “lifting”. We will explore this approach empirically below.

14.5 Learning the Conditionals

We are still faced with the problem of finding the conditional matrices Pij . Here we

propose one method for solving this, which we explore empirically below. Consider

again the simple CHM model shown in figure 14.2, and to simplify the exposition,

262 Semi-Supervised Learning with Conditional Harmonic Mixing

assume that the number of classes at each node is two, and in addition require

that Pl
.
= P13 = P23 and that Pu

.
= P12 = P21 (l, u denoting labeled, unlabeled

respectively). We can parameterize the matrices as

Pl =

(
1-v1 v2

v1 1-v2

)
, Pu =

(
1-v3 v4

v3 1-v4

)
, (14.10)

where 0 ≤ vi ≤ 1 ∀i. Now suppose that the posteriors on every node in figure 14.2

are given, and denote components by, e.g., [P1a, P1b]. In that case, (14.1) may be

rewritten as
⎡
⎢⎢⎢⎢⎣

−P3a P3b −P2a P2b

P3a −P3b P2a −P2b

−P3a P3b −P1a P1b

P3a −P3b P1a −P1b

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

2P1a − P2a − P3a

2P1b − P2b − P3b

2P2a − P1a − P3a

2P2b − P1b − P3b

⎤
⎥⎥⎥⎥⎦

, (14.11)

which we summarize as Av = z. The matrix A in general need not be square, and

if it is, it may be singular (as it is in this example), and even if it is nonsingular,

computing v by inverting A is not guaranteed to give components vi that lie in the

interval [0, 1]. Thus instead we solve the quadratic programming problem:

arg min
v

‖Av − z‖2 subject to 0 ≤ vi ≤ 1 ∀i. (14.12)

The posteriors Pi can simply be the outputs of a given classifier on the problem, if

the classifier outputs are well-calibrated probabilities, or thresholded vectors (whose

elements are 0 or 1) for arbitrary classifiers. To summarize: given some estimate of

the posteriors on every node, the conditional probability matrices on the arcs can

be learned by solving a quadratic programming problem.

14.6 Model Averaging

If sufficient labeled data are available, then a validation set can be used to determine

the optimal graph architecture (i.e., to which neighbors each point should connect).

However, often labeled data are scarce, and in fact semi-supervised learning is really

aimed at this case - that is, when labeled data are very scarce, but unlabeled data

are plentiful. Thus in general for SSL methods it is highly desirable to find a way

around having to use validation sets to choose either the model or its parameters.

In this chapter we will use model averaging: that is, for a given graph, given a

classifier, use CHM to lift its results; then do this for a variety of graphs, and simply

average the posteriors assigned by CHM to each node, across all graphs. This, in

combination with learning the conditionals, makes CHM a largely parameter-free

approach (once a general algorithm for constructing the graphs has been chosen),

although training using many graphs may be more computationally expensive than

using a validation set to choose one.

14.7 Experiments 263

14.7 Experiments

We applied CHM to the problem of text categorization, and to five of the benchmark

classification tasks provided with this book.

14.7.1 Reuters-I Data Set

We applied CHM to the problem of the categorization of news articles in the

Reuters-I data set (Lewis, 1997), with the ModApte split of 9603 training files

and 3744 testing files. Each news article is assigned zero or more labels. Each label

is considered to be an independent classification. We train and test on the ten most

common labels in the data set, which generates ten separate binary classification

problems.

We ran two kinds of classification experiments: one-sided (where only positive

labeled examples are given), and two-sided (where labeled examples of both classesone-sided,

two-sided

classification

are given). The one-sided task is interesting because for some applications, it is much

easier to obtain labeled data of one class than of the other, and few algorithms can

handle training data that contain no examples of one of the classes. For the one-

sided problem we investigated using CHM to lift the Rocchio (inductive) classifier

outputs, since of the methods we considered, only the Rocchio algorithm (Rocchio,Rocchio

algorithm 1971) was appropriate for the one-sided task.

For the two-sided problem, we tested two inductive algorithms and one transduc-

tive algorithm. The two inductive algorithms were a linear support vector machine

(SMV) (Dumais et al., 1998; Drucker et al., 1999) and a mixture of multinomial

conditional models (Nigam et al., 2000). For the mixture model, one multinomialmultinomial

models model is used to model positive examples, while one or more multinomial models are

used to model negative examples. Expectation-maximization (EM) is used to fit the

mixture model to the negative examples. Hyperparameters (C for the linear SVM

and the number of negative multinomials) are set by optimizing the microaveraged

F1 score for the labels for Reuters classes 11–15 on the train/test split. These hy-

perparameters are then used for all ten classes. We also tested the method of Nigam

et al. for transduction using the multinomial mixture model (Nigam et al., 2000).

In that transductive method, EM is used, not only to learn the negative mixture

but also to infer the labels of the unlabeled data. Nigam et al. (2000) introduce

another hyperparameter, which is the fractional weight to assign to each unlabeled

case. This weight is also tuned by optimizing the microaveraged F1 score for classes

11–15.

For all experiments, we assume that the prior for the task is known. For the

lifting arcs (i.e. those arcs joining the extra nodes carrying the classifier posteriors

with the unlabeled nodes), we used unit conditional probability matrices, and we

mapped the base classifier outputs to {0, 1}, both for the computation of the learned

matrices, and for the CHM computation itself. We did this because the outputs of

the base classifiers were far from well-calibrated probabilities (or from quantities

264 Semi-Supervised Learning with Conditional Harmonic Mixing

that could be mapped to well-calibrated probabilities) as to be expected for very

small training sets.

For the two-sided case, of the three algorithms used, the SVMs were found to

give the highest overall accuracy, and so we investigated lifting the SVM outputs

with CHM. All of these algorithms make a hard decision about whether a test point

is in, or out of, a class. For all algorithms, we choose the threshold for this decision

point to reproduce the true number of positives on the entire test set (the “known

prior” assumption).

Note that the validation set was not used to tune the CHM model; it was used

only to tune the baseline two-sided classifiers. The motivation for this is that we

wish to see if CHM can be used to improve the accuracy of a given (black box)

classifier, using only very limited training data.

Preprocessing, Graph Construction, and Training Data Each document

is preprocessed into a bag of words: that is, only the frequencies with which words

appear in a document are used as features; the position of a word in a document

is ignored. All words within the text, title, and body of the document are used,

except words within the author or dateline, which are excluded. Words within an

11-word stopword list are also excluded. Every word is stemmed using the Porter

stemmer (Porter, 1980), and the number of occurrences for each stem is computedbag-of-words,

TF, TF-IDF for each document (“term frequency,” or TF). The vector of TF values is then fed

to the multinomial classifiers (which can only accept TF vectors). For all other

classifiers and for constructing the CHM graph, we used TF-IDF features. Here,

IDF (inverse document frequency) (Sparck-Jones, 1972) is the log of the ratio of the

total number of documents to the number of documents in which a stemmed word

appears. This log is multiplied by the term frequency to yield a TF-IDF feature.

The TF-IDF vector for a document is then normalized to lie on the unit sphere.

For CHM, each graph is constructed using a simple nearest-neighbor algorithm:

an arc is added from node i to node j if node i is the kth nearest neighbor of node

j, for all k ≤ K, where K ∈ {1, 3, 5, 7, 9, 11, 15, 20, 25, 30, 40, 50}, provided node jnearest neighbor

is not itself a labeled node. The conditional probability matrices for all arcs for a

given k are shared; this imposes a form of regularization on the parameters, and

embodies the idea that k alone should determine the type of link joining the two

nodes. Note that this results in a directed graph which in general has no undirected

equivalent (that is, a pair of unlabeled nodes can have an arc going one way but

not the other, and labeled nodes only have outgoing arcs). The CHM posteriors

at each unlabeled node were then averaged over all twelve graphs to arrive at the

prediction. We tested two CHM algorithms: first, using unit conditional probability

matrices, and second, using learned matrices.

For the one-sided task, we used labeled sets of size 1, 2, 5, 10, 20, 50, and 100,

for each category. For the two-sided task, we used ten times as much labeled data

for each experiment (i.e. labeled sets of size 10, 20, 50, 100, 200, 500 and 1000)

to further explore dependence on training set size. The two-sided training sets are

shared among all classes: we ensure that at least one positive example for each of

14.7 Experiments 265

the ten classes is present in all seven of the training sets.

Results The results are collected below. For the one-sided task, we plot F1 versus

training set size, for Rocchio, Rocchio plus CHM with unit matrices, and Rocchio

plus CHM for learned matrices in figure 14.3. It is interesting that, although on

this task using unit conditional probability matrices gives better mean results, the

learned matrices have lower variance: the results for learned matrices rarely drop

below the Rocchio baseline. Results for the two-sided task are collected in tables 14.1

through 14.7, where we show results for all classifiers and for all categories, as well

as the microaveraged results.

Table 14.1 F1 for top ten categories + microaverage F1, for training set size = 10

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.411 0.411 0.446 0.472 0.457

2 0.477 0.477 0.520 0.603 0.592

3 0.308 0.308 0.463 0.520 0.509

4 0.428 0.428 0.507 0.628 0.538

5 0.246 0.246 0.466 0.515 0.482

6 0.249 0.249 0.151 0.111 0.128

7 0.099 0.099 0.474 0.478 0.507

8 0.223 0.223 0.454 0.504 0.472

9 0.347 0.347 0.242 0.274 0.253

10 0.110 0.110 0.233 0.271 0.233

Microaverage 0.374 0.374 0.446 0.491 0.475

The tables give F1 on the unlabeled subsets only. To determine statistical

significance, we treat F1 score as proportions (similar to (Yang and Liu, 1999)).

To be conservative with our confidence intervals, we treat the number of samples

in the significance test to be the denominator of the F1 score: the number of false

positives plus half the number of errors. Thus, we apply a one-way unbalanced

analysis of variance (ANOVA) to predict correctness of the sample, given a factor

which is the algorithm used. For those experiments where a main effect is found by

ANOVA to be greater than 99% significant, a post hoc test comparing all pairs of

algorithms is performed (using the Tukey-Kramer correction for repeated tests). In

the tables, we boldface the results that are found by the post hoc test to be better

than all of the nonboldface algorithms (at a 99% confidence threshold).

For almost all experiments, the SVM gave higher F1 than the multinomial

mixture or the algorithm of Nigam et al. CHM gives better results than all other

methods, at a 99% confidence threshold, for the case of ten labeled points, and

microaveraged over all data sets.

266 Semi-Supervised Learning with Conditional Harmonic Mixing

1 2 5 10 20 50 100

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 5 10 20 50 1000.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 2 5 10 20 50 1000.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 2 5 10 20 50 1000.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 5 10 20 50 1000.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 5 10 20 50 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 5 10 20 50 1000.2

0.3

0.4

0.5

0.6

0.7

1 2 5 10 20 50 1000.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 5 10 20 50 1000.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 5 10 20 50 1000.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 5 10 20 50 100
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Figure 14.3 Results for the Rocchio classifiers (solid), Rocchio lifted with CHM,
unit conditional matrices (dashed), and Rocchio lifted with learned conditional matrices
(dotted). The y-axis is F1, the x-axis, training set size. Graphs are arranged left to right
in order of increasing category. Most graphs have the y-axis range chosen to be 0.35
for comparison. The last graph (bottom right) is the microaveraged results over all ten
categories.

14.7 Experiments 267

Table 14.2 F1 for top ten categories + microaverage F1, for training set size = 20

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.851 0.869 0.903 0.899 0.908

2 0.663 0.797 0.704 0.723 0.735

3 0.302 0.401 0.453 0.516 0.497

4 0.555 0.571 0.572 0.653 0.609

5 0.385 0.170 0.477 0.563 0.527

6 0.285 0.153 0.148 0.103 0.126

7 0.138 0.132 0.488 0.484 0.507

8 0.227 0.344 0.507 0.521 0.525

9 0.407 0.063 0.228 0.270 0.249

10 0.148 0.284 0.275 0.305 0.280

Microaverage 0.614 0.639 0.678 0.694 0.696

Table 14.3 F1 for top ten categories + microaverage F1, for training set size = 50

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.906 0.917 0.935 0.914 0.923

2 0.655 0.711 0.735 0.741 0.749

3 0.438 0.410 0.579 0.681 0.633

4 0.493 0.512 0.585 0.661 0.626

5 0.268 0.405 0.666 0.697 0.708

6 0.341 0.374 0.514 0.545 0.535

7 0.436 0.404 0.356 0.423 0.379

8 0.394 0.298 0.468 0.532 0.493

9 0.133 0.274 0.256 0.288 0.270

10 0.350 0.312 0.444 0.444 0.444

Microaverage 0.652 0.677 0.734 0.748 0.744

268 Semi-Supervised Learning with Conditional Harmonic Mixing

Table 14.4 F1 for top ten categories + microaverage F1, for training set size = 100

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.917 0.840 0.939 0.912 0.921

2 0.770 0.863 0.798 0.777 0.791

3 0.397 0.596 0.535 0.599 0.559

4 0.637 0.576 0.668 0.674 0.681

5 0.494 0.606 0.728 0.772 0.773

6 0.350 0.333 0.522 0.573 0.542

7 0.485 0.471 0.571 0.579 0.573

8 0.466 0.384 0.680 0.658 0.673

9 0.313 0.335 0.489 0.641 0.595

10 0.333 0.231 0.410 0.410 0.410

Microaverage 0.712 0.715 0.778 0.776 0.778

Table 14.5 F1 for top ten categories + microaverage F1, for training set size = 200

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.921 0.925 0.950 0.916 0.923

2 0.799 0.777 0.829 0.817 0.826

3 0.576 0.542 0.587 0.591 0.583

4 0.586 0.628 0.729 0.737 0.734

5 0.618 0.533 0.754 0.782 0.788

6 0.496 0.463 0.696 0.723 0.715

7 0.574 0.493 0.642 0.552 0.595

8 0.361 0.429 0.721 0.721 0.729

9 0.406 0.371 0.519 0.693 0.580

10 0.275 0.352 0.421 0.421 0.421

Microaverage 0.747 0.736 0.813 0.801 0.804

14.7 Experiments 269

Table 14.6 F1 for top ten categories + microaverage F1, for training set size = 500

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.935 0.935 0.957 0.920 0.930

2 0.781 0.781 0.869 0.835 0.847

3 0.594 0.594 0.691 0.687 0.683

4 0.714 0.714 0.816 0.814 0.820

5 0.696 0.696 0.806 0.821 0.824

6 0.486 0.486 0.704 0.723 0.716

7 0.600 0.600 0.681 0.657 0.679

8 0.565 0.565 0.827 0.775 0.801

9 0.693 0.693 0.704 0.715 0.726

10 0.439 0.439 0.618 0.583 0.610

Microaverage 0.781 0.781 0.856 0.831 0.840

Table 14.7 F1 for top ten categories + microaverage F1, for training set size = 1000

Category Multinomial Nigam SVM SVM/CHM SVM/CHM

Mixture Unit Learned

1 0.938 0.940 0.949 0.926 0.933

2 0.843 0.854 0.888 0.854 0.863

3 0.666 0.626 0.702 0.701 0.693

4 0.691 0.638 0.859 0.827 0.833

5 0.803 0.793 0.828 0.807 0.818

6 0.569 0.565 0.724 0.716 0.720

7 0.682 0.611 0.691 0.679 0.693

8 0.627 0.540 0.841 0.762 0.802

9 0.721 0.760 0.806 0.775 0.783

10 0.398 0.385 0.738 0.719 0.724

Microaverage 0.816 0.807 0.869 0.844 0.852

270 Semi-Supervised Learning with Conditional Harmonic Mixing

14.7.2 Benchmark Data Sets

We also applied CHM to five of the benchmark classification data sets provided with

this book, namely data sets 1, 2, 4, 5, and 7. Each data set contains 1500 points,

with either 10 or 100 labeled points, and comes with a 12-fold validation split: all

results quoted here are microaveraged over the twelve splits. An SVM was used as

the base classifier in these experiments. Given the limited amount of training data,

we chose to use a linear SVM with a very high C parameter (C=1000), which was

effectively a hard-margin classifier.

Preprocessing, Graph Construction, and Training Data For each fold

of each data set, we trained a linear SVM with several different preprocessing

alternatives:

Raw data — no preprocessing

Scaling — after subtracting off the mean, scaling each feature so that they all

have unit variance

Norming — after subtracting off the mean for each feature, scaling each data

point so that they all have unit L2 norm

Sphering — applying PCA to the raw data, and using the latent coordinates as

input

Chopping — as in sphering, but only choosing the top d latent dimensions, where

d is chosen to cover 90% of the variance of the data

One of these alternatives was chosen for each fold, by minimizing a generalization

bound of the resulting SVM. For each fold, we compute

arg min
i

R2
i ||w2

i ||, (14.13)

where wi is the primal weight vector from the SVM on preprocessing alternative

i, and Ri is the radius of the smallest ball that contains the data (after the ith

preprocessing alternative). We approximate this radius by finding the distance of

the data point that is farther from the mean over the whole data set. This choosing

process usually picks one preprocessing method for all folds of a data set, often

choosing “norming.” However, some data sets (such as data set 4), alternate between

“norming” and “sphering.”

We investigated a different graph construction mechanism from that used for the

Reuters data. We call the algorithm “flood fill”. The flood fill method was found to

give similar results to the basic nearest-neighbor method, but resulted in smaller

graphs, leading to faster experiments (a typical run, for a given data set, for both

training set sizes, and for all 12 splits of the validation set, took approximately

50 minutes on a 3GHz machine). The Flood Fill method works as follows: choose

some fixed positive integer n. Add n directed arcs from each labeled node to its

nearest n unlabeled neighbors; all such arcs are assigned flavor = 1. Call the set

14.7 Experiments 271

of nodes reached in this way N1 (where N1 does not include the training nodes).

For each node in N1, do the same, allowing arcs to land on unlabeled nodes in

N1; assign all arcs generated in this way flavor = 2. At the ith iteration, arcs are

allowed to fall on unlabeled nodes in Ni, but not on nodes Nj , j < i. The process

repeats until either all nodes are reached, or until no further arcs can be added

(note that graphs with disconnected pieces are allowed here). Here we smoothed

(using model averaging) using values for n of 5, 9, 15, 25, and 50. The flood fill

algorithm can create disconnected subgraphs, and since it is not clear how best to

combine outputs of graphs with different connectedness, we simply thresholded the

value at each node after each smoothing step, before taking the average.

Results We present the results in tables 14.8 through 14.11. We chose two

normalizations: the “normed/sphered/chopped” normalization, using the above

bound; or just using the “normed” normalization everywhere, combined with a soft-

margin linear SVM classifier (C=10). As in the Reuters experiments, the prior for

each data set is assumed known. The tables give accuracies on the unlabeled subsets

only. We applied a two-way ANOVA to assess the statistical significance of these

results, where the two factors are the fold number and the algorithm number, and

the prediction of the ANOVA is the correctness of a sample. For those experiments

where a main effect is found by ANOVA to be greater than a 99% significance level,

a post hoc test comparing all pairs of algorithms is performed (using the Tukey-

Kramer correction for repeated tests). Using a 99% (p < 0.01) significance level

for the post hoc comparisons, we find the results shown in the tables, where again

statistical significance is indicated with bold versus normal typeface; the results can

be summarized as follows:

In no case is there a statistically significant difference between the learned

conditional matrices, and the unit matrices, for CHM.

CHM beats the SVM for all conditions for data sets 1 and 2.

For the case of data set 4, with normed-only preprocessing, and l = 100, SVM

beats CHM.

There is no statistically significant difference between results for data set 5.

For data set 7, SVM beats CHM for l = 10, and CHM beats SVM for l = 100.

Discussion This work demonstrates that CHM can be used to improve the

performance of the best available classifier, on several data sets, when labeled

data are limited. However, the improvement is not uniform; for some data sets we

observed that adding more smoothing (arcs) improved accuracy, while for others

increased smoothing caused accuracy to drop. A method to accurately predict the

required amount of smoothing for a given problem would boost the CHM accuracies

significantly. We attempted to overcome this behavior by model averaging, that is,

averaging over different graphs, but this is a crude way to address the problem. Also

in this chapter we only discussed two simple heuristics for constructing the graphs;

272 Semi-Supervised Learning with Conditional Harmonic Mixing

Table 14.8 Accuracy for labeled sets of size 10, using normed/sphered/chopped prepro-
cessing

Data Set (10) SVM SVM/CHM, Unit SVM/CHM, Learned

1 0.803 0.860 0.859

2 0.751 0.779 0.776

4 0.543 0.530 0.530

5 0.605 0.613 0.612

7 0.589 0.567 0.566

Table 14.9 Accuracy for labeled sets of size 100, using normed/sphered/chopped pre-
processing

Data Set (100) SVM SVM/CHM, Unit SVM/CHM, Learned

1 0.922 0.966 0.966

2 0.788 0.816 0.813

4 0.705 0.699 0.702

5 0.747 0.755 0.756

7 0.725 0.755 0.755

Table 14.10 Accuracy for labeled sets of size 10, using normed preprocessing only

Data Set (10) SVM SVM/CHM, Unit SVM/CHM, Learned

1 0.803 0.860 0.859

2 0.760 0.799 0.795

4 0.541 0.525 0.527

5 0.605 0.613 0.612

7 0.589 0.567 0.566

Table 14.11 Accuracy for labeled sets of size 100, using normed preprocessing only

Data Set (100) SVM SVM/CHM, Unit SVM/CHM, Learned

1 0.922 0.966 0.966

2 0.870 0.939 0.935

4 0.692 0.600 0.613

5 0.747 0.755 0.756

7 0.725 0.755 0.755

14.8 Conclusions 273

it would be useful to explore more sophisticated methods, for example, methods

that compute a local metric (see, for example, (Xing et al., 2003)). Other techniques

for choosing the conditionals, for example using leave-one-out on the labeled set, or

using a subgraph that is close to the labeled data, may also be fruitful to explore.

14.8 Conclusions

We have presented conditional harmonic mixing (CHM), a graphical model that

can be used for semi-supervised learning. CHM combines and improves upon ear-

lier work in semi-supervised learning in several ways. First, unlike Bayes networks,

CHM can model and learn using conditional probability distributions that do not

have a consistent joint. This freedom allows us to learn and infer using simple lin-

ear algebra. Second, unlike Laplacian SSL, CHM can model asymmetric influences

between random variables. Indeed, our random variables can have different cardinal-

ities: CHM is not limited to simply modeling harmonic functions. Finally, CHM can

use a purely inductive algorithm to provide prior knowledge to the semi-supervised

learning, which leads to superior performance on one-sided and two-sided empir-

ical benchmarks. As the experiments show, one key open question for research is

how to construct graphs that can take full advantage of semi-supervised learning

with CHM: for a given data set, for some choice of graphs the improvement is

significant, while for other choices of graph for the same data set, applying CHM

can even reduce accuracy. This was addressed in the present work by simply using

model averaging over graphs; it seems likely that better methods are possible.

Acknowledgments

We thank David Heckerman and Chris Meek for useful discussions.

IV Change of Representation

15 Graph Kernels by Spectral Transforms

Xiaojin Zhu zhuxj@cs.cmu.edu

Jaz Kandola jkandola@gatsby.ucl.ac.uk

John Lafferty lafferty@cs.cmu.edu

Zoubin Ghahramani zoubin@eng.cam.ac.uk

Many graph-based semi-supervised learning methods can be viewed as imposing

smoothness conditions on the target function with respect to a graph representing

the data points to be labeled. The smoothness properties of the functions are

encoded in terms of Mercer kernels over the graph. The central quantity in such

regularization is the spectral decomposition of the graph Laplacian, a matrix derived

from the graph’s edge weights. The eigenvectors with small eigenvalues are smooth,

and ideally represent large cluster structures within the data. The eigenvectors

having large eigenvalues are rugged, and considered noise.

Different weightings of the eigenvectors of the graph Laplacian lead to different

measures of smoothness. Such weightings can be viewed as spectral transforms,

that is, as transformations of the standard eigenspectrum that lead to different

regularizers over the graph. Familiar kernels, such as the diffusion kernel resulting

by solving a discrete heat equation on the graph, can be seen as simple parametric

spectral transforms.

The question naturally arises whether one can obtain effective spectral trans-

forms automatically. In this chapter we develop an approach to searching over a

nonparametric family of spectral transforms by using convex optimization to maxi-

mize kernel alignment to the labeled data. Order constraints are imposed to encode

a preference for smoothness with respect to the graph structure. This results in a

flexible family of kernels that is more data-driven than the standard parametric

spectral transforms. Our approach relies on a quadratically constrained quadratic

program (QCQP), and is computationally practical for large data sets.

278 Graph Kernels by Spectral Transforms

15.1 The Graph Laplacian

We are given a labeled data set of input-output pairs (Xl, Yl) = {(x1, y1), . . . , (xl, yl)}
and an unlabeled data set Xu = {xl+1, . . . , xn}. We form a graph g = (V, E) where

the vertices V are x1, . . . , xn, and the edges E are represented by an n × n ma-

trix W . Entry Wij is the edge weight between nodes i, j, with Wij = 0 if i, j

are not connected. The entries of W have to be non-negative and symmetric,

but it is not necessary for W itself to be positive semi-definite. Let D be the

diagonal degree matrix with Dii =
∑

j Wij being the total weight on edges con-

nected to node i. The combinatorial graph Laplacian is defined as L = D − W ,graph Laplacian

which is also called the unnormalized Laplacian. The normalized graph Laplacian

is L = D−1/2LD−1/2 = I − D−1/2WD−1/2.

In graph-based semi-supervised learning the Laplacian L (or L) is a central

object. Let us denote the eigenvalues of L by λ1 ≤ . . . ≤ λn, and the complete

orthonormal set of eigenvectors by φ1 . . . φn. Therefore the spectral decomposition

of the Laplacian is given as L =
∑n

i=1 λiφiφ
⊤
i . We refer readers to (Chung, 1997)spectral

decomposition for a discussion of the mathematical aspects of this decomposition, but briefly

summarize two relevant properties:

Theorem 15.1 The Laplacian L is positive semi-definite, i.e., λi ≥ 0.

Indeed, it is not hard to show that for any function f : [n] → R,

f⊤Lf =
1

2

∑

i,j

Wij (f(i) − f(j))
2 ≥ 0, (15.1)

where the inequality holds because W has non-negative entries.

Eq. (15.1) measures the smoothness of f on the graph.1 Roughly speaking, f issmoothness of f

smooth if f(i) ≈ f(j) for those pairs with large Wij . This is sometimes informally

expressed by saying that f varies slowly over the graph, or that f follows the data

manifold. In particular, the smoothness of an eigenvector is

φ⊤
i Lφi = λi. (15.2)

Thus, eigenvectors with smaller eigenvalues are smoother. Since {φi} forms a basis

on R
n, we can always write any function f as

f =
n∑

i=1

αiφi , αi ∈ R (15.3)

and Eq. 15.1 which measures the smoothness of f can be re-expressed as

f⊤Lf =

n∑

i=1

α2
i λi. (15.4)

1. Note that a smaller value means smoother f .

15.1 The Graph Laplacian 279

For semi-supervised learning a smooth function f is part of what we seek, because

this is the prior knowledge encoded by the graph—but we also require that the

function f fits the labels Yl on the inputs Xl.

Theorem 15.2 The graph g has k connected components if and only if λi = 0 for

i = 1, 2, . . . , k.

The corresponding eigenvectors φ1, . . . , φk of L are constant on the nodes within

the corresponding connected component, and zero elsewhere. Note λ1 is always 0

for any graph (Chung, 1997). We will make use of this property later.

(a) a linear unweighted graph with two segments

λ
1
=0.00 λ

2
=0.00 λ

3
=0.04 λ

4
=0.17 λ

5
=0.38

λ
6
=0.38 λ

7
=0.66 λ

8
=1.00 λ

9
=1.38 λ

10
=1.38

λ
11

=1.79 λ
12

=2.21 λ
13

=2.62 λ
14

=2.62 λ
15

=3.00

λ
16

=3.34 λ
17

=3.62 λ
18

=3.62 λ
19

=3.83 λ
20

=3.96

(b) the eigenvectors and eigenvalues of the Laplacian L

Figure 15.1 A simple graph and its Laplacian spectral decomposition. Note the eigen-
vectors become rougher with larger eigenvalues.

As an example, figure 15.1(a) shows an unweighted graph (Wij = 1 if there is an

edge) consisting of two linear segments. The spectral decomposition of its Laplacian

L is shown in (b). Note that the eigenvectors do indeed look smoother for small λi,

and that the graph has two connected components.

280 Graph Kernels by Spectral Transforms

15.2 Kernels by Spectral Transforms

Kernel methods are increasingly being used for classification because of their

conceptual simplicity, theoretical properties, and good performance on many tasks.

It is attractive to create kernels specifically for semi-supervised learning. We restrict

ourselves to transduction, i.e., the unlabeled data Xu are also the test data. As a

result we only need to consider kernel matrices K ∈ R
n×n on nodes 1, . . . , n in the

graph.

In particular, we want K to respect the smoothness preferences encoded in a

graph. That is, as a regularizer the kernel should penalize functions that are not

smooth over the graph. To establish a link to the graph, we consider K having the

form

K =
n∑

i=1

μiφiφ
⊤
i , (15.5)

where φ are the eigenvectors of the graph Laplacian L, and μi ≥ 0 are the

eigenvalues of K. Since K is the non-negative sum of outer products, it is positive

semi-definite, i.e., a kernel matrix.

The matrix K defines a reproducing kernel Hilbert space (RKHS) with norm

‖f‖2
K = 〈f, f〉K =

n∑

i=1

α2
i

μi
(15.6)

for a function f =
∑n

i=1 αiφi. Note if some μi = 0 the corresponding dimension is

not present in the RKHS, and we might define 1
0 = 0 here.

In many learning algorithms, regularization is expressed as an increasing function

of ‖f‖K . From a semi-supervised learning point of view, we want f to be penalized

if it is not smooth with respect to the graph. Comparing the smoothness of f in

Eq. 15.4 with Eq. 15.6, we find this can be achieved by making μi small if the

Laplacian eigenvalue λi is large, and vice versa.

Indeed, Chapelle et al. (2003) and Smola and Kondor (2003) both suggest a

general principle for creating a semi-supervised kernel K from the graph Laplacian.

Define a spectral transformation function r : R+ → R+ that is non-negative andspectral

transformation decreasing. Set the kernel spectrum by μi = r(λi) to obtain the kernel

K =

n∑

i=1

r(λi)φiφ
⊤
i . (15.7)

Note that r essentially reverses the order of the eigenvalues, so that smooth φi’s

have larger eigenvalues in K. Since r is decreasing, a greater penalty is incurred if

a function is not smooth.

The transform r is often chosen from a parametric family, resulting in some

familiar kernels. For example Chapelle et al. (2003) and Smola and Kondor (2003)

list the following transformations on L:

15.3 Kernel Alignment 281

regularized Laplacian: r(λ) = 1
λ+ǫ

diffusion kernel: r(λ) = exp
(
−σ2

2 λ
)

one-step random walk: r(λ) = (α − λ) with α ≥ 2

p-step random walk: r(λ) = (α − λ)p with α ≥ 2

inverse cosine: r(λ) = cos(λπ/4)

step function: r(λ) = 1 if λ ≤ λcut

Each has its own special interpretation. The regularized Laplacian is also known

as the Gaussian field kernel (Zhu et al., 2003c). Of course there are many other

natural choices for r. Although the general principle of Eq. 15.7 is appealing, it

does not address the question of which parametric family to use. Moreover, the

hyperparameters (e.g., σ or ǫ above) in a particular parametric family may not suit

the task at hand, resulting in overly constrained kernels.

Is there an optimal spectral transformation? The following sections address

this question. The short answer is yes, in a certain sense. We select a spectral

transformation that optimizes kernel alignment to the labeled data, while imposing

an ordering constraint but otherwise not assuming any parametric form. Kernel

alignment is a surrogate for classification accuracy, and, importantly, leads to a

convex optimization problem.

15.3 Kernel Alignment

The empirical kernel alignment (Cristianini et al., 2002a; Lanckriet et al., 2004a)

assesses the fitness of a kernel to training labels. The alignment has a number

of convenient properties: it can be efficiently computed before any training of

the kernel machine takes place, and based only on training data information.

The empirical alignment can also be shown to be sharply concentrated around

its expected value, allowing it to be estimated from finite samples. A connection

between high alignment and good generalization performance has been established

in (Cristianini et al., 2002a).

As we will compare matrices, we introduce here the Frobenius product 〈., .〉FFrobenius

product between two square matrices M and N of the same size:

〈M, N〉F =
∑

ij

mijnij = Tr(MN).

The empirical kernel alignment compares the l×l kernel matrix Ktr on the labeled

training set x1, . . . , xl, and a target matrix T derived from the labels y1, . . . , yl. One

such target matrix is Tij = 1 if yi = yj , and −1 otherwise. Note for binary {+1,−1}
training labels Yl = (y1 . . . yl)

⊤ this is simply the rank one matrix T = YlYl
⊤. The

empirical kernel alignment is defined as follows.

Definition 15.3 (empirical kernel alignment) Let Ktr be the kernel matrix

282 Graph Kernels by Spectral Transforms

restricted to the training points, and T the target matrix on training data. We

define the empirical kernel alignment asempirical kernel

alignment
Â(Ktr, T) =

〈Ktr, T 〉F√
〈Ktr, Ktr〉F 〈T, T 〉F

. (15.8)

The empirical alignment is essentially the cosine between the matrices Ktr and

T . The range of the alignment is [0, 1]. The larger its value the closer is the kernel

to the target. This quantity is maximized when Ktr ∝ T .

15.4 Optimizing Alignment Using QCQP for Semi-Supervised Learning

Having introduced the alignment quantity, now let us consider the problem of semi-

supervised kernel construction using a principled nonparametric approach. In short,

we will learn the spectral transformation {μi ≡ r(λi)} (15.7) by optimizing the

resulting kernel alignment, with certain restrictions. Notice we no longer assume

a parametric function r(); instead we work with the transformed eigenvalues μi’s

directly.

When the kernel matrix is defined as K =
∑n

i=1 μiφiφi
⊤ and the target T

given, the kernel alignment between the labeled submatrix Ktr and T is a convex

function in μi’s. Nonetheless, in general we have to make sure K is a valid kernel

matrix, i.e., it is positive semi-definite. This is a semi-definite program (SDP),

which has high computational complexity (Boyd and Vandenberghe, 2004). We thus

restrict μi ≥ 0, ∀i. This guarantees K to be positive semi-definite, and reduces the

optimization problem into a quadratically constrained quadratic program (QCQP),

which is computationally more efficient. In a QCQP both the objective functionquadratically

constrained

quadratic

programs

and the constraints are quadratic, as illustrated below:

minimize
1

2
x⊤P0x + q⊤0 x + r0 (15.9)

subject to
1

2
x⊤Pix + q⊤i x + ri ≤ 0 i = 1 · · ·m (15.10)

Ax = b, (15.11)

where Pi ∈ Sn
+, i = 0, . . . , m, where Sn

+ defines the set of square symmetric positive

semi-definite matrices. In a QCQP, we minimize a convex quadratic function over

a feasible region that is the intersection of ellipsoids. The number of iterations

required to reach the solution is comparable to the number required for linear

programs, making the approach feasible for large data sets.

Previous work using kernel alignment did not take into account that the “building

blocks” Ki = φiφi
⊤ were derived from the graph Laplacian with the goal of semi-

supervised learning. As such, the μi’s can take arbitrary non-negative values and

there is no preference to penalize components that do not vary smoothly over the

graph. This shall be rectified by requiring smoother eigenvectors to receive larger

coefficients, as shown in the next section.

15.5 Semi-Supervised Kernels with Order Constraints 283

15.5 Semi-Supervised Kernels with Order Constraints

We would like to maintain a decreasing order on the spectral transformation μi

to reflect the prior knowledge encoded in the graph, that smooth functions are

preferred. This motivates the set of order constraints:order constraints

μi ≥ μi+1, i = 1 · · ·n − 1. (15.12)

And we can specify the desired semi-supervised kernel as follows:

Definition 15.4 (order-constrained kernel) An order-constrained semi-supervisedorder-constrained

kernel kernel K is the solution to the following convex optimization problem:

maxK Â(Ktr, T) (15.13)

subject to K =
∑n

i=1 μiKi (15.14)

μi ≥ 0 (15.15)

Tr(K) = 1 (15.16)

μi ≥ μi+1, i = 1 · · ·n − 1, (15.17)

where T is the training target matrix, Ki = φiφ
⊤
i and φi’s are the eigenvectors of

the graph Laplacian.

This formulation is an extension of the original kernel alignment of Lanckriet et al.

(2004a), with the addition of order constraints, and with special components Ki’s

from the graph Laplacian. Since μi ≥ 0 and Ki’s are outer products, K will

automatically be positive semi-definite and hence a valid kernel matrix. The trace

constraint is needed to fix the scale invariance of kernel alignment. It is important

to notice the order constraints are convex and as such, definition 15.4 is a convex

optimization problem.convex

optimization The problem is equivalent to

maxK 〈Ktr, T 〉F (15.18)

subject to 〈Ktr, Ktr〉F ≤ 1 (15.19)

K =
∑n

i=1 μiKi (15.20)

μi ≥ 0 (15.21)

μi ≥ μi+1, i = 1 · · ·n − 1, (15.22)

where the trace constraint is replaced by (15.19) (up to a constant factor). Let

vec(A) be the column vectorization of a matrix A. Defining

M =
[
vec(K1,tr) · · · vec(Km,tr)

]
(15.23)

284 Graph Kernels by Spectral Transforms

it is not hard to show that the problem can then be expressed as

maxμ vec(T)⊤Mμ (15.24)

subject to ||Mμ|| ≤ 1 (15.25)

μi ≥ 0 (15.26)

μi ≥ μi+1, i = 1 · · ·n − 1. (15.27)

The objective function is linear in μ, and there is a simple cone constraint, making

it a QCQP.

We can further improve the kernel. Consider a graph that has a single connected

component, i.e., any node can reach any other node via one or more edges. Such

graphs are common in practice. By the basic property of the Laplacian we know

λ1 = 0, and the corresponding eigenvector φi is a constant. Therefore K1 = φiφ
⊤
i is

a constant matrix. Such a constant matrix acts as a bias term in the graph kernel,bias term

as in (15.7). We should not constrain μ1 as in definition 15.4, but allow the bias of

the kernel to vary freely. This motivates the following definition:

Definition 15.5 (improved order-constrained kernel) An improved order-constrainedimproved

order-constrained

kernel

semi-supervised kernel K is the solution to the same problem in definition 15.4, but

the order constraints (15.17) apply only to nonconstant eigenvectors:

μi ≥ μi+1, i = 1 · · ·n − 1, and φi not constant. (15.28)

It should be pointed out that the improved order-constrained kernel is identical

to the order-constrained kernel when the graph has disjoint components. This is

because the first k eigenvectors are piecewise constant over the components, but

not constant overall, when the graph has k > 1 connected components. We in

fact would like to emphasize these eigenvectors because they might correspond to

natural clusters in data. Thus we will still enforce the order constraints on them.

The definition in (15.28) is meant to target μ1 in connected graphs only. As discussed

above, in this situation μ1 is the bias term of the kernel. The only “improvement” in

the improved order-constrained kernel is that we do not constrain such bias terms.

As the experiments show later, this improves the quality of the kernels markedly.

In practice we do not need all n eigenvectors of the graph Laplacian, or equiva-

lently all n Ki’s. The first m < n eigenvectors with the smallest eigenvalues work

well empirically. Also note we could have used the fact that Ki’s are from orthog-

onal eigenvectors φi to further simplify the expression. However, we leave it as is,

making it easier to incorporate other kernel components if necessary.

It is illustrative to compare and contrast the order-constrained semi-supervised

kernels to other related kernels. We call the original kernel alignment solution in

(Lanckriet et al., 2004a) a maximal-alignment kernel. It is the solution to defi-maximal-

alignment

kernel

nition 15.4 without the order constraints (15.17). Because it does not have the

additional constraints, it maximizes kernel alignment among all spectral transfor-

mations. The hyperparameters σ and ǫ of the diffusion kernel and Gaussian field

kernel (described in section 15.2) can be learned by maximizing the alignment score

15.6 Experimental Results 285

also, although the optimization problem is not necessarily convex. These kernels

use different information from the original Laplacian eigenvalues λi. The maximal-different

information usage alignment kernels ignore λi altogether. The order-constrained semi-supervised ker-

nels only use the order of λi and ignore their actual values. The diffusion and

Gaussian field kernels use the actual values. In terms of the degrees of freedom in

choosing the spectral transformation μi’s, the maximal-alignment kernels are com-

pletely free. The diffusion and Gaussian field kernels are restrictive since they have

an implicit parametric form and only one free parameter. The order-constrained

semi-supervised kernels incorporate desirable features from both approaches.

15.6 Experimental Results

We evaluate kernels on seven data sets. The data sets and the corresponding graphs

are summarized in table 15.1. baseball-hockey, pc-mac and religion-atheism are

binary document categorization tasks taken from the 20-newsgroups data set. The

distance measure is the cosine similarity between tf.idf vectors. one-two, odd-even,

and ten digits are handwritten digits recognition tasks originally from the Cedar

Buffalo binary digits database. one-two is digits “1” versus “2”; odd-even is the

artificial task of classifying odd “1, 3, 5, 7, 9” versus even “0, 2, 4, 6, 8” digits,

such that each class has several well-defined internal clusters; ten digits is 10-way

classification; isolet is isolated spoken English alphabet recognition from the UCI

repository. For these data sets we use Euclidean distance on raw features. We use

10-nearest-neighbor (10NN) unweighted graphs on all data sets except isolet which

is 100NN. For all data sets, we use the smallest m = 200 eigenvalue and eigenvector

pairs from the graph Laplacian. These values are set arbitrarily without optimizing

and do not create an unfair advantage to the order-constrained kernels. For each

data set we test on five different labeled set sizes. For a given labeled set size, we

perform 30 random trials in which a labeled set is randomly sampled from the

whole data set. All classes must be present in the labeled set. The rest is used as

an unlabeled (test) set in that trial.

We compare a total of eight different types of kernels. Five are semi-supervised

kernels: improved order-constrained kernels, order-constrained kernels, Gaussian

field kernels (section 15.2), diffusion kernels (section 15.2), and maximal-alignment

kernels (section 15.5). Three are standard supervised kernels, which do not use

unlabeled data in kernel construction: linear kernels, quadratic kernels, and radial

basis function (RBF) kernels.

We compute the spectral transformation for improved order-constrained kernels,

order-constrained kernels, and maximal-alignment kernels by solving the QCQP

using the standard solver SeDuMi/YALMIP (see (Sturm, 1999) and (Löfberg,

2004)). The hyperparameters in the Gaussian field kernels and diffusion kernels

are learned with the fminbnd() function in Matlab to maximize kernel alignment.

The bandwidth of the RBF kernels are learned using fivefold cross-validation on

labeled set accuracy. Here and below we use cross-validation – it is done independent

286 Graph Kernels by Spectral Transforms

Table 15.1 Summary of data sets

data set instances classes graph

baseball-hockey 1993 2 cosine similarity 10NN unweighted

pc-mac 1943 2 cosine similarity 10NN unweighted

religion-atheism 1427 2 cosine similarity 10NN unweighted

one-two 2200 2 Euclidean 10NN unweighted

odd-even 4000 2 Euclidean 10NN unweighted

ten digits 4000 10 Euclidean 10NN unweighted

isolet 7797 26 Euclidean 100NN unweighted

of and after kernel alignment methods, to optimize a quantity not related to the

proposed kernels.

We apply the eight kernels to the same support vector machine (SVM) in order

to compute the accuracy on unlabeled data. For each task and kernel combination,

we choose the bound on SVM slack variables C with fivefold cross-validation on

labeled set accuracy. For multiclass classification we perform one-against-all and

pick the class with the largest margin.

Table 15.2 Baseball vs. hockey

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 200

10 95.7±8.9 93.9±12.0 63.1±15.8 65.8±22.8 93.2±6.8 53.6±5.5 68.1±7.6 68.1±7.6

0.90 (2) 0.69 (1) 0.35 0.44 0.95 (1) 0.11 0.29 0.23

30 98.0±0.2 97.3±2.1 91.8±9.3 59.1±17.9 96.6±2.2 69.3±11.2 78.5±8.5 77.8±10.6

0.91 (9) 0.67 (9) 0.25 0.39 0.93 (6) 0.03 0.17 0.11

50 97.9±0.5 97.8±0.6 96.7±0.6 93.7±6.8 97.0±1.1 77.7±8.3 84.1±7.8 75.6±14.2

0.89 (29) 0.63 (29) 0.22 0.36 0.90 (27) 0.02 0.15 0.09

70 97.9±0.3 97.9±0.3 96.8±0.6 97.5±1.4 97.2±0.8 83.9±7.2 87.5±6.5 76.1±14.9

0.90 (68) 0.64 (64) 0.22 0.37 0.90 (46) 0.01 0.13 0.07

90 98.0±0.5 98.0±0.2 97.0±0.4 97.8±0.2 97.6±0.3 88.5±5.1 89.3±4.4 73.3±16.8

0.89 (103) 0.63 (101) 0.21 0.36 0.89 (90) 0.01 0.12 0.06

Tables 15.2 through 15.8 list the results. There are two rows for each cell:

the upper row is the average test (unlabeled) set accuracy with one standard

deviation; the lower row is the average training (labeled) set kernel alignment,

and in parenthesis the average run time in seconds for QCQP on a 2.4GHz Linux

computer. Each number is averaged over 30 random trials. To assess the statistical

significance of the results, we perform paired t-test on test accuracy. We highlight

the best accuracy in each row, and those that cannot be distinguished from the

best with paired t-test at significance level 0.05.

We find that:

The five semi-supervised kernels tend to outperform the three standard supervised

15.6 Experimental Results 287

Table 15.3 PC vs. MAC

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 100

10 87.0±5.0 84.9±7.2 56.4±6.2 57.8±11.5 71.1±9.7 51.6±3.4 63.0±5.1 62.3±4.2

0.71 (1) 0.57 (1) 0.32 0.35 0.90 (1) 0.11 0.30 0.25

30 90.3±1.3 89.6±2.3 76.4±6.1 79.6±11.2 85.4±3.9 62.6±9.6 71.8±5.5 71.2±5.3

0.68 (8) 0.49 (8) 0.19 0.23 0.74 (6) 0.03 0.18 0.13

50 91.3±0.9 90.5±1.7 81.1±4.6 87.5±2.8 88.4±2.1 67.8±9.0 77.6±4.8 75.7±5.4

0.64 (31) 0.46 (31) 0.16 0.20 0.68 (25) 0.02 0.14 0.10

70 91.5±0.6 90.8±1.3 84.6±2.1 90.5±1.2 89.6±1.6 74.7±7.4 80.2±4.6 74.3±8.7

0.63 (70) 0.46 (56) 0.14 0.19 0.66 (59) 0.01 0.12 0.08

90 91.5±0.6 91.3±1.3 86.3±2.3 91.3±1.1 90.3±1.0 79.0±6.4 82.5±4.2 79.1±7.3

0.63 (108) 0.45 (98) 0.13 0.18 0.65 (84) 0.01 0.11 0.08

Table 15.4 Religion vs. atheism

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 130

10 72.8±11.2 70.9±10.9 55.2±5.8 60.9±10.7 60.7±7.5 55.8±5.8 60.1±7.0 61.2±4.8

0.50 (1) 0.42 (1) 0.31 0.31 0.85 (1) 0.13 0.30 0.26

30 84.2±2.4 83.0±2.9 71.2±6.3 80.3±5.1 74.4±5.4 63.4±6.5 63.7±8.3 70.1±6.3

0.38 (8) 0.31 (6) 0.20 0.22 0.60 (7) 0.05 0.18 0.15

50 84.5±2.3 83.5±2.5 80.4±4.1 83.5±2.7 77.4±6.1 69.3±6.5 69.4±7.0 70.7±8.5

0.31 (28) 0.26 (23) 0.17 0.20 0.48 (27) 0.04 0.15 0.11

70 85.7±1.4 85.3±1.6 83.0±2.9 85.4±1.8 82.3±3.0 73.1±5.8 75.7±6.0 71.0±10.0

0.29 (55) 0.25 (42) 0.16 0.19 0.43 (51) 0.03 0.13 0.10

90 86.6±1.3 86.4±1.5 84.5±2.1 86.2±1.6 82.8±2.6 77.7±5.1 74.6±7.6 70.0±11.5

0.27 (86) 0.24 (92) 0.15 0.18 0.40 (85) 0.02 0.12 0.09

Table 15.5 One vs. two

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 1000

10 96.2±2.7 90.6±14.0 58.2±17.6 59.4±18.9 85.4±11.5 78.7±14.3 85.1±5.7 85.7±4.8

0.87 (2) 0.66 (1) 0.43 0.53 0.95 (1) 0.38 0.26 0.30

20 96.4±2.8 93.9±8.7 87.0±16.0 83.2±19.8 94.5±1.6 90.4±4.6 86.0±9.4 90.9±3.7

0.87 (3) 0.64 (4) 0.38 0.50 0.90 (3) 0.33 0.22 0.25

30 98.2±2.1 97.2±2.5 98.1±2.2 98.1±2.7 96.4±2.1 93.6±3.1 89.6±5.9 92.9±2.8

0.84 (8) 0.61 (7) 0.35 0.47 0.86 (6) 0.30 0.17 0.24

40 98.3±1.9 96.5±2.4 98.9±1.8 99.1±1.4 96.3±2.3 94.0±2.7 91.6±6.3 94.9±2.0

0.84 (13) 0.61 (15) 0.36 0.48 0.86 (11) 0.29 0.18 0.21

50 98.4±1.9 95.6±9.0 99.4±0.5 99.6±0.3 96.6±2.3 96.1±2.4 93.0±3.6 95.8±2.3

0.83 (31) 0.60 (37) 0.35 0.46 0.84 (25) 0.28 0.17 0.20

288 Graph Kernels by Spectral Transforms

Table 15.6 Odd vs. even

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 1500

10 69.6±6.5 68.8±6.1 65.5±8.9 68.4±8.5 55.7±4.4 65.0±7.0 63.1±6.9 65.4±6.5

0.45 (1) 0.41 (1) 0.32 0.34 0.86 (1) 0.23 0.25 0.27

30 82.4±4.1 82.0±4.0 79.6±4.1 83.0±4.2 67.2±5.0 77.7±3.5 72.4±6.1 76.5±5.1

0.32 (6) 0.28 (6) 0.21 0.23 0.56 (6) 0.10 0.11 0.16

50 87.6±3.5 87.5±3.4 85.9±3.8 89.1±2.7 76.0±5.3 81.8±2.7 74.4±9.2 81.3±3.1

0.29 (24) 0.26 (25) 0.19 0.21 0.45 (26) 0.07 0.09 0.12

70 89.2±2.6 89.0±2.7 89.0±1.9 90.3±2.8 80.9±4.4 84.4±2.0 73.6±10.0 83.8±2.8

0.27 (65) 0.24 (50) 0.17 0.20 0.39 (51) 0.06 0.07 0.12

90 91.5±1.5 91.4±1.6 90.5±1.4 91.9±1.7 85.4±3.1 86.1±1.8 66.1±14.8 85.5±1.6

0.26 (94) 0.23 (97) 0.16 0.19 0.36 (88) 0.05 0.07 0.11

Table 15.7 Ten digits (10 classes)

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 2000

50 76.6±4.3 71.5±5.0 41.4±6.8 49.8±6.3 70.3±5.2 57.0±4.0 50.2±9.0 66.3±3.7

0.47 (26) 0.21 (26) 0.15 0.16 0.51 (25) -0.62 -0.50 -0.25

100 84.8±2.6 83.4±2.6 63.7±3.5 72.5±3.3 80.7±2.6 69.4±1.9 56.0±7.8 77.2±2.3

0.47 (124) 0.17 (98) 0.12 0.13 0.49 (100) -0.64 -0.52 -0.29

150 86.5±1.7 86.4±1.3 75.1±3.0 80.4±2.1 84.5±1.9 75.2±1.4 56.2±7.2 81.4±2.2

0.48 (310) 0.18 (255) 0.11 0.13 0.50 (244) -0.66 -0.53 -0.31

200 88.1±1.3 88.0±1.3 80.4±2.5 84.4±1.6 86.0±1.5 78.3±1.3 60.8±7.3 84.3±1.7

0.47 (708) 0.16 (477) 0.10 0.11 0.49 (523) -0.65 -0.54 -0.33

250 89.1±1.1 89.3±1.0 84.6±1.4 87.2±1.3 87.2±1.3 80.4±1.4 61.3±7.6 85.7±1.3

0.47 (942) 0.16 (873) 0.10 0.11 0.49 (706) -0.65 -0.54 -0.33

Table 15.8 Isolet (26 classes)

semi-supervised kernels standard kernels

Training Improved Order Gaussian Diffusion Max-align RBF Linear Quadratic

set size Order Field σ = 30

50 56.0±3.5 42.0±5.2 41.2±2.9 29.0±2.7 50.1±3.7 28.7±2.0 30.0±2.7 23.7±2.4

0.27 (26) 0.13 (25) 0.03 0.11 0.31 (24) -0.89 -0.80 -0.65

100 64.6±2.1 59.0±3.6 58.5±2.9 47.4±2.7 63.2±1.9 46.3±2.4 46.6±2.7 42.0±2.9

0.26 (105) 0.10 (127) -0.02 0.08 0.29 (102) -0.90 -0.82 -0.69

150 67.6±2.6 65.2±3.0 65.4±2.6 57.2±2.7 67.9±2.5 57.6±1.5 57.3±1.8 53.8±2.2

0.26 (249) 0.09 (280) -0.05 0.07 0.27 (221) -0.90 -0.83 -0.70

200 71.0±1.8 70.9±2.3 70.6±1.9 64.8±2.1 72.3±1.7 63.9±1.6 64.2±2.0 60.5±1.6

0.26 (441) 0.08 (570) -0.07 0.06 0.27 (423) -0.91 -0.83 -0.72

250 71.8±2.3 73.6±1.5 73.7±1.2 69.8±1.5 74.2±1.5 68.8±1.5 69.5±1.7 66.2±1.4

0.26 (709) 0.08 (836) -0.07 0.06 0.27 (665) -0.91 -0.84 -0.72

15.7 Conclusion 289

kernels. It shows that with properly constructed graphs, unlabeled data can help

classification.

The order-constrained kernel is often quite good, but the improved order-

constrained kernel is even better. All the graphs on these data sets happen to

be connected. Recall this is when the improved order-constrained kernel differs

from the order-constrained kernel by not constraining the bias term. Obviously a

flexible bias term is important for classification accuracy.

Figure 15.2 shows the spectral transformation μi of the five semi-supervised

kernels for different tasks. These are the average of the 30 trials with the largest

labeled set size in each task. The x-axis is in increasing order of λi (the original

eigenvalues of the Laplacian). The mean (thick lines) and ±1 standard deviation

(dotted lines) of only the top 50 μi’s are plotted for clarity. The μi values are scaled

vertically for easy comparison among kernels. As expected the maximal-alignment

kernels’ spectral transformation is zigzagged, diffusion’s and Gaussian field’s are

very smooth, while (improved) order-constrained kernels are in between.

The order-constrained kernels (green) have large μ1 because of the order con-

straint on the constant eigenvector. Again this seems to be disadvantageous — the

spectral transformation tries to balance it out by increasing the value of other μi’s,

so that the bias term K1’s relative influence is smaller. On the other hand, the

improved order-constrained kernels (black) allow μ1 to be small. As a result the

rest μi’s decay fast, which is desirable.

In summary, the improved order-constrained kernel is consistently the best among

all kernels.

15.7 Conclusion

We have proposed and evaluated a novel approach for semi-supervised kernel

construction using convex optimization. The method incorporates order constraints,

and the resulting convex optimization problem can be solved efficiently using a

QCQP. In this work the base kernels were derived from the graph Laplacian, and no

parametric form for the spectral transformation was imposed, making the approach

more general than previous approaches. Experiments show that the method is both

computationally feasible and results in improvements in classification performance

when used with support vector machines.

There are several future directions:

In both order-constrained kernels and improved order-constrained kernels, we

are learning a large number of parameters μ1, . . . , μn based on l labeled examples.

Usually l ≪ n, which suggests the danger of overfitting. However, we have to

consider two mitigating factors: the first is that we in practice only learn the

top m < n parameters and set the rest at zero; the second is that the μ’s are

order-constrained, which reduces the effective complexity. One interesting question

290 Graph Kernels by Spectral Transforms

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

rank

µ
 s

c
a
le

d

Baseball vs. Hockey

Improved order
Order
Maxalign
Gaussian field
Diffusion

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

rank

µ
 s

c
a
le

d

PC vs. MAC

Improved order
Order
Maxalign
Gaussian field
Diffusion

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

rank

µ
 s

c
a
le

d

Religion vs. Atheism

Improved order
Order
Maxalign
Gaussian field
Diffusion

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

rank

µ
 s

c
a
le

d

One vs. Two

Improved order
Order
Maxalign
Gaussian field
Diffusion

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

rank

µ
 s

c
a
le

d

Odd vs. Even

Improved order
Order
Maxalign
Gaussian field
Diffusion

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

rank

µ
 s

c
a
le

d
Ten Digits (10 classes)

Improved order
Order
Maxalign
Gaussian field
Diffusion

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

rank

µ
 s

c
a
le

d

ISOLET (26 classes)

Improved order
Order
Maxalign
Gaussian field
Diffusion

Figure 15.2 Comparison of spectral transformation for the five semi-supervised kernels.

15.7 Conclusion 291

for future research is an estimate of the effective number of parameters in these

methods.

The QCQP problem may be transformed into a standard quadratic program

(QP), which may result in further improvements in computational efficiency.

The alignment is one example of a cost function that can be optimized. With

a fixed kernel, margin-based upper bounds on misclassification probability can be

derived. As such, other cost functions that directly optimize quantities such as

the margin can also be used. This approach has been considered in the work of

Chapelle and Vapnik (2000) where the so-called span bound was introduced and

optimized using gradient descent; and in (Lanckriet et al., 2004a; Bousquet and

Herrmann, 2002) where optimization of tighter Rademacher complexity bounds

has been proposed.

Acknowledgment

We thank Olivier Chapelle and the anonymous reviewers for their comments and

suggestions.

16 Spectral Methods for Dimensionality

Reduction

Lawrence K. Saul lsaul@cis.upenn.edu

Kilian Q. Weinberger kilianw@seas.upenn.edu

Fei Sha FeiSha@cis.upenn.edu

Jihun Ham jhham@seas.upenn.edu

Daniel D. Lee ddlee@seas.upenn.edu

How can we search for low-dimensional structure in high-dimensional data? If the

data are mainly confined to a low-dimensional subspace, then simple linear methods

can be used to discover the subspace and estimate its dimensionality. More generally,

though, if the data lie on (or near) a low-dimensional submanifold, then its structure

may be highly nonlinear, and linear methods are bound to fail.

Spectral methods have recently emerged as a powerful tool for nonlinear dimen-

sionality reduction and manifold learning. These methods are able to reveal low-

dimensional structure in high-dimensional data from the top or bottom eigenvectors

of specially constructed matrices. To analyze data that lie on a low-dimensional

submanifold, the matrices are constructed from sparse weighted graphs whose ver-

tices represent input patterns and whose edges indicate neighborhood relations.

The main computations for manifold learning are based on tractable, polynomial-

time optimizations, such as shortest-path problems, least-squares fits, semi-definite

programming, and matrix diagonalization. This chapter provides an overview of

unsupervised learning algorithms that can be viewed as spectral methods for linear

and nonlinear dimensionality reduction.

16.1 Introduction

The problem of dimensionality reduction—extracting low-dimensional structure

from high-dimensional data—arises often in machine learning and statistical patterndimensionality

reduction recognition. High-dimensional data take many different forms: from digital image

libraries to gene expression microarrays, from neuronal population activities to

294 Spectral Methods for Dimensionality Reduction

financial time series. By formulating the problem of dimensionality reduction in a

general setting, however, we can analyze many different types of data in the same

underlying mathematical framework.

We therefore consider the following problem. Given a high-dimensional data

set X = (x1, . . . , xn) of input patterns where xi ∈ R
d, how can we compute n

corresponding output patterns ψi ∈ R
m that provide a faithful low-dimensional

representation of the original data set with m ≪ d? By “faithful,” we meaninputs xi ∈ R
d

outputs ψi ∈ R
m generally that nearby inputs are mapped to nearby outputs, while faraway inputs

are mapped to faraway outputs; we will be more precise in what follows. Ideally,

an unsupervised learning algorithm should also estimate the value of m that is

required for a faithful low-dimensional representation. Without loss of generality,

we assume everywhere in this chapter that the inputs are centered on the origin,

with
∑

i xi = 0 ∈ R
d.

This chapter provides a survey of so-called spectral methods for dimensionality

reduction, where the low-dimensional representations are derived from the top

or bottom eigenvectors of specially constructed matrices. The aim is not to bespectral methods

exhaustive, but to describe the simplest forms of a few representative algorithms

using terminology and notation consistent with the other chapters in this book.

At best, we can only hope to provide a snapshot of the rapidly growing literature

on this subject. An excellent and somewhat more detailed survey of many of these

algorithms is given by Burges (2005). In the interests of both brevity and clarity,

the examples of nonlinear dimensionality reduction in this chapter were chosen

specifically for their pedagogical value; more interesting applications to data sets

of images, speech, and text can be found in the original papers describing each

method.

The chapter is organized as follows. In section 16.2, we review the classical meth-

ods of principal component analysis (PCA) and metric multidimensional scaling

(MDS). The outputs returned by these methods are related to the input patterns

by a simple linear transformation. The remainder of the chapter focuses on the more

interesting problem of nonlinear dimensionality reduction. In section 16.3, we de-

scribe several graph-based methods that can be used to analyze high-dimensional

data that have been sampled from a low-dimensional submanifold. All of these

graph-based methods share a similar structure—computing nearest neighbors of

the input patterns, constructing a weighted graph based on these neighborhood re-

lations, deriving a matrix from this weighted graph, and producing an embedding

from the top or bottom eigenvectors of this matrix. Notwithstanding this shared

structure, however, these algorithms are based on rather different geometric in-

tuitions and intermediate computations. In section 16.4, we describe kernel-based

methods for nonlinear dimensionality reduction and show how to interpret graph-

based methods in this framework. Finally, in section 16.5, we conclude by contrast-

ing the properties of different spectral methods and highlighting various ongoing

lines of research. We also point out connections to related work on semi-supervised

learning, as described by other authors in this book.

16.2 Linear Methods 295

16.2 Linear Methods

Principal components analysis and metric multidimensional scaling are simple

spectral methods for linear dimensionality reduction. As we shall see in later

sections, however, the basic geometric intuitions behind PCA and metric MDS also

play an important role in many algorithms for nonlinear dimensionality reduction.

16.2.1 Principal Components Analysis

PCA is based on computing the low-dimensional representation of a high-

dimensional data set that most faithfully preserves its covariance structure (up to

rotation). In PCA, the input patterns xi ∈ R
d are projected into the m-dimensional

subspace that minimizes the reconstruction error,

minimum

reconstruction

error

EPCA =
∑

i

∥∥∥xi −
∑m

α=1
(xi · eα) eα

∥∥∥
2

, (16.1)

where the vectors {eα}m
α=1 define a partial orthonormal basis of the input space.

From (16.1), one can easily show that the subspace with minimum reconstruction

error is also the subspace with maximum variance. The basis vectors of this subspace

are given by the top m eigenvectors of the d × d covariance matrix,

covariance

matrix
C =

1

n

∑

i

xix
⊤
i , (16.2)

assuming that the input patterns xi are centered on the origin. The outputs of

PCA are simply the coordinates of the input patterns in this subspace, using

the directions specified by these eigenvectors as the principal axes. Identifying

eα as the αth top eigenvector of the covariance matrix, the output ψi ∈ R
m

for the input pattern xi ∈ R
d has elements ψiα = xi · eα. The eigenvalues of

the covariance matrix in Eq. 16.2 measure the projected variance of the high-

dimensional data set along the principal axes. Thus, the number of significant

eigenvalues measures the dimensionality of the subspace that contains most of the

data’s variance, and a prominent gap in the eigenvalue spectrum indicates that

the data are mainly confined to a lower-dimensional subspace. Figure 16.1 shows

the results of PCA applied to a toy data set in which the inputs lie within a

thin slab of three-dimensional space. Here, a simple linear projection reveals the

data’s low-dimensional (essentially planar) structure. More details on PCA can be

found in (Jolliffe, 1986). We shall see in section 16.3.2 that the idea of reducing

dimensionality by maximizing variance is also useful for nonlinear dimensionality

reduction.

296 Spectral Methods for Dimensionality Reduction

Figure 16.1 Results of PCA applied to n = 1600 input patterns in d = 3 dimensions
that lie within a thin slab. The top two eigenvectors of the covariance matrix, denoted
by black arrows, indicate the m = 2 dimensional subspace of maximum variance. The
eigenvalues of the covariance matrix are shown normalized by their sum: each eigenvalue
is indicated by a colored bar whose length reflects its partial contribution to the overall
trace of the covariance matrix. There are two dominant eigenvalues, indicating that the
data are very nearly confined to a plane.

16.2.2 Metric Multidimensional Scaling

Metric MDS is based on computing the low-dimensional representation of a high-

dimensional data set that most faithfully preserves the inner products between

different input patterns. The outputs ψi ∈ R
m of metric MDS are chosen to

minimize:

EMDS =
∑

ij

(xi · xj − ψi · ψj)
2. (16.3)

The minimum error solution is obtained from the spectral decomposition of the

Gram matrix of inner products,

Gram

matrix Gij = xi · xj . (16.4)

Denoting the top m eigenvectors of this Gram matrix by {vα}m
α=1 and their

respective eigenvalues by {λα}m
α=1, the outputs of MDS are given by ψiα =

√
λαvαi.

Though MDS is designed to preserve inner products, it is often motivated by

the idea of preserving pairwise distances. Let Sij = ‖xi − xj‖2 denote the matrixdistance

preservation of squared pairwise distances between input patterns. Often the input to MDS

is specified in this form. Assuming that the inputs are centered on the origin,

a Gram matrix consistent with these squared distances can be derived from the

transformation G = − 1
2 (I − uu⊤)S(I − uu⊤), where I is the n× n identity matrix

and u = 1√
n
(1, 1, . . . , 1)⊤ is the uniform vector of unit length. More details on MDS

can be found in (Cox and Cox, 1994).

Though based on a somewhat different geometric intuition, metric MDS yields

the same outputs ψi ∈ R
m as PCA—essentially a rotation of the inputs followed

by a projection into the subspace with the highest variance. (The outputs of both

algorithms are invariant to global rotations of the input patterns.) The Gram matrix

of metric MDS has the same rank and eigenvalues up to a constant factor as the

16.3 Graph-Based Methods 297

covariance matrix of PCA. In particular, letting X denote the d × n matrix of

input patterns, then C = n−1XX⊤ and G = X⊤X , and the equivalence follows

from singular value decomposition. In both matrices, a large gap between the mth

and (m + 1)th eigenvalues indicates that the high-dimensional input patterns lie

to a good approximation in a lower-dimensional subspace of dimensionality m. As

we shall see in sections 16.3.1 and 16.4.1, useful nonlinear generalizations of metric

MDS are obtained by substituting generalized pairwise distances and inner products

in place of Euclidean measurements.

16.3 Graph-Based Methods

Linear methods such as PCA and metric MDS generate faithful low-dimensional

representations when the high-dimensional input patterns are mainly confined to

a low-dimensional subspace. If the input patterns are distributed more or less

throughout this subspace, the eigenvalue spectra from these methods also reveal the

data set’s intrinsic dimensionality—that is to say, the number of underlying modes

of variability. A more interesting case arises, however, when the input patterns

lie on or near a low-dimensional submanifold of the input space. In this case, the

structure of the data set may be highly nonlinear, and linear methods are bound

to fail.

Graph-based methods have recently emerged as a powerful tool for analyzing

high-dimensional data that have been sampled from a low-dimensional submanifold.

These methods begin by constructing a sparse graph in which the nodes represent

input patterns and the edges represent neighborhood relations. The resulting graph

(assuming, for simplicity, that it is connected) can be viewed as a discretized ap-

proximation of the submanifold sampled by the input patterns. From these graphs,

one can then construct matrices whose spectral decompositions reveal the low-

dimensional structure of the submanifold (and sometimes even the dimensional-

ity itself). Though capable of revealing highly nonlinear structure, graph-based

methods for manifold learning are based on highly tractable (i.e., polynomial-time)

optimizations such as shortest-path problems, least-squares fits, semidefinite pro-

gramming, and matrix diagonalization. In what follows, we review four broadly

representative graph-based algorithms for manifold learning: Isomap (Tenenbaum

et al., 2000), maximum variance unfolding (Weinberger and Saul, 2004; Sun et al.,

2006), locally linear embedding (Roweis and Saul, 2000; Saul and Roweis, 2003),

and Laplacian eigenmaps (Belkin and Niyogi, 2003a).

16.3.1 Isomap

Isomap is based on computing the low-dimensional representation of a high-

dimensional data set that most faithfully preserves the pairwise distances between

input patterns as measured along the submanifold from which they were sampled.

The algorithm can be understood as a variant of MDS in which estimates of geodesicgeodesic

distances

298 Spectral Methods for Dimensionality Reduction

distances along the submanifold are substituted for standard Euclidean distances.

Figure 16.2 illustrates the difference between these two types of distances for input

patterns sampled from a Swiss roll.

The algorithm has three steps. The first step is to compute the k-nearest

neighbors of each input pattern and to construct a graph whose vertices represent

input patterns and whose (undirected) edges connect k-nearest neighbors. The

edges are then assigned weights based on the Euclidean distance between nearest

neighbors. The second step is to compute the pairwise distances ∆ij between

all nodes (i, j) along shortest paths through the graph. This can be done using

Djikstra’s algorithm which scales as O(n2 log n + n2k). Finally, in the third step,

the pairwise distances ∆ij from Djikstra’s algorithm are fed as input to MDS,

as described in section 16.2.2, yielding low-dimensional outputs ψi ∈ R
m for

which ‖ψi − ψj‖2 ≈ ∆2
ij . The value of m required for a faithful low-dimensional

representation can be estimated by the number of significant eigenvalues in the

Gram matrix constructed by MDS.

When it succeeds, Isomap yields a low-dimensional representation in which the

Euclidean distances between outputs match the geodesic distances between input

patterns on the submanifold from which they were sampled. Moreover, there are

formal guarantees of convergence (Tenenbaum et al., 2000; Donoho and Grimes,

2002) when the input patterns are sampled from a submanifold that is isometric

to a convex subset of Euclidean space—that is, if the data set has no “holes.” This

condition will be discussed further in section 16.5.

Figure 16.2 (Left) Comparison of Euclidean and geodesic distance between two input
patterns A and B sampled from a Swiss roll. Euclidean distance is measured along the
straight line in input space from A to B; geodesic distance is estimated by the shortest
path (in bold) that only directly connects k = 12 nearest neighbors. (Right) The low-
dimensional representation computed by Isomap for n = 1024 inputs sampled from a
Swiss roll. The Euclidean distances between outputs match the geodesic distances between
inputs.

16.3 Graph-Based Methods 299

16.3.2 Maximum Variance Unfolding

Maximum variance unfolding (Weinberger and Saul, 2004; Sun et al., 2006) is

based on computing the low-dimensional representation of a high-dimensional data

set that most faithfully preserves the distances and angles between nearby input

patterns. Like Isomap, it appeals to the notion of isometry and constructs a Gram

matrix whose top eigenvectors yield a low-dimensional representation of the data

set; unlike Isomap, however, it does not involve the estimation of geodesic distances.

Instead, the algorithm attempts to “unfold” a data set by pulling the input patterns

apart as far as possible subject to distance constraints that ensure that the final

transformation from input patterns to outputs looks locally like a rotation plus

translation. To picture such a transformation from d=3 to m=2 dimensions, one

can imagine a flag being unfurled by pulling on its four corners (but not so hard as

to introduce any tears).

The first step of the algorithm is to compute the k-nearest neighbors of each

input pattern. A neighborhood-indicator matrix is defined as ηij =1 if and only if

the input patterns xi and xj are k-nearest neighbors or if there exists another input

pattern of which both are k-nearest neighbors; otherwise ηij = 0. The constraints

to preserve distances and angles between k-nearest neighbors can be written as

‖ψi − ψj‖2
= ‖xi − xj‖2

(16.5)

for all (i, j) such that ηij =1. To eliminate a translational degree of freedom in the

low-dimensional representation, the outputs are also constrained to be centered on

the origin:

∑

i

ψi = 0 ∈ R
m. (16.6)

Finally, the algorithm attempts to “unfold” the input patterns by maximizing the

variance of the outputs,

var(ψ) =
∑

i

‖ψi‖2
, (16.7)

while preserving local distances and angles, as in (16.5). Figure 16.3 illustrates the

connection between maximizing variance and reducing dimensionality.

The above optimization can be reformulated as an instance of semi-definite

programming (Vandenberghe and Boyd, 1996). A semi-definite program is a linear

program with the additional constraint that a matrix whose elements are linear

in the optimization variables must be positive semi-definite. Let Kij = ψi · ψjsemi-definite

programming denote the Gram matrix of the outputs. The constraints in Eqs. 16.5–16.7 can be

written entirely in terms of the elements of this matrix. Maximizing the variance

of the outputs subject to these constraints turns out to be a useful surrogate for

minimizing the rank of the Gram matrix (which is computationally less tractable).

The Gram matrix K of the “unfolded” input patterns is obtained by solving the

semi-definite program:

300 Spectral Methods for Dimensionality Reduction

Figure 16.3 Input patterns sampled from a Swiss roll are “unfolded” by maximizing
their variance subject to constraints that preserve local distances and angles. The middle
snapshots show various feasible (but nonoptimal) intermediate solutions of the optimiza-
tion described in section 16.3.2.

Maximize trace(K) subject to:

1) K � 0

2) ΣijKij = 0

3) Kii − 2Kij + Kjj = |‖xi − xj‖2 for all (i, j) such that ηij =1

The first constraint indicates that the matrix K is required to be positive semi-

definite. As in MDS and Isomap, the outputs are derived from the eigenvalues and

eigenvectors of this Gram matrix, and the dimensionality of the underlying subman-

ifold (i.e., the value of m) is suggested by the number of significant eigenvalues.

16.3.3 Locally Linear Embedding (LLE)

LLE is based on computing the low-dimensional representation of a high-dimensional

data set that most faithfully preserves the local linear structure of nearby input

patterns (Roweis and Saul, 2000). The algorithm differs significantly from Isomap

and maximum variance unfolding in that its outputs are derived from the bottom

eigenvectors of a sparse matrix, as opposed to the top eigenvectors of a (dense)

Gram matrix.

The algorithm has three steps. The first step, as usual, is to compute the

k-nearest neighbors of each high-dimensional input pattern xi. In LLE, however,

one constructs a directed graph whose edges indicate nearest-neighbor relations

(which may or may not be symmetric). The second step of the algorithm assigns

weights Wij to the edges in this graph. Here, LLE appeals to the intuition that

each input pattern and its k-nearest neighbors can be viewed as samples from a

small linear “patch” on a low-dimensional submanifold. Weights Wij are computed

by reconstructing each input pattern xi from its k-nearest neighbors. Specifically,local linear

reconstructions they are chosen to minimize the reconstruction error:

EW =
∑

i

∥∥∥xi −
∑

j
Wijxj

∥∥∥
2

. (16.8)

16.3 Graph-Based Methods 301

The minimization is performed subject to two constraints: (i) Wij = 0 if xj is not

among the k-nearest neighbors of xi; (ii)
∑

j Wij = 1 for all i. (A regularizer

can also be added to the reconstruction error if its minimum is not otherwise

well defined.) The weights thus constitute a sparse matrix W that encodes local

geometric properties of the data set by specifying the relation of each input pattern

xi to its k-nearest neighbors.

In the third step, LLE derives outputs ψi ∈ R
m that respect (as faithfully as

possible) these same relations to their k-nearest neighbors. Specifically, the outputs

are chosen to minimize the cost function:

Eψ =
∑

i

∥∥∥ψi −
∑

j
Wijψj

∥∥∥
2

. (16.9)

The minimization is performed subject to two constraints that prevent degenerate

solutions: (i) the outputs are centered,
∑

i ψi = 0 ∈ R
m, and (ii) the outputs have

unit covariance matrix. The d-dimensional embedding that minimizes (16.9) subject

to these constraints is obtained by computing the bottom m + 1 eigenvectors of thesparse eigenvalue

problem matrix (I−W)⊤(I−W). The bottom (constant) eigenvector is discarded, and the

remaining m eigenvectors (each of size n) then yield the low-dimensional outputs

ψi∈Rm. Unlike the top eigenvalues of the Gram matrices in Isomap and maximum

variance unfolding, the bottom eigenvalues of the matrix (I−W)⊤(I−W) in LLE do

not have a telltale gap that indicates the dimensionality of the underlying manifold.

Thus the LLE algorithm has two free parameters: the number of nearest neighbors k

and the target dimensionality m.

Figure 16.4 illustrates one particular intuition behind LLE. The leftmost panel

shows n = 2000 inputs sampled from a Swiss roll, while the rightmost panel shows

the two-dimensional representation discovered by LLE, obtained by minimizing

Eq. 16.9 subject to centering and orthogonality constraints. The middle panels

show the results of minimizing Eq. 16.9 without centering and orthogonality con-

straints, but with ℓ < n randomly chosen outputs constrained to be equal to their

corresponding inputs. Note that in these middle panels, the outputs have the same

dimensionality as the inputs. Thus, the goal of the optimization in the middle pan-

els is not dimensionality reduction; rather, it is locally linear reconstruction of the

entire data set from a small subsample. For sufficiently large ℓ, this alternative op-

timization is well posed, and minimizing Eq. 16.9 over the remaining n− ℓ outputs

is done by solving a simple least-squares problem. For ℓ = n, the outputs of this op-

timization are equal to the original inputs; for smaller ℓ, they resemble the inputs,

but with slight errors due to the linear nature of the reconstructions; finally, as ℓ is

decreased further, the outputs provide an increasingly linearized representation of

the original data set. LLE (shown in the rightmost panel) can be viewed as a limit

of this procedure as ℓ → 0, with none of the outputs clamped to the inputs, but

with other constraints imposed to ensure that the optimization is well defined.

302 Spectral Methods for Dimensionality Reduction

Figure 16.4 Intuition behind LLE. (Left) n = 2000 input patterns sampled from a Swiss
roll. (Middle) Results of minimizing of (16.9) with k = 20 nearest neighbors and ℓ = 25,
ℓ = 15, and ℓ = 10 randomly chosen outputs (indicated by black landmarks) clamped
to the locations of their corresponding inputs. (Right) Two-dimensional representation
obtained by minimizing Eq. 16.9 with no outputs clamped to inputs, but subject to the
centering and orthogonality constraints of LLE.

16.3.4 Laplacian Eigenmaps

Laplacian eigenmaps are based on computing the low-dimensional representation

of a high-dimensional data set that most faithfully preserves proximity relations,

mapping nearby input patterns to nearby outputs. The algorithm has a similar

structure as LLE. First, one computes the k-nearest neighbors of each high-

dimensional input pattern xi and constructs the symmetric undirected graph

whose n nodes represent input patterns and whose edges indicate neighborhood

relations (in either direction). Second, one assigns positive weights Wij to the edges

of this graph; typically, the values of the weights are either chosen to be constant,

say Wij = 1/k, or exponentially decaying, as Wij = exp(−‖xi − xj‖2/σ2) where σ2

is a scale parameter. Let D denote the diagonal matrix with elements Dii =
∑

j Wij .

In the third step of the algorithm, one obtains the outputs ψi ∈ R
m by minimizing

the cost function:

EL =
∑

ij

Wij ‖ψi − ψj‖2

√
DiiDjj

. (16.10)

This cost function encourages nearby input patterns to be mapped to nearby

outputs, with “nearness” measured by the weight matrix W. As in LLE, theproximity-

preserving

embedding

minimization is performed subject to constraints that the outputs are centered and

have unit covariance. The minimum of Eq. 16.10 is computed from the bottom m+1

eigenvectors of the matrix L = I − D− 1
2 WD− 1

2 . The matrix L is a symmetrized,

normalized form of the graph Laplacian, given by D− W. As in LLE, the bottom

(constant) eigenvector is discarded, and the remaining m eigenvectors (each of

size n) yield the low-dimensional outputs ψi ∈ Rm. Again, the optimization is a

sparse eigenvalue problem that scales relatively well to large data sets.

16.4 Kernel Methods 303

16.4 Kernel Methods

Suppose we are given a real-valued function k : R
d×R

d → R with the property that

there exists a map Φ : R
d → H into a dot product “feature” space H such that for

all x, x′ ∈ R
d, we have Φ(x) · Φ(x′) = k(x, x′). The kernel function k(x, x′) can be

viewed as a nonlinear similarity measure. Examples of kernel functions that satisfy

the above criteria include the polynomial kernels k(x, x′) = (1+x ·x′)p for positive

integers p and the Gaussian kernels k(x, x′) = exp(−‖x − x′‖2/σ2). Many linear

methods in statistical learning can be generalized to nonlinear settings by employing

the so-called kernel trick — namely, substituting these generalized dot products in

feature space for Euclidean dot products in the space of input patterns (Schölkopf

and Smola, 2002). In section 16.4.1, we review the nonlinear generalization of

PCA (Schölkopf et al., 1998) obtained in this way, and in section 16.4.2, we

discuss the relation between kernel PCA and the manifold learning algorithms of

section 16.3. Our treatment closely follows that of Ham et al. (2004).

16.4.1 Kernel PCA

Given input patterns (x1, . . . , xn) where xi ∈ R
d, kernel PCA computes the

principal components of the feature vectors (Φ(x1), . . . ,Φ(xn)), where Φ(xi) ∈ H.

Since in general H may be infinite-dimensional, we cannot explicitly construct the

covariance matrix in feature space; instead we must reformulate the problem so

that it can be solved in terms of the kernel function k(x, x′). Assuming that the

data have zero mean in the feature space H, its covariance matrix is given by

C =
1

n

n∑

i=1

Φ(xi)Φ(xi)
⊤. (16.11)

To find the top eigenvectors of C, we can exploit the duality of PCA and MDS

mentioned earlier in section 16.2.2. Observe that all solutions to Ce = νe with

ν
= 0 must lie in the span of (Φ(x1), . . . ,Φ(xn)). Expanding the αth eigenvector

as eα =
∑

i vαiΦ(xi) and substituting this expansion into the eigenvalue equation,

we obtain a dual eigenvalue problem for the coefficients vαi, given by Kvα = λαvα,

where λα = nνα and Kij = k(xi, xj) is the so-called kernel matrix—that is, the

Gram matrix in feature space. We can thus interpret kernel PCA as a nonlinear

version of MDS that results from substituting generalized dot products in feature

space for Euclidean dot products in input space (Williams, 2001). Following the

prescription for MDS in section 16.2.2, we compute the top m eigenvalues and

eigenvectors of the kernel matrix. The low-dimensional outputs ψi ∈ R
m of kernel

PCA (or equivalently, kernel MDS) are then given by ψiα =
√

λαvαi.

One modification to the above procedure often arises in practice. In (16.11), we

have assumed that the feature vectors in H have zero mean. In general, we cannot

assume this, and therefore we need to subtract the mean (1/n)
∑

i Φ(xi) from each

feature vector before computing the covariance matrix in (16.11). This leads to a

304 Spectral Methods for Dimensionality Reduction

Figure 16.5 Results of kernel PCA with Gaussian and polynomial kernels applied to
n = 1024 input patterns sampled from a Swiss roll. These kernels do not lead to low-
dimensional representations that unfold the Swiss roll.

slightly different eigenvalue problem, where we diagonalize K ′ = (I − uu⊤)K(I −
uu⊤) rather than K, where u = 1√

n
(1, . . . , 1)⊤.

Kernel PCA is often used for nonlinear dimensionality reduction with polynomial

or Gaussian kernels. It is important to realize, however, that these generic kernels

are not particularly well suited to manifold learning, as described in section 16.3.

Figure 16.5 shows the results of kernel PCA with polynomial (p = 4) and Gaussian

kernels applied to n = 1024 input patterns sampled from a Swiss roll. In neither case

do the top two eigenvectors of the kernel matrix yield a faithful low-dimensional

representation of the original input patterns, nor do the eigenvalue spectra suggest

that the input patterns were sampled from a two-dimensional submanifold.

16.4.2 Graph-Based Kernels

All of the algorithms in section 16.3 can be viewed as instances of kernel PCA,

with kernel matrices that are derived from sparse weighted graphs rather than a

predefined kernel function (Ham et al., 2004). Often these kernels are described as

“data-dependent” kernels, because they are derived from graphs that encode the

neighborhood relations of the input patterns in the training set. These kernel ma-

trices may also be useful for other tasks in machine learning besides dimensionality

reduction, such as classification and nonlinear regression (Belkin et al., 2004b).

In this section, we discuss how to interpret the matrices of graph-based spectral

methods as kernel matrices.

The Isomap algorithm in section 16.3.1 computes a low-dimensional embedding

by computing shortest paths through a graph and processing the resulting distances

by MDS. The Gram matrix constructed by MDS from these geodesic distances can

be viewed as a kernel matrix. For finite data sets, however, this matrix is not

guaranteed to be positive semi-definite. It should therefore be projected onto the

cone of positive semi-definite matrices before it is used as a kernel matrix in other

settings.

16.4 Kernel Methods 305

Maximum variance unfolding in section 16.3.2 is based on learning a Gram matrix

by semi-definite programming. The resulting Gram matrix can be viewed as a kernel

matrix. In fact, this line of work was partly inspired by earlier work that used semi-

definite programming to learn a kernel matrix for classification in support vector

machines (Lanckriet et al., 2004a).

The algorithms in sections 16.3.3 and 16.3.4 do not explicitly construct a Gram

matrix, but the matrices that they diagonalize can be related to operators on

graphs and interpreted as “inverse” kernel matrices. For example, the discrete graph

Laplacian arises in the description of diffusion on graphs and can be related to

Green’s functions and heat kernels in this way (Kondor and Lafferty, 2002; Coifman

et al., 2005). In particular, recall that in Laplacian eigenmaps, low-dimensional

representations are derived from the bottom (nonconstant) eigenvectors of the graph

Laplacian L. These bottom eigenvectors are equal to the top eigenvectors of the

pseudoinverse of the Laplacian, L†, which can thus be viewed as a (centered) kernel

matrix for kernel PCA. Moreover, viewing the elements L†
ij as inner products, the

squared distances defined by L†
ii + L†

jj − L†
ij − L†

ji are in fact proportional to the

round-trip commute times of the continuous-time Markov chain with transition

rate matrix L. The commute times are non-negative, symmetric, and satisfy the

triangle inequality; thus, Laplacian eigenmaps can alternately be viewed as MDS

on the metric induced by these graph commute times. (A slight difference is that the

outputs of Laplacian eigenmaps are normalized to have unit covariance, whereas

in MDS the scale of each dimension would be determined by the corresponding

eigenvalue of L†.)
The matrix diagonalized by LLE can also be interpreted as an operator on graphs,

whose pseudoinverse corresponds to a kernel matrix. The operator does not generate

a simple diffusive process, but in certain cases, it acts similarly to the square of the

graph Laplacian (Ham et al., 2004).

The above analysis provides some insight into the differences between Isomap,

maximum variance unfolding, Laplacian eigenmaps, and LLE. The metrics induced

by Isomap and maximum variance unfolding are related to geodesic and local

distances, respectively, on the submanifold from which the input patterns are

sampled. On the other hand, the metric induced by the graph Laplacian is related

to the commute times of Markov chains; these times involve all the connecting

paths between two nodes on a graph, not just the shortest one. The kernel matrix

induced by LLE is roughly analogous to the square of the kernel matrix induced

by the graph Laplacian. In many applications, the kernel matrices in Isomap and

maximum variance unfolding have telltale gaps in their eigenvalue spectra that

indicate the dimensionality of the underlying submanifold from which the data

were sampled. On the other hand, those from Laplacian eigenmaps and LLE do not

reflect the geometry of the submanifold in this way.

306 Spectral Methods for Dimensionality Reduction

16.5 Discussion

Each of the spectral methods for nonlinear dimensionality reduction has its own

advantages and disadvantages. Some of the differences between the algorithms

have been studied in formal theoretical frameworks, while others have simply

emerged over time from empirical studies. We conclude by briefly contrasting the

statistical, geometrical, and computational properties of different spectral methods

and describing how these differences often play out in practice.

Most theoretical work has focused on the behavior of these methods in the limittheoretical

guarantees n → ∞ of large sample size. In this limit, if the input patterns are sampled from a

submanifold of R
d that is isometric to a convex subset of Euclidean space—that is,

if the data set contains no “holes”—then the Isomap algorithm from section 16.3.1

will recover this subset up to a rigid motion (Tenenbaum et al., 2000). Many image

manifolds generated by translations, rotations, and articulations can be shown to fit

into this framework (Donoho and Grimes, 2002). A variant of LLE known as Hessian

LLE has also been developed with even broader guarantees (Donoho and Grimes,

2003). Hessian LLE asymptotically recovers the low-dimensional parameterization

(up to rigid motion) of any high-dimensional data set whose underlying submanifold

is isometric to an open, connected subset of Euclidean space; unlike Isomap, the

subset is not required to be convex.

The asymptotic convergence of maximum variance unfolding has not been studied

in a formal setting. Unlike Isomap, however, the solutions from maximum variance

unfolding in section 16.3.2 are guaranteed to preserve distances between nearest

neighbors for any finite set of n input patterns. Maximum variance unfolding alsomanifolds with

“holes” behaves differently than Isomap on data sets whose underlying submanifold is

isometric to a connected but not convex subset of Euclidean space. Figure 16.6

contrasts the behavior of Isomap and maximum variance unfolding on two data

sets with this property.

Of the algorithms described in section 16.3, LLE and Laplacian eigenmaps scale

best to moderately large data sets (n < 10, 000), provided that one uses special-computation

purpose eigensolvers that are optimized for sparse matrices. The internal iterations

of these eigensolvers rely mainly on matrix-vector multiplications which can be done

in O(n). The computation time in Isomap tends to be dominated by the calculation

of shortest paths. The most computationally intensive algorithm is maximum vari-

ance unfolding, due to the expense of solving semi-definite programs (Vandenberghe

and Boyd, 1996) over n × n matrices.

For significantly larger data sets, all of the above algorithms present serious chal-

lenges: the bottom eigenvalues of LLE and Laplacian eigenmaps can be tightly

spaced, making it difficult to resolve the bottom eigenvectors, and the computa-

tional bottlenecks of Isomap and maximum variance unfolding tend to be pro-

hibitive. Accelerated versions of Isomap and maximum variance unfolding have

been developed by first embedding a small subset of “landmark” input patterns,

then using various approximations to derive the rest of the embedding from the

16.5 Discussion 307

Figure 16.6 Results of Isomap and maximum variance unfolding on two data sets whose
underlying submanifolds are not isometric to convex subsets of Euclidean space. (Left) 1617
input patterns sampled from a trefoil knot. (Right) n = 400 images of a teapot rotated
through 360 degrees. The embeddings are shown, as well as the eigenvalues of the Gram
matrices, normalized by their trace. The algorithms estimate the dimensionality of the
underlying submanifold by the number of appreciable eigenvalues. Isomap is foiled in this
case by nonconvexity.

landmarks. The landmark version of Isomap (de Silva and Tenenbaum, 2003) is

based on the Nyström approximation and scales very well to large data sets (Platt,

2004); millions of input patterns can be processed in minutes on a PC (though

the algorithm makes the same assumption as Isomap that the data set contains no

“holes”). The landmark version of maximum variance unfolding (Weinberger et al.,

2005) is based on a factorized approximation of the Gram matrix, derived from local

linear reconstructions of the input patterns (as in LLE). It solves a much smaller

SDP than the original algorithm and can handle larger data sets (currently, up to

n = 20, 000), though it is still much slower than the landmark version of Isomap.

Note that all the algorithms rely as a first step on computing nearest neighbors,

which naively scales as O(n2), but faster algorithms are possible based on special-

ized data structures (Friedman et al., 1977; Gray and Moore, 2001; Beygelzimer

et al., 2004).

Research on spectral methods for dimensionality reduction continues at a rapid

pace. Other algorithms closely related to the ones covered here include Hessianrelated work

LLE (Donoho and Grimes, 2003), c-Isomap (de Silva and Tenenbaum, 2003), lo-

cal tangent space alignment (Zhang and Zha, 2004), geodesic null-space analy-

308 Spectral Methods for Dimensionality Reduction

sis (Brand, 2004), and conformal eigenmaps (Sha and Saul, 2005). Motivation for

ongoing work includes the handling of manifolds with more complex geometries, the

need for robustness to noise and outliers, and the ability to scale to large data sets.

In this chapter, we have focused on nonlinear dimensionality reduction, a problem

in unsupervised learning. Graph-based spectral methods also play an important role

in semi-supervised learning. For example, the eigenvectors of the normalized graph

Laplacian provide an orthonormal basis—ordered by smoothness—for all functions

(including decision boundaries and regressions) defined over the neighborhood

graph of input patterns; see chapter 12 by Sindhwani, Belkin, and Niyogi. Likewise,

as discussed in chapter 15 by Zhu and co-workers, the kernel matrices learned

by unsupervised algorithms can be transformed by discriminative training for the

purpose of semi-supervised learning. Finally, in chapter 17, Sajama and Orlitsky

show how shortest-path calculations and multidimensional scaling can be used to

derive more appropriate feature spaces in a semi-supervised setting. In all these

ways, graph-based spectral methods are emerging to address the very broad class

of problems that lie between the extremes of purely supervised and unsupervised

learning.

17 Modifying Distances

Sajama ssajama@ieng9.ucsd.edu

Alon Orlitsky alon@ucsd.edu

Learning algorithms use a notion of similarity between data points to make infer-

ences. Semi-supervised algorithms assume that two points are similar to each other

if they are connected by a high-density region of the unlabeled data. Apart from

semi-supervised learning, such density-based distance metrics also have applications

in clustering and nonlinear interpolation. In this chapter, we discuss density-based

metrics induced by Riemannian manifold structures. We present asymptotically

consistent methods to estimate and compute these metrics and present upper and

lower bounds on their estimation and computation errors. Finally, we discuss how

these metrics can be used for semi-supervised learning and present experimental

results.

17.1 Introduction

When data are in R
d, the standard similarity measure used by learning algorithms

is the Euclidean distance. Semi-supervised learning algorithms rely on the intuition

that two data points are similar to each other if they are connected by a high-density

region. For example, based on this intuition, in the case of the two-dimensional data

sample shown in figure 17.1, point 2 is closer to point 3 than to point 1. In this

chapter we consider measuring this density-based notion of similarity directly in the

form of a distance metric between all pairs of points and then using this resulting

metric in standard learning algorithms to perform semi-supervised classification.

To see how a density-based distance (DBD) metric can be defined, let us take a

closer look at the two-strips example in figure 17.2. Since there is a path between

points 2 and 3 that lies in a high density region (for example, P3), we assume them

to be similar or “closer.” Conversely, since none of the paths between points 1 and

2 (P1, P2, etc.) can avoid the low-density regions, they are ‘farther’ according to

the density-based notion of distance.

310 Modifying Distances

1

2 3

Figure 17.1 According to the semi-
supervised smoothness assumption
point 2 has greater similarity (is
closer) to point 3 than to point 1.

1

2 3

P1

P3

P4

P2

Figure 17.2 This notion of similar-
ity can be written in terms of property
of paths between the points.

This observation leads us to consider modifying the standard Euclidean definition

of the length of paths and to use the shortest-path length as the density-based

distance metric. To make this definition work, those paths that leave the high-

density regions should be assigned longer length than those that do not. Note that

path length is defined as the sum of lengths of infinitesimally small path segments.

One way to define a density-based path length would be to assign different lengths

to path segments based on the data density at their location.

Hence, we use a modified definition of the path length Γ of a path γ in X

which depends on the data density p(x) and a suitably chosen weighting function

q : R
+ → R

+ via the relationdensity-based

path length

Γ(γ; p)
.
=

∫ LE(γ)

t=0

q(p(γ(t)))|γ′(t)|2dt,

where |.|2 is the L2 norm on R
d. We can assume, without loss of generality, that all

paths are parameterized to have unit speed according to the standard Euclidean

metric on R
d and hence that LE(γ) = Euclidean length of curve γ and |γ ′(t)|2 = 1.

The DBD between two points x′ and x′′ is defined to bedensity-based

distance

d(x′,x′′; p) = inf
γ
{Γ(γ; p)}, (17.1)

where γ varies over the set of all paths from x′ to x′′.
This DBD metric can be thought of as being induced by a corresponding

Riemannian manifold structure. To specify a Riemannian manifold structure on

R
d we need to specify the inner product on the space of tangent vectors at

each point in R
d. For R

d the tangent space at each point is just a copy of R
d

itself. Hence the Riemannian structure at each point is determined by specifying

the inner product between the d orthonormal unit vectors which span R
d, i.e.,

< ei, ej > ∀ i, j = 1, . . . , d.

< ei, ej > = q2(p(x)) ×
{

1 if i = j

0 otherwise
(17.2)

17.1 Introduction 311

Semi-supervised learning using density-based Riemannian metrics has been con-

sidered by Lebanon (2003); Vincent and Bengio (2003); Bousquet et al. (2004);

Sajama and Orlitsky (2005). In particular, Vincent and Bengio (2003) proposed

using q(y) = 1
yα , exp(−αy) and α− log y, where α is a parameter that controls the

path-segment length in high-density regions relative to the length in low-density

regions. Bousquet et al. (2004) proposed q(y) = 1
χ(y) where χ is a strictly increas-

ing function. In this chapter, following (Sajama and Orlitsky, 2005), we will assumechoosing the

weighting

function, q

that q(y) : [0,∞) −→ (0,∞) is any monotonically decreasing, non-zero function

that is constant (=1 without loss of generality) for small y. The assumption that

q is decreasing ensures that paths in high-density regions have smaller length and

q > 0 ensures that paths are not assigned zero length. Assuming that q(y) does

not change rapidly for small y it is necessary to have uniform bounds on approx-

imation errors when using graph-based lengths to approximate path lengths. This

is because the concentration of sample points in the regions with sufficiently low

density (low-concentration regions change with sample size) is likely to be small.

Hence, using graph edges in these regions to approximate paths will lead to large

approximation errors, unless q is relatively slowly changing in these regions.

Notice that all of these definitions of the Riemannian metric are nonparametric

and hence the space of possible metrics is as large as the space of probability

functions that we allow. A different approach was proposed by Lebanon (2003)

who suggested picking a Riemannian metric from a parametric set of metrics based

on an objective function which gives higher value to those metrics which reduce

path lengths for paths passing through high-density regions.

There has also been work on density-based distances that cannot be cast into

the Riemannian manifold framework (Fischer et al., 2004; Chapelle and Zien,

2005). These methods consider a fully connected graph constructed on the points,

where the edges are weighted by the Euclidean distance between the two points

(or a given dissimilarity, if the points do not belong to a Euclidean space). In

(Fischer et al., 2004), the length of a path is defined to be the maximum edge

weight on the path and the effective density-based distance between any two

points is defined to be the smallest path length among all paths connecting

the two points. Using these distances, they show a robust and computationally

feasible method for clustering elongated high-density regions. In (Chapelle and

Zien, 2005), this definition of distance is modified (“softened”) in order to avoid

connection of otherwise separate clusters by single outliers. They demonstrate how

this kernel could be used in transductive support vector machines (SVMs) for semi-

supervised learning and present experimental results which show improvement over

the standard implementation of transductive SVMs.

Errors in the knowledge of the DBD metric can arise from two sources, viz.,estimation and

computation

errors

estimation and computation. Estimation error arises because the underlying data

density is not known a priori and the path-length values need to be estimated

from the finite data sample {x1, . . . ,xn} according to the density. Even in the case

when the data density is known, computing the Riemannian distance involves the

variational problem of minimizing the Riemannian length over all paths between two

312 Modifying Distances

points. Computation error arises since this minimization cannot be done perfectly

when computational resources are limited.

This computation problem has been extensively studied (Sethian, 1999) and

finds applications in computational geometry, fluid mechanics, computer vision,

and materials science. These methods involve building a grid in R
d whose size is

exponential in d. This is inconvenient for the learning scenario where the data

dimension is usually high. It is therefore necessary to consider grids based on data

points, in which case the computational complexity grows at a rate polynomial in

sample size n. Heuristics for computing the minimum Riemannian distance using

graphs constructed on data samples have been suggested by Vincent and Bengio

(2003); Bousquet et al. (2004), and Sajama and Orlitsky (2005).

In the sections that follow, we present asymptotically consistent methods to

estimate and compute these metrics and show bounds on the estimation and

computation errors of these metrics (Sajama and Orlitsky, 2005). We also discuss

the various ways in which density-based metrics could be used for semi-supervised

learning and present experimental results.

17.2 Estimating DBD Metrics

In this section we consider the error in our knowledge of DBD metrics that comes

from the fact that we have a limited data sample, i.e., a set of d-dimensional data

points {x1, . . . ,xn} drawn i.i.d. from a probability density function p(x). In other

words, we are interested in the estimation of the path length function

Γ(γ; p)
.
=

∫ LE(γ)

t=0

q(p(x))|γ′(t)|2dt

(see section 17.1) for any given path γ. Note that for a fixed path γ, Γ(γ; p) is

a functional of the density p(x). Several different ways of analyzing estimators

of functionals of data density have been studied in the statistics literature. For

bounding the error in estimating the DBD metric we borrow from the proof

techniques used by Stone (1980), and Goldstein and Messer (1992).

To characterize the estimators of the path lengths and hence the DBD metric, we

use the definitions of upper and lower bounds on rate of convergence of estimators

proposed by Stone (1980). Let W denote the set to which p is known to belong.

Definition 17.1 A convergence rate r is achievable if there is a sequence {Γ̂n(γ)}
of estimators such that

lim
c→∞

lim sup
n

sup
p∈W

Pp(|Γ̂n(γ) − Γ(γ; p)| > cn−r) = 0.

Definition 17.2 A rate r > 0 is an upper bound to the rate of convergence if for

17.2 Estimating DBD Metrics 313

every sequence Γ̂n(γ) of estimators of Γ(γ; p),

lim inf
n

sup
p∈W

Pp(|Γ̂n(γ) − Γ(γ; p)| > cn−r) > 0 ∀c > 0 (17.3)

and

lim
c→0

lim inf
n

sup
p∈W

Pp(|Γ̂n(γ) − Γ(γ; p)| > cn−r) = 1. (17.4)

For statements in probability about random variables Tn, Qn, whose distributions

may depend on p(x), we will use the notation

Tn = O(Qn) when limc→∞ lim supn supf∈Ws
P (|Tn| > c|Qn|) = 0.

17.2.1 Achievability

We are trying to understand the limits on rate at which the estimation error can

converge to zero as sample size n increases. Lower bounds on the achievable rate of

convergence can be shown by considering particular estimators and analyzing their

performance. This is the basic idea which leads to the first theorem in this section

where we consider the plug-in estimators, Γ̂n, for the path length Γ, i.e.,

Γ̂n(γ) = Γ(γ; p̂n).

This estimator is obtained by plugging in the kernel density estimator p̂n for data

density in place of actual density p(x) into the expression for path length Γ. The

kernel density estimator is given by

p̂n(x) =
1

n hd
n

n∑

i=1

K

(
x− xi

hn

)
,

where hn is the width parameter of the kernel which is chosen to be a function of

sample size n and K(x) is a d-dimensional kernel function. To bound how far this

plug-in estimator is from the true path length, we consider the “gradient” of the

path length functional with respect to variations in density p(x). We can then use

the results on bias and variance of the kernel density estimators to derive a lower

bound on the rate of convergence of the estimation error.

To define an estimator for the DBD metric between two points in the support

of p(x), we could take the shortest estimated path length among all possible paths

between the points. However, this is a large space of paths that contains redundant

paths like those that loop over themselves, etc. In order to prove a lower bound

on the rate of convergence of the DBD metric, we consider a smaller set of paths,

Sp, that nevertheless contains the shortest Riemannian paths between all pairs of

points in the support of p(x). Let the maximum Euclidean distance between two

points in the support of p(x) be L. Define

Sp =
{

γ Γ̂n(γ) ≤ L + c
}

,

314 Modifying Distances

where c is any strictly positive constant.

To see why it is sufficient to look within the set Sp, note that the straight line

joining any two such points has length less than L according to this density-based

Riemannian metric (because we have defined the weighting function q to be less

than or equal to 1). Hence, the shortest Riemannian path between any two points

will have length less than or equal to L. By the proof of theorem 17.5, for sufficiently

large n, all paths of length Γ ≤ L will have estimated path length Γ̂ ≤ L+ c. Hence

for sufficiently large n, Sp will almost surely contain the shortest Riemannian paths

between all pairs of points in the support of p(x).

Given the estimator Γ̂n for the lengths of paths, and the set of paths to consider,

Sp, we define the estimator d̂n(x′,x′′) of the DBD metric d(x′,x′′; p(x)) to be

d̂n(x′,x′′) = inf
γ∈Sp

{Γ̂n(γ)}.

For proving these bounds, the function q that controls the path length is assumedassumptions for

the weighting

function, q

to have the following properties:

[A1] q is a monotonically decreasing function

[A2] infy q(y) > 0

[A3] q has bounded first and second derivatives

One feature of the kernel density estimator is that, when the true data density

can be assumed to be smooth (have a certain number of derivatives), its bias can

be reduced by choosing an appropriate kernel. Let us denote by Ws, the set of

functions which have s or more continuous derivatives. We assume that p(x) hasassumptions for

the density, p(x) the following properties:

1. p(x) ∈ Ws

2. p(x) has bounded support

3. ∃ C1 such that || ▽ p(x)|| ≤ C1 ∀x

The smoothness parameter s measures the complexity of the class of underlying

distributions. Given that p(x) belongs to Ws, we base the density estimate on the

d-dimensional kernel K(x) = Πd
j=1k(xj). Here k is a one-dimensional kernel with

the following properties:

k(x) = k(−x),
∫

k(x)dx = 1, sup−∞<x<∞ |k(x)| ≤ A < ∞,
∫

xmk(x)dx = 0, m = 1, . . . , s − 1 and 0
=
∫

xsk(x)dx < ∞.

We use the following two lemmas about well-known (cf. (Nadaraya, 1989))

properties of the kernel density estimators.

Lemma 17.3 (bias of the kernel density estimator) Let µ = (μ1, . . . , μd) be

a d-dimensional vector with μi ≥ 0, and let u = (u1, . . . , ud denote a vector in R
d.

Let |µ| =
∑d

j=1 μj, µ! = μ1! . . . μd!, uμ = uμ1

1 . . . uμd

d and Dµ = ∂μ1

∂u
μ1
1

. . . ∂μd

∂u
μd
d

.

17.2 Estimating DBD Metrics 315

Then, ∀x, the bias

Ep [p̂n(x)] − p(x) = shs
n

∫

u∈Rd

F (u,x)K(u)du1...dud,

where

F (u,x) =
∑

|µ|=s

uµ

µ!

∫ 1

T=0

(1 − T)s−1Dµp(x + Tu)dT.

Lemma 17.4 (variance of the kernel density estimator) ∀x, ∀ǫ ≥ 0, for

n ≥ N(ǫ) (where N(ǫ) is sufficiently large), the variance

Ep

[
(p̂n(x) − Ep [p̂n(x)])2

]
≤ (1 + ǫ)p(x)

nhd
n

∫

u∈Rd

K2(u)du.

Theorem 17.5 (achievability) Uniformly over all pairs of points x′ and x′′ ∈
the support of p(x), the plug-in estimator d̂n(x′,x′′) that uses the kernel density

estimator p̂n, achieves the rate of convergence r = s
2s+d where the width of the

kernel density estimators hn = c

n
1

2s+d

, where c is a constant.

Proof We begin by defining the derivative T of the functional Γ(γ; p) with respect

to changes δp(x) in p(x) to be

T (δp; p)
.
=

∫ LE(γ)

t=0

q ′(p(γ(t)))δp(γ(t))|γ ′(t)|2dt.

Hence, we can write

|Γ(γ; p̂n)−Γ(γ; p)−T (p̂n−p; p)| =

∣∣∣∣∣

∫ LE(γ)

t=0

[q(p̂n) − q(p) − (p̂n − p)q ′(p)] |γ′(t)|2dt

∣∣∣∣∣ ,

where p and p̂n are evaluated at γ(t). By a proof similar to the intermediate value

theorem, we know that q(y + δy) − q(y) − δyq ′(y) = q′′(β)
2! δy2 for some β in the

domain of q. Hence, for some constant C,

|Γ(γ; p̂n) − Γ(γ; p) − T (p̂n − p; p)| ≤ C

∫ LE(γ)

t=0

{p̂n(γ(t)) − p(γ(t))}2|γ′(t)|2dt.

Therefore,

|Γ(γ; p̂n) − Γ(γ; p)| ≤ |T (p̂n − Ep [p̂n] ; p)| + |T (Ep [p̂n] − p; p)|

+

∣∣∣∣∣C
∫ LE(γ)

t=0

{p̂n(γ(t)) − p(γ(t))}2|γ′(t)|2dt

∣∣∣∣∣ .

We now bound each of these three terms in turn. The variance of the first term

316 Modifying Distances

is bounded as follows:

Ep

[(∫

t

q ′(p(γ(t))) {p̂n − Ep [p̂n]} |γ′(t)|2dt

)2
]

≤ L

(
max

β
q ′(β)

)2

Ep

[∫

t

{p̂n − Ep [p̂n]}2 |γ′(t)|2dt

]

= L

(
max

β
q ′(β)

)2 ∫

t

Ep

[
(p̂n − Ep [p̂n])2

]
|γ′(t)|2dt

≤ (1 + ǫ1)L
2

nhd
n

(
max

β
q ′(β)

)2 (
max

x
p(x)

) ∫

Rd

K2(u)du.

The first inequality follows from the Cauchy-Schwarz inequality, and the second

equality follows from Fubini’s theorem. The third inequality is true for sufficiently

large n by lemma 17.4. The constant L is the maximum Euclidean length of the

paths that we are considering and hence also upper-bounds the length of these

paths according to the density-based Riemannian metric. Since the variance of

T (p̂n − Ep̂n; p) is bounded as above for sufficiently large n, we can conclude that

T (p̂n − Ep [p̂n] ; p) = O

(
1

(nhd
n)1/2

)
.

The second term T (Ep [p̂n] − p; p) can be bounded in terms of the partial

derivatives of p(x) —

T (Ep [p̂n] − p; p) =

∫

t

q ′(p(γ(t)))(Ep [p̂n] − p)|γ′(t)|2dt

≤ (max q ′(β))hs
n

∫

t

⎡

⎣
∫

u

⎧
⎨

⎩
∑

|µ|=s

uµ

µ!
{Dµp(γ(t)) + ǫ2}

⎫
⎬

⎭K(u)du

⎤

⎦ |γ′(t)|2dt

= O(hs
n).

Here, we have used lemma 17.3 and the inequality follows from uniform continuity

of Dµp and holds for sufficiently large n.

The third term, 1
2 (maxβ |q ′′(β)|)

∫
t
{p̂n(γ(t))−p(γ(t))}2|γ′(t)|2dt, can be bounded

by bounding the expectation of
∫

t
{p̂n(γ(t)) − p(γ(t))}2|γ′(t)|2dt and then using

Markov’s inequality.

Ep

[∫

t

{p̂n(γ(t)) − p(γ(t))}2|γ′(t)|2dt

]

=

∫

t

Ep

[
(p̂n − f)

2
]
|γ′(t)|2dt

=

∫

t

(Ep [p̂n] − p)2|γ′(t)|2dt +

∫ LE(γ)

t=0

Ep

[
(p̂n − Ep [p̂n])2

]
|γ′(t)|2dt

Using lemma 17.3, we can conclude that

17.2 Estimating DBD Metrics 317

∫

t

(Ep [p̂n] − p)2p|γ′(t)|2dt = O(h2s
n).

It follows from lemma 17.4 that

∫

t

Ep

[
(p̂n − Ep [p̂n])2

]
|γ′(t)|2dt = O(

1

nhd
n

).

Collecting the three terms and assuming that hn = c

n
1

2s+d

, we conclude

|Γ(γ; p̂n) − Γ(γ; p)| = O(
1

(nhd
n)1/2

+ hs
n +

1

nhd
n

+ h2s
n) = O(

1

n
s

2s+d

).

17.2.2 Upper Bound

An upper bound on the rate of convergence is a reflection of the inherent difficulty of

our estimation problem, since it states that you cannot do better than this limit no

matter what estimator you may come up with in the future. In the second theorem in

this section, we show an upper bound by showing the existence of a density function

p0(x) and a sequence of densities {pn(x), n ∈ N} with two opposing properties that

hold at the same time. The first property is that pn(x) and p0(x) are close enough

that they cannot be distinguished from one another on the basis of n samples and

the second is that pn(x) and p0(x) are far enough away from one another that the

DBD metric between two fixed points according to the two densities goes to zero

slower than the rate given by the upper bound.

Theorem 17.6 (upper bound) No estimator of the DBD metric can converge at

a rate faster than r = 1
2 .

Proof To prove this result, we show that there is a density function p(x) and

a shortest path between two points γ for which Γ̂(γ) cannot converge to Γ(γ; p)

faster than the rate r, irrespective of which estimator is used to obtain Γ̂(γ). The

technique, termed “the classification argument,” was used by Stone (1980).

Consider a density function p0(x) with the property that the set {x : p0(x) > α}
contains an open ball in R

d over which p0(x) is constant. Let γ be any line segment

contained in this open ball, let xm be any point in the relative interior of γ, and

let x0 be any point in the ball which does not lie on the path γ. Since p0(x) is

constant over the ball, any line segment including γ is the shortest path between its

two endpoints. Let ψ be a non-negative, infinitely differentiable C∞ function with

compact support (for an example called “the blimp” see Strichartz (1995)). Define

wn(x)
.
= δNn− 1

2 {ψ(x − xm) − bnψ(x − x0)} .

Here, bn is chosen such that
∫

wnp0dx = 0. We define a sequence of densities

318 Modifying Distances

pn = p0(1 + wn). From the assumption [Ag1] that q is a monotonically decreasing

function and from the definition of pn, it follows that the straight line γ is the

shortest path between its endpoints under the Riemannian metric specified by

pn ∀ n. Since bn is a constant, it remains bounded as n −→ ∞.

Now by the classification argument of Stone (1980) (details are given below), to

prove our result it is sufficient to show the following two inequalities:

lim sup
n

n Ep0

[
w2

n(X)
]

< ∞, (17.5)

Γ(γ; pn) − Γ(γ; p0)

2
≥ CδN

(
n− 1

2

)
, (17.6)

where C is some positive constant.

nEp0

[
w2

n(X)
]

=
nδ2N2

n

∫
p0(x) {ψ(y) − bnψ(y + (xp − x0))}2 dx < ∞

For sufficiently large n, we have Γ(γ; pn) − Γ(γ; p0) = T (pn − p0; p0) +

O(
∫ LE(γ)

t=0 (pn − p0)
2|γ′(t)|2dt) ≥ (δNn− 1

2), since
∫ LE(γ)

t=0 (pn − p0)
2|γ′(t)|2dt =

O(n−1).

Now, we show that using Eqs. 17.5 and 17.6, we can prove the two conditions

(Eqs. 17.3 and 17.4) needed to show that 1/2 is an upper bound on the rate of

convergence. Note that this part of the proof follows closely the proof in (Stone,

1980) and we are restating it here in detail for completeness. Let μn and νn

denote the joint distribution of the i.i.d. random variables X1, . . . ,Xn under density

functions p0 and pn respectively. Let Ln denote the Radon-Nikodym derivative

dνn/dμn and set ln = loge Ln.

ln =

n∑

i=1

log(1 + wn(Xi))

Using the Taylor expansion log(1 + z) = z − z2

2 + z3

3 − + . . . and the fact that

|wn(x)| ≤ 0.5 for n sufficiently large,
∣∣∣∣∣ln −

n∑

i=1

wn(Xi)

∣∣∣∣∣ ≤
n∑

i=1

w2
n(Xi) ⇒ |ln| ≤

∣∣∣∣∣

n∑

i=1

wn(Xi)

∣∣∣∣∣ +

n∑

i=1

w2
n(Xi).

Now, since we choose bn such that Ep0 [wn(X)] = 0,

Ep0

[
(

n∑

i=1

wn(Xi))
2

]
= nEp0

[
w2

n(X)
]
.

17.2 Estimating DBD Metrics 319

By Schwarz’s inequality

(
Ep0

[
n∑

i=1

wn(Xi)

])2

≤ Ep0

⎡

⎣
(

n∑

i=1

wn(Xi)

)2
⎤

⎦ =
(
nEp0

[
w2

n(X)
]) 1

2 .

Hence Ep0 [|ln|] ≤
(
nEp0

[
w2

n(X)
]) 1

2 + nEp0

[
w2

n(X)
]
. This combined with

Eq. 17.5 yields

lim sup
n

Ep0 [|ln|] < ∞ and lim
δ−→0

lim sup
n

Ep0 [|ln|] = 0 (17.7)

Hence, there is a finite, positive M such that lim supn Ep0 [| log Ln|] < M . Choose

ǫ > 0 such that if Ln > (1 − ǫ)/ǫ or Ln < ǫ/(1 + ǫ), then | log Ln| ≥ 2M . By the

Markov inequality,

lim inf
n

μn

(
ǫ

1 − ǫ
≤ Ln ≤ 1 − ǫ

ǫ

)
>

1

2
.

Let n be sufficiently large so that

μn

(
ǫ

1 − ǫ
≤ Ln ≤ 1 − ǫ

ǫ

)
>

1

2
.

Put prior probabilities 1/2 each on p0 and pn. Then

P {p = pn|X1, . . . ,Xn} =
Ln/2

Ln/2 + 1/2
=

Ln

L + n + 1

and hence

P {ǫ ≤ P {p = pn|X1, . . . ,Xn} ≤ 1 − ǫ}

= P

{
ǫ ≤ Ln

L + n + 1
≤ 1 − ǫ

}
= P

{
ǫ

1 − ǫ
≤ Ln ≤ 1 − ǫ

ǫ

}

≥ 1

2
μn

(
ǫ

1 − ǫ
≤ Ln ≤ 1 − ǫ

ǫ

)
≥ 1

4
.

Therefore any method of deciding between p0 and pn based on X1, . . . ,Xn must

have overall error probability at least ǫ/4. Apply this result to the classifier p̄n

defined by

p̄n =

{
p0 if Γ̂n(γ) ≤ Γ(γ;p0)+Γ(γ;pn)

2 ,

0 otherwise.

It follows that

1

2
Pp0

(
|Γ̂n(γ) − Γ(γ; p0)| ≥

Γ(γ; pn) − Γ(γ; p0)

2

)

+
1

2
Pp0

{
|Γ̂n(γ) − Γ(γ; pn)| ≥ Γ(γ; pn) − Γ(γ; p0)

2

}
≥ ǫ

4
,

320 Modifying Distances

consequently,

sup
p∈Ws

Pp

{
|Γ̂n(γ) − Γ(γ; p)| ≥ Γ(γ; pn) − Γ(γ; p0)

2

}
≥ ǫ

4
,

and hence

lim inf
n

sup
p∈Ws

Pp

{
|Γ̂n(γ) − Γ(γ; p)| ≥ Γ(γ; pn) − Γ(γ; p0)

2

}
> 0.

This along with Eq. 17.6 proves the first requirement (Eq. 17.3) for 1/2 to be an

upper bound on the rate of convergence .

To prove the second part of the upper-bound definition, we choose a positive

integer io ≥ 2 and put prior probability i−1
o on each of the io points:

pni = p0 +
i − 1

io − 1
(pn − p0).

Now, ∃δ > 0 such that for sufficiently large n, any method of classifying p ∈
{pn1, . . . , pnio

} based on X1, . . . ,Xn must have overall probability of error 1−2/io.

This is because

P {p = pni|X1, . . . ,Xn} =
1 +

(
i−1
io−1

)
(Ln − 1)

(
Ln+1

2

)
io

and the optimum classifier to choose between pni is

p̄n =

{
p0 if Ln < 1

pn otherwise
,

which produces an error whenever one of pn2, . . . , pn(io−1) is chosen in the random

draw among the pni.

Note that

(pni + pn(i+1)) − (pn(i−1) + pn(i)) =

(
p0 +

1

2(io − 1)
(pn − p0)

)
.

So, considering the classifier

p̂ =

{
pni if |Γ̂n − Γ(γ; pni)| ≤

|Γ(γ; pn) − Γ(γ; p0)|
2(io − 1)

}
,

we get

∑

i

1

io
Ppni

{
|Γ̂n − Γ(γ; pni)| ≥

|Γ(γ; pn) − Γ(γ; p0)|
2(io − 1)

}
≥ 1 − 2

io
.

Consequently,

sup
p

Pp

{
|Γ̂n − Γ(γ; p)| ≥ |Γ(γ; pn) − Γ(γ; p0)|

2(io − 1)

}
≥ 1 − 2

io

17.3 Computing DBD Metrics 321

lim
io−→∞

lim inf
n

sup
p∈Ws

Pp

{
|Γ̂n − Γ(γ; p)| ≥ |Γ(γ; pn) − Γ(γ; p0)|

2(io − 1)

}
= 1.

This along with Eq. 17.6 proves the second requirement (Eq. 17.4) for 1/2 to be

an upper bound on the rate of convergence .

17.3 Computing DBD Metrics

In section 17.2, we analyzed the effect of using an estimate of the density function

in place of the density function itself. However, even if the density were known,

computing the Riemannian metric between two points is not an easy task. This is

a variational minimization problem since the distance is defined as the infimum of

path lengths over all paths joining the points (Eq. 17.1). Isomap (Tenenbaum et al.,

2000; Bernstein et al., 2000) uses paths along a neighborhood graph to approximate

paths along a manifold embedded in R
d. Vincent and Bengio (2003); Bousquet et al.

(2004), and Chapelle and Zien (2005) propose graph-based methods to compute

density-based metrics for use in semi-supervised learning. However, these heuristics

for approximating DBD metrics are not guaranteed to lead to a consistent distance

measure, i.e., they do not guarantee convergence of the graph shortest-path length

to the Riemannian metric with increasing sample size. In this section we present

upper and lower bounds on the rate at which approximation error can converge to

zero when a particular graph construction is used for computing the Riemannian

metric.

17.3.1 Achievability

We show that the rate 1/2d is achievable, i.e., we present a graph construction

method which produces graphs such that with high probability the difference

between the shortest distance along the graph and the DBD metric is smaller than

c/n1/2d, for some constant c and for large enough n. In the proof, we use some

techniques from Tenenbaum et al. (2000) and Bernstein et al. (2000).

We first describe the method for constructing the graph and assigning weights to

the graph edges. In addition to the three assumptions made about the weighting

function q in section 17.2, we assume that

[A4] q(y) = 1 ∀ y ≤ α.

Note that this is not overly restrictive since we can choose α to be small. As

discussed in section 17.1, it is necessary to assume that q(y) does not change rapidly

for small y in order to have uniform bounds on approximation errors when using

graph-based lengths to approximate path lengths. Let Cp(α)
.
= {x : p̂(x) ≥ α} and

let Cp(α; ǫ)
.
=

⋃
x∈Cp(α) B(x, ǫ) where B(x, ǫ) is a d-dimensional ball of radius ǫ

centered at x.

322 Modifying Distances

A point x ∈ R
d is high density if x ∈ Cp(α; ǫ). A maximal connected set of high-

density points is a high-density component. Since the density p(x) has bounded

support and integrates to one, it can be shown that there will be only finitely many

high-density components and hence Cp(α; ǫ) will be partitioned into finitely many

high-density components R1, . . . , Rk. Note that these are high-density components

with respect to the estimated distribution p̂(x) and not the “true” distribution p(x).

Cp(α; ǫ) is being defined as a way to mollify the difficult properties of Cp(α) which

can have complex boundaries (e.g., dendrils defined in (Blum and Chawla, 2001))

and can have an infinite number of disjoint, maximally connected components.

The graph g is defined as follows. Its vertices are the observed data pointsgraph

construction x1, . . . ,xn. Two nodes xi, xj are connected if at least one of the following holds:

1. The Euclidean distance between two nodes is at most ǫ. The weight of such an

edge is w(xi,xj) = q(p((xi + xj)/2))|xi − xj |2.
2. At most one of the nodes is high-density, they are at least ǫ apart, and the

straight line joining the two nodes leaves Cp(α; ǫ). The weight of such an edge is

w(xi,xj) = |xi − xj |2.

We use three distance metrics between data points x and y, namely, the DBD

metric

dM (x,y)
.
= d(x,y; p̂n) = inf

γ
{Γ(γ; p̂n)},

the graph distance

dg(x,y)
.
= min

P
(w(x0,x1) + . . . + w(xm−1,xm)) ,

and an intermediate distance

dS(x,y)
.
= min

P
(dM (x0,x1) + . . . + dM (xm−1,xm)) ,

where P = (x0, . . . ,xm) varies over all paths along the edges of g connecting x = x0

to y = xm.

To lower-bound the rate of convergence of the shortest path along graph g to the

DBD metric, we bound the difference between the graph distance and DBD metric

in theorem 17.10. For this purpose we show the DBD metric and the intermediate

distance are close to each other in lemma 17.7. Lemmas 17.8 and 17.9 state that

the graph and intermediate distances are close.

Lemma 17.7 (difference between DBD metric and intermediate distance)

If

∀x ∈ Cp(α; 2ǫ) ∃ some data point xi for which dM (x,xi) ≤ δ and if 4δ < ǫ, then ∀
pairs of data points x and y,

dM (x,y) ≤ dS(x,y) ≤
(

1 +
6δ

ǫ
+

8δ2

ǫ2

)
dM (x,y).

17.3 Computing DBD Metrics 323

Proof The first inequality dM (x,y) ≤ dS(x,y) is true by the definition of dM

and dS . Let γ be any piecewise-smooth path connecting x to y with length

l. If we are able to find a path from x to y along edges of g whose length

dM (x0,x1) + . . . + dM (xm−1,xm) is less than
(
1 + 6δ

ǫ + 8δ2

ǫ2

)
dM (x,y), then the

right-hand inequality would follow by taking infimum over γ.

Note that it is sufficient to consider only those γ for which contiguous segments

outside Cp(α; ǫ) are straight lines. This is because, given any γ without this

property, we can define a path γ ′ such that the length of γ′ is less than the length of γ

by just replacing wiggly segments of γ outside Cp(α; ǫ) by straight lines (recall that

the density-based Riemannian metric has been defined to be constant Euclidean

in the region outside Cp(α)). We consider different cases based on the regions the

path γ passes through.

Case (a) : γ is wholly contained in one of the subregions Rk of Cp(α).

We use an argument similar to the one used in Isomap (Tenenbaum et al., 2000;

Bernstein et al., 2000). If l ≤ ǫ−2δ, then x,y are connected by an edge which we can

use as the path through the graph. If l > ǫ−2δ, we write l = l0+(l1+l1+. . .+l1)+l0,

where l1 = ǫ − 2δ and (ǫ − 2δ)/2 ≤ l0 ≤ ǫ − 2δ. Now, cut up the arc γ

into pieces in accordance with this decomposition giving a sequence of points

r0 = x, r1, . . . , rp = y, where each point ri lies within a distance δ of a sample

point xi. Using this construction, we can write

dM (xi,xi+1) ≤ dM (xi, ri) + dM (ri, ri+1) + dM (ri+1,xi+1) ≤
l1ǫ

ǫ − 2δ
.

Similarly,

dM (x,x1) ≤ l0
ǫ

ǫ − 2δ
& dM (xp−1,y) ≤ l0

ǫ

ǫ − 2δ
.

Since l0
ǫ

ǫ−2δ ≤ ǫ, we find that each edge has manifold length ≤ ǫ and hence

belongs to g. Hence,

dS(x,y) ≤ l
ǫ

ǫ− 2δ
< l

(
1 +

4δ

ǫ

)
.

Case (b) : All segments of γ that lie outside Cp(α; ǫ) have length ≥ ǫ − 2δ.

We consider the case when both the initial and final points, x and y lie in Cp(α; ǫ).

The case when one or both of the endpoints lie outside can be similarly handled.

We divide the path γ into 2k + 1 sections, where k is the number of times γ goes

outside Cp(α; ǫ) i.e., — x . . . ro1 . . . rm1 . . . ro2 . . . rm2 . . . rok . . . rmk . . .y where the

sections roi−−rmi lie outside Cp(α). The dS and dM lengths of the interior segments

are related exactly as in case (a) and hence we can write

dS(x,y) ≤ ǫ

ǫ − 2δ
{dM (x, ro1) + dM (rm1, ro2) + . . . + dM (rmk,y)}

+ {2δ + dM (ro1, rm1)} + . . . + {2δ + dM (rok, rmk)} .

Since each outside segment has a minimum length ǫ − 2δ, dM (x,y) ≥ (ǫ − 2δ)k.

324 Modifying Distances

Hence 2δk ≤ 2δ/(ǫ − 2δ)dM (x,y) and

dS(x,y) ≤
(

1 +
6δ

ǫ
+

8δ2

ǫ2

)
dM (x,y).

Lemma 17.8 (difference between intermediate and graph distances - 1)

For all pairs of data points xi,xj connected by an edge in g with |xi − xj |2 ≤ ǫ,

(1 − λ1)dg(xi,xj) ≤ dS(xi,xj) ≤ (1 + λ1)dg(xi,xj),

where

λ1 = 2
max | ▽x q(p(x))|2ǫ

minx q(p(x))
.

Proof Let ǫ2 = dM (xi,xj)/2

and let B(line(xi,xj), ǫ2) =
⋃

x∈line(xi,xj)
B(x, ǫ2).

Rmin = min
x∈B(line(xi,xj),ǫ2)

q(p(x))) Rmax = min
x∈line(xi,xj)

q(p(x))

Now,

Rmin|xi−xj |2 ≤ dM (xi,xj) ≤ Rmax|xi−xj |2 and dg(xi,xj) = |xi−xj |2q
(

p

(
xi + xj

2

))
.

Using the fact that the gradient of q is bounded, we can write

Rmax ≤ (1 + λ1)q

(
p

(
xi + xj

2

))
∀λ1 > 2

max | ▽x q(p(x))|2ǫ
minx q(p(x))

.

Hence,

(1 − λ1)dg(xi,xj) ≤ dM (xi,xj) ≤ (1 + λ1)dg(xi,xj).

Lemma 17.9 (difference between intermediate and graph distances - 2)

For all pairs of data points xi,xj connected by an edge in g with |xi − xj |2 > ǫ,

(1 − λ2)dg(xi,xj) ≤ dS(xi,xj) ≤ (1 + λ2)dg(xi,xj),

where

λ2 =
2δ2 max | ▽ q(p(x))|2

ǫ
.

Proof Since q ≤ 1, dM (xi,xj) ≤ |xi − xj |2. Among the exterior edges, we only

need to consider those between nodes which are within δ of the boundary of Cp(α)

or outside Cp(α). This is because of the way we approximate paths which leave

17.3 Computing DBD Metrics 325

Cp(α) in theorem 17.7.

Rmin ≥ 1 − max
x

| ▽ q(p(x))|2δ

Since for exterior edges dg(xi,xj) = |xi − xj |2, we can write

dM (xi,xj) ≥ 2δ (1 − max | ▽ q(p(x))|2δ) + |xi − xj |2 − 2δ

≥ |xi − xj |2
(

1 − 2δ2 max | ▽ q(p(x))|2
|xi − xj |2

)

≥ dg(xi,xj)

(
1 − 2δ2 max | ▽ q(p(x))|2

ǫ

)
.

Hence,

(1 − λ2)dg(xi,xj) ≤ dM (xi,xj) ≤ dg(xi,xj) ∀λ2 ≥ 2δ2 max | ▽ q(p(x))|2
ǫ

.

Theorem 17.10 (lower bound on the computing error) ∀ζ < 1/2d, a com-

puting error (uniform over all pairs of points x, y) of

(1 − λ)dM (x,y) ≤ dg(x,y) ≤ (1 + λ)dM (x,y)

with λ = cn−ζ can be achieved with probability ≥ δ′ for a sufficiently large data

sample n ≥ N(δ′) (c is a constant).

Proof We show that the shortest path along the graph is within λ of the DBD

metric, by considering two cases based on the properties of the shortest path. We

define a new graph g2 on the data points which contains only a subset of the edges

in g. g2 contains all edges in g where |xi−xj |2 ≤ ǫ. In addition, it contains edges in

g that leave Cp(α; ǫ) and whose endpoints, xi and xj , lie within δ of the boundary of

Cp(α; ǫ). Note that g2 is sufficient to approximate all shortest paths between data

points. However, it is difficult to compute/generate and hence we define a more

dense graph g with the property that the extra edges are most likely not going to

be used in the shortest path unless they form a good approximation to the shortest

path along g2.

Case (a) : The shortest path along g lies entirely within the subset g2.

Using the theorem from Giné and Guillou (2002), we can conclude that the choice

in section 17.2 of kernel width, hn = 1

n
1

2s+d

and other properties assumed about

p(x) ensure that almost surely,

max
x

|pn(x) − p(x)| = O

(√(
(2s + d) log(n)

n
2s

2s+d

))
.

This means that for sufficiently large n, ∀ points y in Cp(α; 2ǫ) have the property

that p(y) ≥ α − α1 for arbitrarily small α1. Using this fact and the δ-sampling

326 Modifying Distances

condition (Tenenbaum et al., 2000; Bernstein et al., 2000), we know that the

requirement for lemma 17.7 is satisfied when n = Ω
((

1
δ

)d
log 1

δ

)
. This condition

is satisfied with a choice of ζ < 1/2d and letting δ = c1n
−2ζ and ǫ = c2n

−ζ)

(c1 and c2 are constants). Let λ3 = max(λ1, λ2), where λ1 and λ2 are defined in

lemmas 17.8 and 17.9 respectively. Hence we can use lemmas 17.7, 17.8, and 17.9

to conclude that

(1 − 2λ3)dM (x,y) ≤ dg(x,y) ≤ (1 + 2λ3)

(
1 +

6δ

ǫ
+

8δ2

ǫ2

)
dM (x,y),

which implies that

(1 − λ4)dM (x,y) ≤ dg(x,y) ≤ (1 + λ4)dM (x,y),

where

λ4 = O(ǫ +
δ

ǫ
) = O(n−ζ).

Case (b) : The shortest path, P , along g uses some edges that are not part of g2.

Consider any edge E connecting xl and xm in the shortest path along g that is not

in g2. We will show that there is a path through g2 that can closely approximate this

edge E and hence this shortest path. We consider the case when only one section

near the endpoint xm is more than δ in Cp(α; ǫ). The case when more sections of

E are in Cp(α; ǫ) can be similarly handled. Consider the boundary point rb where

the straight line starting at xm toward xl first touches the edge of Cp(α; ǫ). By the

δ-sampling condition, there is a data point xk within δ of rb. Consider the path

consisting of the edge xl–xk and the shortest path, P2, between xk and xm through

those edges of g that connect nodes within ǫ of one another. Let d′
g2 be the length

of a path that follows P except when it comes to edges not in g2 in which case

it follows paths P2 constructed to pass through g2. Let dg2 be the length of the

shortest path along graph g2. From proof of case (a), we know that

(1 − λ4)dM (x,y) ≤ dg2(x,y) ≤ (1 + λ4)dM (x,y),

dg(x,y) ≤ d′
g2(x,y) ≤ (1 + λ4)dg(x,y), and

dg(x,y) ≤ dg2(x,y) ≤ d′
g2(x,y).

Hence,

(1 − 2λ4)dM (x,y) ≤ dg(x,y) ≤ (1 + λ4)dM (x,y).

17.4 Semi-Supervised Learning Using Density-Based Metrics 327

17.3.2 Upper bound

In theorem 17.10, we showed that we can construct a neighborhood-based graph on

the data sample which can be used to approximately compute DBD metrics with

a rate of convergence of 1/n1/2d. This is a very slow rate of convergence, especially

when data dimension, d, is high. The natural question that follows this analysis is

whether this dependence of the rate on the data dimension is because of the curse of

dimensionality or whether it is merely because of the way the graph was constructed

and analyzed. Theorem 17.11 shows that dimension does limit how much we can

reduce the approximation error, regardless of the particular graph construction

method we use, so long as we choose to use a neighborhood-based graph. This

result is true even when data lie along a manifold, but are noisy and hence do not

lie perfectly on the manifold, i.e., the curse of dimensionality cannot be overcome

in the case of approximation error when using neighborhood-based graphs, even

when the intrinsic dimension of data is small. For this reason, this result provides

a lower bound on the approximation error of the ISOMAP algorithm (Tenenbaum

et al., 2000) as well.

Theorem 17.11 (upper bound on the computing error) The computing er-

ror, when using an ǫ-neighborhood-based graph on the data sample, cannot converge

to zero faster than 1

n
1

d−1
with probability ≥ δ′ for sufficiently large data sample

n ≥ N(δ′).

Proof This result is shown using an example for which the approximation error

when using the graph converges at rate 1/n
1

d−1 . Consider the case when data density

is uniform over any convex set. (Note that all continuous density functions can be

approximated by a constant function in a small enough neighborhood.) In this case

the graph construction method described at the beginning of this section reduces

to an ǫ-neighborhood graph (with high probability). Consider any two points x′,
x′′ in the interior of the support of the density. The shortest path between x′

and x′′ is the straight line joining them. Consider a d-dimensional cuboid which

circumscribes a cylinder of radius δ/2 around this line. If none of the points in the

data sample lie in this cuboid, the approximation error in measuring the length of

this line along the graph edges will be at least of order δ. The probability of this

happening, (1 − cδd−1)n, can be lower-bounded by a constant if δ is chosen to be

of order 1/n
1

d−1 .

17.4 Semi-Supervised Learning Using Density-Based Metrics

Given a density-based distance metric, any of the nearest neighbor-based methods

(k-nearest neighbors, weighted k-nearest neighbors with various weights) can be

used for classification in a semi-supervised learning scenario. Let yi be the label of

xi and let classifier be sign(h(xi)). Let lM denote the Lipschitz constant according

328 Modifying Distances

to the manifold specified by q(p(x)). In this manifold, the lengths scale locally as

q(p(x)); hence it can be verified that for any function h on R
d

|lMh|2 = sup
x

1

q(p(x))
| ▽x h|2.

von Luxburg and Bousquet (2004) have shown that the 1-nearest neighbor (1NN)

classifier corresponds to a large-margin classifier. In the case of the DBD metric,a large-margin

classifier that is

equivalent to

1NN using DBD

metric

1NN is equivalent to (using the modified Lipschitz constant according to the density-

based manifold), the optimization problem

arg min
h

sup
x

[
1

q(p(x))
| ▽x h|2

]
under constraints yih(xi) ≥ 1.

As p(x) increases, 1
q(p(x)) also increases and hence this optimization problem

corresponds to penalizing the gradient of the classifier function h in high-density

regions and allowing h to change in the low-density regions. This agrees with

the intuition that data points in the same high-density region are likely to have

similar labels. Please see (Bousquet et al., 2004) for a discussion on regularization

appropriate for semi-supervised learning and its relationship to modifying geometry

based on the data density.

In this section, we present experimental results on data from the UCI machine

learning repository, summarized in table 17.1. The three methods we compare

are standard 1NN, DBD metric-based 1NN, and the randomized min-cut method

(Blum et al., 2004). The randomized min-cut method involves averaging over results

obtained from several min-cuts and it is suggested by Blum et al. (2004) that those

min-cuts which lead to a very unbalanced classification are to be rejected. However,

there is no clear way to choose this cutoff ratio. For the results presented here we

choose the cutoff to be slightly smaller than the “true” ratio between the classes in

the data set. For the DBD-based 1NN implementation, we chose the function q to

fall exponentially with increase in density beyond α, which in turn was chosen to

be smaller than the estimated density at all sample points.

Table 17.1 Description of data sets for the classification problem

Data set data data set class

dimension size ratio

Adult 6 1000 0.30

Abalone - 9 vs. 13 7 892 0.29

Abalone - 5 vs. 9 7 804 0.17

Digits - 1 vs. 2 256 2200 1.00

We performed experiments for labeled set size varying between 2 and 20 and

the accuracy results are shown in figure 17.3. We observed that DBD-based 1NN

performed better than or similar to the standard 1NN algorithm for all data sets

17.5 Conclusions and Future Work 329

5 10 15 20

60

65

70

%
 A

cc
u

ra
cy

Labeled points

Adult

5 10 15 20

50

55

60

65

70

%
 A

cc
u

ra
cy

Labeled points

Abalone - 9 vs 13

5 10 15 20

60

70

80

90

%
 A

cc
u

ra
cy

Labeled points

Abalone - 5 vs 9

5 10 15 20

70

75

80

85

90

%
 A

cc
u

ra
cy

Labeled points

Digits - 1 vs 2

Figure 17.3 Classification results comparing 1NN (.), DBD-based 1NN (x) and ran-
domized min-cut (o) algorithms.

with small dimension. We conjecture that the reason DBD-based 1NN performed

worse than 1NN for the digits example is because of difficulty in density estimation

in very high dimensions. The DBD-based 1NN algorithm performed better than

the other two when the number of labeled examples was very small, except in the

case of the digits example. One interesting result was that of the two abalone data

examples, in which the randomized min-cut algorithm performed much better than

both NN algorithms in one case and much worse in the other.

17.5 Conclusions and Future Work

We have shown that density-based distance metrics which satisfy certain properties

can be estimated consistently using an estimator obtained by plugging in the kernel

density estimate of the data distribution. In terms of s, a smoothness parameter

that corresponds to how many times data density is known to be differentiable

and d, the data dimension, we have shown that the rate of convergence of such an

estimator is s
2s+d . We have also shown that no estimator can converge at a rate

330 Modifying Distances

faster than 1
2 .

This contains both good and bad news. The knowledge that we have consistent

estimation is useful when applying the method to voluminous data (for example,

webpages). However, we expect d to be high for many machine learning applications

and we might not be able to assume that the smoothness parameter, s, is very high.

Hence, when using the plug-in estimator, the convergence rate can be very slow for

high-dimensional data.

We have shown a graph construction method that can be used for consistent com-

putation of DBD metrics and shown that with high probability, the approximation

error when using this graph goes to zero faster than 1/n1/2d with high probability.

We have also shown that the shortest distance along a nearest neighborhood-based

graph on the data cannot converge to true distance faster than 1/n1/(d−1) with high

probability. We presented semi-supervised classification results that demonstrate

that using DBD metrics can sometimes improve performance over using simple

Euclidean distance, when data density can be estimated with reasonable reliability.

While we have been able to give a theoretical understanding of DBD metrics, fur-

ther experimental investigation of their use for semi-supervised learning in needed to

make them a practically viable choice. While several papers have considered DBD

metrics, the only papers that present experimental results with real world data

use the 1NN algorithm (Lebanon, 2003; Sajama and Orlitsky, 2005). Experiments

using these metrics with other classification algorithms, using parametric density

estimation in place of the kernel density estimator, and studying alternative graph

construction and weighting methods for more accurate and efficient computation

will be of practical value.

Acknowledgements

We thank Sanjoy Dasgupta and Thomas John for several helpful discussions.

Thanks also to anonymous reviewers for several comments used in revising and

improving this paper. In particular, we thank an anonymous reviewer for pointing

out an error in the analysis of the estimation error rate in an earlier version.

V Semi-Supervised Learning in Practice

18 Large-Scale Algorithms

Olivier Delalleau delallea@iro.umontreal.ca

Yoshua Bengio bengioy@iro.umontreal.ca

Nicolas Le Roux nicolas.le.roux@umontreal.ca

In chapter 11, it is shown how a number of graph-based semi-supervised learning

algorithms can be seen as the minimization of a specific cost function, leading to a

linear system with n equations and unknowns (with n the total number of labeled

and unlabeled examples). Solving such a linear system will in general require on the

order of O(kn2) time and O(kn) memory (for a sparse graph where each data point

has k neighbors), which can be prohibitive on large data sets (especially if k = n,

i.e., the graph is dense). We present in this chapter a subset selection method that

can be used to reduce the original system to one of size m ≪ n. The idea is to solve

for the labels of a subset S ⊂ X of only m points, while still retaining information

from the rest of the data by approximating their label with a linear combination

of the labels in S (using the induction formula presented in chapter 11). This leads

to an algorithm whose computational requirements scale as O(m2n) and memory

requirements as O(m2), thus allowing one to take advantage of significantly bigger

unlabeled data sets than with the original algorithms.

18.1 Introduction

The graph-based semi-supervised algorithms presented in chapter 11 do not scale

well to very large data sets. In this chapter, we propose an approximation method

that significantly reduces the computational and memory requirements of such

algorithms. Notations will be the same as in chapter 11, i.e.:

Y = (Yl, Yu) is the set of “original” labels on labeled and unlabeled points (here,

Yu is filled with 0),

Ŷ = (Ŷl, Ŷu) is the set of estimated labels on labeled and unlabeled points,

ŷ is the function to learn, which assigns a label to each point of the input space,

334 Large-Scale Algorithms

ŷ(xi) = ŷi is the value of the function ŷ on training points (labeled and unlabeled).

In chapter 11, we defined a quadratic cost (Eq. 11.11):

C(Ŷ) = ‖Ŷl − Yl‖2 + μŶ ⊤LŶ + μǫ‖Ŷ ‖2. (18.1)

Minimizing this cost gives rise to the following linear system in Ŷ with regularization

hyperparameters μ and ǫ:

(S + μL + μǫI) Ŷ = SY, (18.2)

where S is the (n × n) diagonal matrix defined by Sii = δi≤l, and L = D − W is

the un-normalized graph Laplacian. This linear system can be solved to obtain the

value of ŷi on the training points xi. We can extend the formula to obtain the value

of ŷ on every point x in the input space as shown in section 11.4:

ŷ =

∑
j WX(x, xj)ŷj∑

j WX(x, xj) + ǫ
. (18.3)

where WX is the symmetric data-dependent edge weighting function (e.g., a

Gaussian kernel) such that Wij = WX(xi, xj). However, in case of very large

training sets, solving the linear system (18.2) may be computationally prohibitive,

even using iterative techniques such as those described in section 11.2. In this

chapter we consider how to approximate the cost using only a subset of the

examples. Even though this will not yield an exact solution to the original problem,

it will make the computation time much more reasonable.

18.2 Cost Approximations

18.2.1 Estimating the Cost from a Subset

A simple way to reduce the O(kn2) computational requirement and O(kn) memory

requirement for training the non-parametric semi-supervised algorithms of chap-

ter 11 is to force the solutions to be expressed in terms of a subset of the examples.

This idea has already been exploited successfully in a different form for other ker-reduced

parametrization

of solution

nel algorithms, e.g., for Gaussian processes (Williams and Seeger, 2001) or spectral

embedding algorithms (Ouimet and Bengio, 2005).

Here we will take advantage of the induction formula (Eq. 18.3) to simplify the

linear system to m ≪ n equations and variables, where m is the size of a subset

of examples that will form a basis for expressing all the other function values. Let

S ⊂ {1, . . . , n} be a subset, with |S| = m and S ⊃ {1, . . . , l} (i.e., we take all

labeled examples in the subset). Define R = {1, . . . , n}\S (the rest of the data).

In the following, vector and matrices will be split into their S and R parts, e.g.

18.2 Cost Approximations 335

Ŷ = (ŶS , ŶR) and

L =

(
LSS LSR

LRS LRR

)
.

The idea is to force ŷi ∈ ŶR to be expressed as a linear combination of the ŷj ∈ ŶS

following (18.3):

∀i ∈ R, ŷi =

∑
j∈S Wij ŷj∑

j∈S Wij + ǫ
(18.4)

or in matrix notation

ŶR = WRSŶS (18.5)

with WRS the matrix of size ((n − m) × m) with entries Wij/(ǫ +
∑

k∈S Wik),

for i ∈ R and j ∈ S. We will then split the cost (18.1) in terms that involve only

the subset S or the rest R, or both of them. To do so, we must first split the

diagonal matrix D (whose elements are row sums of W) into D = DS + DR, with

DS and DR the (n × n) diagonal matrices whose elements are sums over S and R

respectively, i.e.,

DS
ii =

∑

j∈S

Wij

DR
ii =

∑

j∈R

Wij .

The unnormalized Laplacian L = D− W can then be written

L =

(
DS

SS + DR
SS − WSS −WSR

−WRS DS
RR + DR

RR − WRR

)
. (18.6)

Using (18.6), the cost (18.1) can now be expanded as follows:

C(Ŷ) = μŶ ⊤LŶ + μǫ‖Ŷ ‖2 + ‖Ŷl − Yl‖2

= μŶ ⊤
S

(
DS

SS − WSS

)
ŶS + μǫ‖ŶS‖2

︸ ︷︷ ︸
CSS

+ μŶ ⊤
R

(
DR

RR − WRR

)
ŶR + μǫ‖ŶR‖2

︸ ︷︷ ︸
CRR

+ μ
(
Ŷ ⊤

S DR
SS ŶS + Ŷ ⊤

R DS
RRŶR − Ŷ ⊤

R WRSŶS − Ŷ ⊤
S WSRŶR

)

︸ ︷︷ ︸
CRS

+ ‖Ŷl − Yl‖2

︸ ︷︷ ︸
CL

.

336 Large-Scale Algorithms

18.2.2 Resolution

Using the approximation ŶR = WRSŶS (18.5), the gradient of the different parts

of the above cost with respect to ŶS is then

∂CSS

∂ŶS

=
[
2μ

(
DS

SS − WSS + ǫI
)]

ŶS

∂CRR

∂ŶS

=
[
2μW

⊤
RS

(
DR

RR − WRR + ǫI
)
WRS

]
ŶS

∂CRS

∂ŶS

=
[
2μ

(
DR

SS + W
⊤
RSDS

RRWRS − W
⊤
RSWRS − WSRWRS

)]
ŶS

=
[
2μ

(
DR

SS − WSRWRS

)]
ŶS (18.7)

∂CL

∂ŶS

= 2SSS(ŶS − Y),

where to obtain (18.7) we have used the equality DS
RRWRS = WRS , which follows

from the definition of WRS .

Recall the original linear system in Ŷ was (S + μL + μǫI) Ŷ = SY (18.2). Here

it is replaced by a new system in ŶS , written AŶS = SSSYS with

A = μ
(
DS

SS − WSS + ǫI + DR
SS − WSRWRS

)

+ μW
⊤
RS

(
DR

RR − WRR + ǫI
)
WRS

+ SSS .

Since the system’s size has been reduced from n to |S| = m, it can be solved much

faster, even if A is not guaranteed1 to be sparse anymore (we assume m ≪ n).

Unfortunately, in order to obtain the matrix A, we need to compute DR
RR, which

costs O(n2) in time, as well as products of matrices that cost O(mn2) if W is not

sparse. A simple way to get rid of the quadratic complexity in n is to ignore CRRsimplified cost

function in the total cost. If we remember that CRR can be written

CRR = μ

⎛

⎝1

2

∑

i,j∈R

Wij(ŷi − ŷj)
2 + ǫ‖ŶR‖2

⎞

⎠ ,

this corresponds to ignoring the smoothness assumption between points in R, as

well as the regularization term on R. Even if it may look like a bad idea, it turns

out it usually preserves (and even improves) the performance of the semi-supervised

classifier, for various reasons:

Assuming the subset S is chosen to correctly “fill” the space, smoothness between

points in S and points in R (encouraged by the part CRS of the cost) also enforces

smoothness between points in R only.

1. In practice, if W is sparse, A is also likely to be sparse, even if additional assumptions
on W are needed if one wants to prove it.

18.3 Subset Selection 337

When reducing to a subset, the loss in capacity (we can choose m values instead

of n when working with the full set) suggests we should weaken regularization,

and the smoothness constraints are a form of regularization; thus dropping some of

them is a way to achieve this goal.

For some points i ∈ R, the approximation (18.4)

ŷi =

∑
j∈S Wij ŷj∑

j∈S Wij + ǫ

may be poor (e.g. for a point far from all points in S, i.e.
∑

j∈S Wij very small);

thus smoothness constraints between points in R could be noisy and detrimental

to the optimization process (this is not a big issue when considering smoothness

between a point xi in R and a point xj in S as the smoothness penalty is weighted

by Wij , which will be small if xi is far from all points in S).

Given the above considerations, ignoring the part CRR leads to the new system

(
SSS + μ

(
DSS − WSS − WSRWRS + ǫI

))
ŶS = SSSYS

which in general can be solved in O(m3) time (less if the system matrix is sparse).

18.3 Subset Selection

18.3.1 Random Selection

In general, training using only a subset of m ≪ n samples will not perform as well

as using the whole data set. Carefully choosing the subset S can help in limiting

this loss in performance. Even if random selection is certainly the easiest way to

choose the points in S, it has two main drawbacks:

It may not pick points in some regions of the space, resulting in the approximation

(18.4) being very poor in these regions.

It may pick uninteresting points: the region near the decision surface is the one

where we are more likely to make mistakes by assigning the wrong label. Therefore,

we would like to have as many points as possible in S being in that region, while

we do not need points which are far away from that surface.

As a result, it is worthwhile considering more elaborate subset selection schemes,

such as the one presented in the next section.

18.3.2 Smart Data Sampling

There could be many ways of choosing which points to take in the subset. The

algorithm described below is one solution, based on the previous considerations

about the random selection weaknesses. The first step of the algorithm will be

338 Large-Scale Algorithms

to select points somewhat uniformly in order to get a first estimate of the decision

surface, while the second step will consist in the choice of points near that estimated

surface.

18.3.2.1 First Step

Equation 18.4,

ŷi =

∑
j∈S Wij ŷj∑

j∈S Wij + ǫ
,

suggests that the value of ŷi is well approximated when there is a point in S near

xi (two points xi and xj are nearby if Wij is high). The idea will therefore be to

cover the manifold where the data lie as well as possible, that is to say ensure thatcovering the

manifold every point in R is near a point (or a set of points) in S. There is another issue we

should be taking care of: as we discard the part CRR of the cost, we must now be

careful not to modify the structure of the manifold. If there are some parts of the

manifold without any point of S, then the smoothness of ŷ will not be enforced at

such parts (and the labels will be poorly estimated).

This suggests starting with S = {1, . . . , l} and R = {l + 1, . . . , n}, then adding

samples xi by iteratively choosing the point farthest from the current subset, i.e.

the one that minimizes
∑

j∈S Wij . The idea behind this method is that it is useless

to have two points near each other in S, as this will not give extra information

while increasing the cost. However, one can note that this method may tend to

select outliers, which are far from all other points (and especially those from S).

A way to avoid this is to consider the quantity
∑

j∈R\{i} Wij for a given xi. If xiavoiding outliers

is such an outlier, this quantity will be very low (as all Wij are small). Thus, if it

is smaller than a given threshold δ, we do not take xi in the subset. The cost of

this additional check is of O((m + o)n) where o is the number of outliers: assuming

there are only a few of them (less than m), it scales as O(mn).

18.3.2.2 Second Step

Once this first subset is selected, it can be refined by training the algorithm

presented in section 11.3.2 on the subset S, in order to get an approximation of the

ŷi for i ∈ S, and by using the induction formula 18.4 to get an approximation of the

ŷj for j ∈ R. Samples in S which are far away from the estimated decision surfacediscarding

uninformative

samples

can then be discarded, as they will be correctly classified no matter whether they

belong to S or not, and they are unlikely to give any information on the shape of

the decision surface. These discarded samples are then replaced by other samples

that are near the decision surface, in order to be able to estimate it more accurately.

The distance from a point xi to the decision surface is estimated by the confidence

we have in its estimated label ŷi. In the binary classification case considered here

(with targets −1 and 1), this confidence is given by |ŷi|, while in a multiclass setting

it would be the absolute value of the difference between the predicted scores of the

18.3 Subset Selection 339

two highest-scoring classes. One should be careful when removing samples, though:

we must make sure we do not leave “empty” regions. This can be done by ensuring

that
∑

j∈S Wij stays above some threshold for all i ∈ R after a point has been

removed.

Overall, the cost of this selection phase is on the order of O(mn + m3). It is

summarized in algorithm 18.1.

Algorithm 18.1 Subset selection

Choose a small threshold δ (e.g. δ ← 10−10)

Choose a small regularization parameter ǫ (e.g. ǫ ← 10−11)

(1) Greedy selection

S ← {1, . . . , l} {The subset we are going to build contains the labeled points}
R ← {l + 1, . . . , n} {The rest of the unlabeled points}
while |S| < m do

Find i ∈ R s.t.
∑

j∈R\{i} Wij ≥ δ and
∑

j∈S Wij is minimum

S ← S ∪ {i}
R ← R \ {i}

end while

(2) Decision surface improvement

Compute an approximate of ŷi with i ∈ S by applying the standard semi-

supervised minimization of section 11.3.2 with the data set S

Compute an approximate of ŷj with j ∈ R by (18.4)

SH ← the points in S with highest confidence (see section 18.3.2.2)

RL ← the points in R with lowest confidence

for all i ∈ SH do

if minj∈R

∑
k∈S\{i} Wjk ≥ δ then

{i can be safely removed from S without leaving empty regions}
k∗ ← argmink∈RL

∑
j∈S Wjk {Find point with low confidence farthest from

S}
Replace i by k∗ in S (and k∗ by i in R)

end if

end for

18.3.3 Computational Issues

We are now in position to present the overall computational requirements for the

different algorithms proposed in this chapter. As before, the subset size m is taken

to be much smaller than the total number of points n, and the weight matrix

W may either be dense or sparse (with k non-zero entries in each row or column).

Table 18.1 summarizes time and memory requirements for the following algorithms:

340 Large-Scale Algorithms

Table 18.1 Comparative computational requirements of NoSub, RandSub, and Smart-
Sub (n = number of labeled and unlabeled training data, m = subset size with m ≪ n, k
= number of neighbors for each point in W when W is sparse)

Time Memory

NoSub (sparse W) O(kn2) O(kn)

NoSub (dense W) O(n3) O(n2)

RandSub O(m2n) O(m2)

SmartSub O(m2n) O(m2)

NoSub: the original transductive algorithm (using the whole data set) that consists

in solving the system (18.2), as presented in chapter 11 (algorithm 11.2),

RandSub: the approximation algorithm discussed in section 18.2.2, with the subset

S being randomly chosen (section 18.3.1),

SmartSub: the same approximation algorithm as RandSub, but with S being

chosen as in section 18.3.2.

The table shows that the approximation method described in this chapter is

particularly useful when W is dense or n is very large. This is confirmed by

empirical experimentation in figure 18.1, which compares the training times (on the

benchmark data set SecStr described in chapter 21 of this book) of NoSub with a

dense kernel, NoSub with a sparse kernel, and SmartSub with a dense kernel. With

a dense kernel, NoSub becomes quickly impractical because of the need to store

(and solve) a linear system of size n = l + u, with l = 100 and u ∈ [2000, 50, 000].

With a sparse kernel (and the iterative version presented in algorithm 11.2) it scales

much better, but still exhibits a quadratic dependency in n. On the other hand,

SmartSub can handle much more unlabeled data as its training time scales only

linearly in n. We have not presented a sparse version of SmartSub since our current

code cannot take advantage of a sparse weighting function. However, this could be

useful to obtain further improvement, especially in terms of memory usage (working

with full m × m matrices can become problematic when m ≥ 10, 000).

18.4 Discussion

This chapter follows up on chapter 11 to allow large-scale applications of semi-

supervised learning algorithms presented previously. The idea is to express the cost

to be minimized as a function of only a subset of the unknown labels, in order to

reduce the number of free variables: this can be obtained thanks to the induction

formula introduced in chapter 11. The form of this formula suggests it is only

accurate when the points in the subset cover the whole manifold on which the data

lie. This explains why choosing the subset randomly can lead to poor results, while

18.4 Discussion 341

0 10,000 20,000 30,000 40,000 50,000
0

500

1000

1500

NoSub (dense W)

NoSub (sparse W)

SmartSub (dense W)

Figure 18.1 Training time (in seconds) w.r.t. the amount of unlabeled samples on
benchmark data set SecStr (cf. chapter 21). WX is a Gaussian kernel (combined with
an approximate 100-nearest-neighbor kernel in the sparse case). There are l = 100 labeled
samples, and SmartSub selects m = 500 unlabeled samples in the subset approximation
scheme. Note how the dependence of SmartSub in the total number of unlabeled samples
u ∈ [2000, 50, 000] is only linear. NoSub with dense W fails for u ≥ 10, 000 because of
memory shortage. Experiments were performed on a 3.2GHz P4 CPU with 2Gb of RAM.

it is possible to design a simple heuristic algorithm (such as algorithm 18.1) giving

much better classification performance. Better selection algorithms (e.g., explicitly

optimizing the cost we are interested in) are the subject of future research.

One must note that the idea of expressing the cost from a subset of the data is

not equivalent to training a standard algorithm on the subset only, before extending

to the rest of the data with the induction formula. Here, the rest of the data are

explicitly used in the part of the cost enforcing the smoothness between points in

the subset and points in the rest (part CRS of the cost), which helps to obtain a

smoother labeling function, usually giving better generalization.

19 Semi-Supervised Protein Classification

Using Cluster Kernels

Jason Weston jasonw@nec-labs.com

Christina Leslie cleslie@cs.columbia.edu

Eugene Ie eie@cs.columbia.edu

William Stafford Noble noble@gs.washington.edu

In this chapter we describe an experimental study of large-scale semi-supervised

learning for the problem of protein classification. The protein classification prob-

lem, a central problem in computational biology, is to predict the structural class

of a protein given its amino acid sequence. Such a classification helps biologists to

understand the function of a protein. Building an accurate protein classification

system, as in many tasks, depends critically upon choosing a good representation

of the input sequences of amino acids. Early work using string kernels with support

vector machines (SVMs) for protein classification achieved state-of-the-art classifi-

cation performance. However, such representations are based only on labeled data—

examples with known three-dimensional (3D) structures, organized into structural

classes—while in practice, unlabeled data are far more plentiful.

This chapter compares different approaches that extend these earlier results to

take advantage of unlabeled data. In particular, special cases of cluster kernels

are described that are scalable to hundreds of thousands of unlabeled points and

provide state-of-the-art performance.

19.1 Introduction

The 3D structure that a protein assumes after folding largely determines its function

in the cell. However, it is far easier to determine experimentally the primary

sequence (the string of amino acids) that make up a protein than it is to discover

its 3D structure. Through evolution, structure is more conserved than sequence,protein remote

homology

detection

so that detecting even very subtle sequence similarities, or remote homology, is

344 Semi-Supervised Protein Classification Using Cluster Kernels

important for predicting structure, which can help infer function. Computational

techniques have proven very successful at aiding biologists in this task.

The major methods for homology detection can be split into three basic groups:

pairwise sequence comparison algorithms (Altschul et al., 1990; Smith and Wa-

terman, 1981), generative models for protein families (Krogh et al., 1994; Park

et al., 1998), and discriminative classifiers (Jaakkola et al., 2000; Leslie et al., 2003;

Liao and Noble, 2002). Popular sequence comparison methods such as BLAST and

Smith-Waterman are based on alignment scores. Generative models such as profile

hidden Markov models (HMMs) model positive examples of a protein family, but

these models can be trained iteratively using both positively labeled and unlabeled

examples by pulling in close homologs and adding them to the positive set. A com-

promise between these methods is PSI-BLAST (Altschul et al., 1997), which uses

BLAST to iteratively build a probabilistic profile of a query sequence and obtain a

more sensitive sequence comparison score.

Finally, classifiers such as support vector machines (SVMs) use both positive

and negative examples and provide state-of-the-art performance when used with

appropriate distance metrics (i.e., appropriate kernels) (Jaakkola et al., 2000; Leslie

et al., 2003; Liao and Noble, 2002; Saigo et al., 2004). To be more specific, to solve

this task as a classification problem, the input is the string of amino acids: the

string is typically hundreds of “characters” in length, and the characters themselves

have an alphabet of size 20. Posed as a binary classification problem, a classifier

can answer the question: “Does the given protein (amino acid sequence) belong

to structural class X or not?” and should be trained with positive and negative

examples of this class.

Building an accurate system, as in most machine learning tasks, depends critically

upon choosing a good representation of the input sequences of amino acids. The first

hurdle is that the inputs are not vectors of fixed dimension, and so to use standard

methods like SVMs one must define a similarity on sequences. This is possible by

using string kernels, whereby one embeds the strings into a vector space and then

performs inner products in this space. This issue is discussed in section 19.2. A

study of the performance of these methods compared to more classical techniques

is also detailed there.

In practice, however, relatively little labeled data are available—approximately

30,000 proteins with known 3D structure, some belonging to families and superfam-

ilies with only a handful of labeled members—whereas there are close to one million

sequenced proteins, providing abundant unlabeled data. The basic method in the

literature (Jaakkola et al., 2000; Leslie et al., 2003) to take advantage of this extra

data is to use an auxiliary method (such as PSI-BLAST) in order to add predicted

homologs of the positive training examples to the training set before training the

classifier. New semi-supervised learning techniques should be able to make bettersemi-supervised

learning use of these unlabeled data.

Some of the recent work in semi-supervised learning has focused on changing the

representation given to a classifier by taking into account the structure described by

the unlabeled data (Chapelle et al., 2003; Szummer and Jaakkola, 2002b). These

19.2 Representations and Kernels for Protein Sequences 345

efforts can be viewed as cases of cluster kernels, which learn similarity metrics

based on the cluster assumption: when two points are in the same “cluster” (or are

connected by a path of high density) in the original metric they should have a small

distance to each other in the new metric. This review describes an experimentalcluster kernels

comparison of cluster kernels and some other competing methods on the protein

classification problem. In particular, two simple and scalable cluster kernel methods

will be described that were developed explicitly for this problem. The neighborhood

kernel (Weston et al., 2003a) uses averaging over a neighborhood of sequences

defined by a local sequence similarity measure, and the bagged kernel (Weston et al.,

2003a) uses bagged clustering of the full sequence data set to modify the base kernel.

Finally, we compare these two methods to a problem-specific solution, the profile

kernel of Kuang et al. (2004). In this kernel, each sequence is represented by a profile

estimated from a large unlabeled database (using PSI-BLAST, for example); the

profile kernel uses a substring-based feature map, but is defined on sequence profiles

rather than the sequences themselves.

In both the semi-supervised and transductive settings, these last three techniques

all provide greatly improved classification performance when used with mismatch

string kernels, and the techniques achieve equal or superior results to all previ-

ously presented cluster kernel methods that we tried. Moreover, they are far more

computationally efficient than these competing methods. The profile kernel pro-

vides perhaps the best scalability, whereas the neighborhood and bagged kernels

provide similar performance and good scaling ability, while providing more general

applicability.

The chapter is organized as follows. We begin with an overview of sequence

representations for supervised classifiers in section 19.2, followed in section 19.3 by

a review of existing cluster kernel methods for incorporating unlabeled data into

the kernel representation. In sections 19.3.2, 19.3.3, and 19.3.4, we describe the

profile, neighborhood, and bagged mismatch kernels. Finally, detailed experiments

comparing these techniques are given in section 19.4.

19.2 Representations and Kernels for Protein Sequences

Proteins can be represented as variable-length sequences, typically several hundred

characters long, from the alphabet of 20 amino acids. In order to use learning

algorithms that require vector inputs, we must first find a suitable feature vector

representation, mapping sequence x into a vector space by x → Φ(x). Kernel

methods such as SVMs only need to compute inner products, called kernels,

k(x, y) = 〈Φ(x), Φ(y)〉, for training and testing. We thus can accomplish the above

mapping using a kernel for sequence data.

Biologically motivated sequence comparison scores, like Smith-Waterman or

BLAST, provide an appealing representation of sequence data. The Smith-

Waterman (SW) algorithm (Smith and Waterman, 1981) uses dynamic program-

ming to compute the optimal local gapped alignment score between two sequences,

346 Semi-Supervised Protein Classification Using Cluster Kernels

while BLAST (Altschul et al., 1990) approximates SW by computing a heuristic

alignment score. Both methods return empirically estimated E-values1 indicating

the confidence of the score. These alignment-based scores do not define a positive

definite kernel; however, one can use a feature representation based on the empirical

kernel mapempirical kernel

map
Φ(x) = (d(x1, x), . . . , d(xl, x)),

where d(x, y) is the pairwise score (or E-value) between x and y, and xi for

i = 1, . . . , l are the training sequences. Using SW E-values in this fashion —

the SVM-pairwise method (Liao and Noble, 2002)— gives strong classification

performance. Note, however, that SVM-pairwise is slow, both because computing

each SW score is O(|x|2) and because computing each empirically mapped kernel

value is O(l).

Another appealing idea is to derive the feature representation from a generative

model for a protein family. In the Fisher kernel method (Jaakkola et al., 2000),

one first builds a profile HMM for the positive training sequences, defining a

log-likelihood function logP (x|θ) for any protein sequence x. Then the gradientFisher kernel

vector ∇θ log P (x|θ)|θ=θ0 ,where θ0 is the maximum-likelihood estimate for model

parameters, defines an explicit vector of features, called Fisher scores, for x. This

representation gives excellent classification results, but the Fisher scores must be

computed by an O(|x|2) forward-backward algorithm, making the kernel tractable

but slow.

It is possible to construct useful kernels directly without explicitly depending on

generative models by using string kernels. For example, the mismatch kernel (Leslie

et al., 2003) is defined by a histogram-like feature map that uses mismatches to

capture inexact string matching. The feature space is indexed by all possible p-p-gram string

kernels length subsequences α = a1, a2, . . . , ap, where each ai is a character in the alphabet

A of amino acids. The feature map is defined on p-gram α by Φ(α) = (φβ(α))Ap ,

where φβ(α) = 1 if α is within m mismatches of β, and 0 otherwise. The feature

map is extended additively to longer sequences: Φ(x) =
∑

p-gramsα∈x Φ(α). The

mismatch kernel can be computed efficiently using a trie data structure: the

complexity of calculating k(x, y) is O(ck(|x| + |y|)), where ck = pm+1|A|m. For

typical kernel parameters p = 5 and m = 1 (Leslie et al., 2003), the mismatch

kernel is fast, scalable, and yields impressive performance.string kernels

Other direct string kernel methods include pair HMM and convolution kernels

(Watkins, 1999; Haussler, 1999; Lodhi et al., 2002), which are quite general but also

have complexity O(|x||y|); more recent and related string alignment kernels (Saigo

et al., 2004), also with complexity O(|x||y|); and exact-matching string kernels built

with suffix trees and suffix links, with complexity O(|x| + |y|) (Vishwanathan and

1. The E-value is the expected number of times that an alignment score as good or better
than the observed score is expected to appear by chance in a random sequence database
of the given size.

19.2 Representations and Kernels for Protein Sequences 347

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ROC

N
u
m

b
e
r

o
f
fa

m
ili

e
s
 w

it
h
 g

iv
e
n
 p

e
rf

o
rm

a
n
c
e

SVM−SW
SVM−MISMATCH
SVM−BLAST
SVM−fisher
SAM
PSI−BLAST
knn−SW

Figure 19.1 Comparison of protein representations and classifiers without use of unla-
beled data. The graph plots the total number of families for which a given method exceeds a
ROC score threshold. The SVM-based methods use the following kernels: Smith-Waterman
empirical kernel map (SW), mismatch kernel with p = 5 and m = 1 (mismatch), BLAST
empirical kernel map (BLAST), and a Fisher kernel built from a profile HMM (Fisher).
The three non-SVM methods include a hidden Markov model (SAM), the PSI-BLAST
algorithm, and the kernel k-nearest neighbor algorithm (k=3) using a Smith-Waterman
empirical kernel map.

Smola, 2002). Inexact string matching models similar to the mismatch kernel but

with complexity O(ck(|x| + |y|)), with ck independent of alphabet size, have also

been presented (Leslie and Kuang, 2003). The motif kernel (Ben-Hur and Brutlag,

2003) uses features that are built from a fixed database of motifs; computing these

features is linear in the length of the sequence. Finally, almost all these kernels

can be constructed using the rational kernel framework of Cortes et al. (2002). We

concentrate on the mismatch kernel representation for the current work.

In figure 19.1, we summarize the results from Liao and Noble (2002) and Leslie

et al. (2003) by comparing SVM performance with these representations and other

homology detection methods on a problem that does not include the use of unlabeled

data. These and subsequent experiments are based upon the structural classification

of proteins (SCOP) (Murzin et al., 1995). This is a widely used database of

protein structures, in which proteins are organized hierarchically into classes, folds,

superfamilies, and families. SCOP contains only proteins for which the 3D structure

is available; hence, related proteins can be placed into a single superfamily even

when their amino acid sequences have diverged evolutionarily. The SCOP database

has been used in a large number of published studies of protein homology detection

348 Semi-Supervised Protein Classification Using Cluster Kernels

and fold classification algorithms. Here, we use a benchmark data set of Liao and

Noble (2002), which consists of 54 two-class remote homology detection problems.

The positive test set is a target protein family to be detected, and the positive

training set contains sequences that are only remotely related to the target. The

negative training and test sets are proteins from two disjoint sets of folds, and

contain no proteins from the target fold. All methods are evaluated by using receiver

operating characteristic (ROC) scores. More details concerning the experimental

setup can be found at http://www1.cs.columbia.edu/compbio/svm-pairwise.

The results indicate that, without unlabeled data, SVM methods using a number

of representations perform very strongly. They are superior to both HMMs (SAM-

T98 (Park et al., 1998)) and pairwise scoring functions like PSI-BLAST. We believe

that the SVM Fisher kernel computed here performs poorly because the underlying

HMMs lack sufficient training data. (For a method comparison in the more standard

setting, where domain homologs from an unlabeled database are added to the

training set, see Leslie et al. (2003); there, SVM-Fisher is competitive with the

mismatch kernel.) Note, however, that the performance of k-nearest neighbors (k-

NN) with a good representation (the SW representation) performs poorly, so choice

of classifier is also important.

It seems clear that string kernel methods with SVMs are a powerful approach,

but in a real-world setting, classifiers have access to unlabeled data. We now discuss

how to incorporate such data into the representation given to SVMs via the use of

cluster kernels.

19.3 Semi-Supervised Kernels for Protein Sequences

In semi-supervised learning, one tries to improve a classifier trained on labeled data

by exploiting a relatively large set of unlabeled data. The most common assumptioncluster

assumption one makes in this setting is called the “cluster assumption,” namely that the class

does not change in regions of high density. Equivalently, one assumes that the true

decision boundary lies in regions of low density.

19.3.1 Existing Cluster Kernels

We will focus on classifiers that re-represent the given data to reflect structure

revealed by unlabeled data. The main idea is to change the distance metric so that

the relative distance between two points is smaller if the points are in the same

cluster. If one is using kernels, rather than explicit feature vectors, one can modify

the kernel representation by constructing a cluster kernel.

Previous work of Chapelle et al. (2003) presented a general framework for

producing cluster kernels by modifying the eigenspectrum of the kernel matrix.

Two of the main methods presented are the random walk kernel and the spectralrandom walk and

spectral

clustering kernels

clustering kernel, which we will briefly summarize below. See chapter 15 for more

details on these and other spectral cluster kernels.

19.3 Semi-Supervised Kernels for Protein Sequences 349

The random walk kernel is a normalized and symmetrized version of a transition

matrix corresponding to a t-step random walk. As described in Szummer and

Jaakkola (2002b), one can define a random walk representation by viewing a radial

basis function (RBF) kernel as a transition matrix of a random walk on a graph

with vertices xi. One then uses the eigendecomposition of the normalized transition

matrix to compute the t-step random walk kernel. The spectral clustering kernel is

a simple use of the representation derived from spectral clustering (Ng et al., 2002)

using the first k eigenvectors of a normalized affinity matrix.

A serious problem with these methods is that one must diagonalize a matrix of

size n, where n is the number of labeled and unlabeled data, giving a complexity

O(n3). Other methods of implementing the cluster assumption such as transductive

SVMs (Joachims, 1999), described in chapter 6, also suffer from computational

efficiency issues. A second drawback is that these kernels are better suited to

a transductive setting (where one is given both the unlabeled and test points in

advance) rather than a semi-supervising setting. In sections 19.3.2 and 19.3.3, we

will describe two simple methods to implement the cluster assumption that do not

suffer from these issues.

19.3.2 The Neighborhood Kernel

In this section and the next, we introduce two fast and general cluster kernels that

leverage unlabeled data to improve a base kernel representation. Unlike other clusterfast cluster

kernels kernel approaches, these kernels make use of two complementary (dis)similarity

measures: a base kernel representation which implicitly makes use of features useful

for discrimination between classes, and a distance measure that describes how close

examples are to each other. In our application to protein classification, we use the

mismatch string kernel as the base kernel and standard sequence comparison metrics

(such as BLAST or PSI-BLAST E-values) as the distance measure. We note that

string kernels have proved to be powerful representations for SVM classification

(Leslie et al., 2003) but do not give sensitive pairwise similarity scores like the

BLAST family methods; thus the two sequence similarity measures play distinct

roles in the kernel definition.

For the neighborhood kernel, we use a standard sequence dissimilarity measure

like BLAST or PSI-BLAST to define a neighborhood for each input sequence. Theneighborhood

kernel neighborhood Nbd(x) of sequence x is the set of sequences x′ with similarity score

to x below a fixed E-value threshold, together with x itself. Now given a fixed

original feature representation, we represent x by the average of the feature vectors

for members of its neighborhood: Φnbd(x) =
1

|Nbd(x)|
∑

x′∈Nbd(x) Φorig(x
′). The

neighborhood kernel is then defined by

knbd(x, y) =

∑
x′∈Nbd(x),y′∈Nbd(y) korig(x

′, y′)

|Nbd(x)||Nbd(y)| .

We will see in the experimental results that this simple neighborhood-averaging

350 Semi-Supervised Protein Classification Using Cluster Kernels

Figure 19.2 Neighborhood averaging for a toy data set. Feature representations
for a toy data set before (left) and after (right) the neighborhood averaging operation.
The shaded region is the union of the convex hulls of the neighborhood point sets for the
original data.

technique, used in a semi-supervised setting with the mismatch kernel, dramatically

improves classification performance.

In general, computing each neighborhood kernel value is quadratic in neighbor-

hood size, as is clear from the kernel expression given above. However, in the special

case where we use the mismatch kernel as base kernel, we can modify the mismatch

kernel algorithm by presenting each neighborhood set as a concatentation of the

neighbor sequences (keeping track of where the ends of sequences are located); us-

ing a trie data structure, the kernel computation is linear in sequence length, giving

a complexity of O(pm+1|A|m(
∑

x′ +
∑

y′)) (that is, linear in neighborhood size)

to compute knbd(x, y), where |A| is the size of the alphabet of amino acids (Leslie

et al., 2003).

To see how the neighborhood approach fits with the cluster assumption, consider

a set of points in feature space that form a “cluster” or dense region of the data

set, and consider the region R formed by the union of the convex hulls of the

neighborhood point sets. If the dissimilarity measure is a true distance, then the

neighborhood averaged vector Φnbd(x) stays inside the convex hull of the vectors in

its neighborhood, and all the neighborhood vectors stay within region R. In general,

the cluster contracts inside R under the averaging operation. Thus, under the new

representation, different clusters can become better separated from each other.

Figure 19.2 gives an illustration of this phenomenon for a toy data set, showing

the contraction of clusters within region R after neighborhood averaging.

19.3.3 The Bagged Cluster Kernel

A number of existing clustering techniques are much more efficient than the methods

mentioned in section 19.3. For example, the classical k-means algorithm is O(rknd),

where n is the number of data points, d is their dimensionality, and r is the number

19.3 Semi-Supervised Kernels for Protein Sequences 351

of iterations required. Empirically, this running time grows sublinearly with k, n,

and d. Therefore, in practice, it is computationally efficient to run k-means multiple

times, which can be useful because it can converge to local minima. We therefore

consider the following method:bagged kernel

1. Run k-means N times, giving j = 1, . . . , N cluster assignments cj(xi) for each i.

2. Build a bagged-clustering representation based upon the fraction of times that

x and x′ are in the same cluster:

kbag(x, x′) =

∑
j [cj(x) = cj(x

′)]

N
. (19.1)

3. Take the product between the original and bagged kernel:

k(x, x′) = korig(x, x′) · kbag(x, x′).

Because k-means gives different solutions on each run, step 1 will give different

results; for other clustering algorithms one could subsample the data instead. Step

2 is a valid kernel because it is the inner product in an Nk-dimensional space

Φ(x) = 〈[cj(x) = q] : j = 1, . . . , N, q = 1, . . . , k〉, and products of kernels as in

step 3 are also valid kernels. The intuition behind the approach is that the original

kernel is rescaled by the “probability” that two points are in the same cluster,

hence encoding the cluster assumption. To estimate the kernel on a test sequence

x in a semi-supervised setting, one can assign x to the nearest cluster in each of

the bagged runs to compute kbag(x, xi).2 We apply the bagged kernel method with

korig as the mismatch kernel and kbag built by running k-means on the distances

induced by PSI-BLAST.

19.3.4 The Profile Kernel

Recently, Kuang et al. (2004) introduced a semi-supervised profile-based string

kernel for protein sequences. The profile kernel is a function that measures the

similarity of two protein sequence profiles based on their representation in a high-

dimensional vector space indexed by all p-mers (p-length subsequences of amino

acids). Each sequence is represented by a profile estimated from a large sequence

database (for example, using PSI-BLAST), and each length-p segment of the profile

is used to define the local mutation neighborhood and a corresponding contribution

to the feature vector in a p-mer feature space. Unlike the Fisher kernel approach—

where a single probabilistic model is used to define feature vectors for sequence

2. Of course it would also be possible to consider an additive rather than multiplicative
combination of kernels, i.e. k(xi, xj) = (1−λ)korig(xi, xj)+λkbag(xi, xj), 0 ≤ λ ≤ 1. Thus,
for λ = 0 we retain the original distance metric and for larger values of λ we incorporate
more and more cluster information. Although we expect this might work better for the
right choice of λ in the general case it also has the drawback of introducing yet another
hyperparameter.

352 Semi-Supervised Protein Classification Using Cluster Kernels

examples—in the profile kernel, every example is represented by a probabilistic

model in the form of a profile, and the kernel is defined on profile examples.

Specifically, for a sequence x and its sequence profile P (x) (e.g. PSI-BLAST

profile), the positional mutation neighborhood is defined by the corresponding block

of the profile P (x):profile kernel

M(p,σ)(P (x [j + 1 : j + p])) = {β = b1b2 . . . bp : −
p∑

i=1

log Pj+i(bi) < σ}.

Note that the emission probabilities, Pj+i(b), i = 1 . . . p, come from the profile

P (x)—for notational simplicity, we do not explicitly indicate the dependence on

x . Typically, the profiles are estimated from close homologs found in a large

sequence database; however, these estimates may be too restrictive for our purposes.

Therefore, we smooth the estimates using background frequencies, q(b), b ∈ A, of

amino acids in the training data set via

P̃i(b) =
Pi(b) + tq(b)

1 + t
, i = 1 . . . |x |,

where t is a smoothing parameter. We use the smoothed emission probabilities P̃i(b)

in place of Pi(b) in defining the mutation neighborhoods.

We now define the profile feature mapping as

ΦProfile
(p,σ) (P (x)) =

∑

j=0...|x |−p

(φβ(P (x [j + 1 : j + p])))β∈Ap , (19.2)

where the coordinate φβ(P (x [j + 1 : j + p])) = 1 if β belongs to the mutation

neighborhood M(p,σ)(P (x [j + 1 : j + p])), and otherwise the coordinate is 0. Note

that the profile kernel between two protein sequences is simply defined by the inner

product of feature vectors:

kProfile
(p,σ) (P (x), P (y)) = 〈ΦProfile

(p,σ) (P (x)), ΦProfile
(p,σ) (P (y))〉. (19.3)

The use of profile-based string kernels is an example of semi-supervised learning

since unlabeled data in the form of a large sequence database are used in the

discrimination problem. Moreover, profile kernel values can be efficiently computed

in time that scales linearly with input sequence length. The profile kernel is similar

to the neighborhood kernel, in that it performs a local smoothing, but takes into

account more a priori information about the problem at hand. This problem-specific

solution, however, also makes the method more difficult to generalize to other

applications.

19.4 Experiments

We measure the recognition performance of cluster kernel methods by testing their

ability to classify protein domains into superfamilies in the structural classification

19.4 Experiments 353

of proteins (Murzin et al., 1995). SCOP is a human-curated database of known

3D structures of protein domains. The database is organized hierarchically into

classes, folds, superfamilies, and families. For the purposes of this experiment, two

domains that come from the same superfamily are assumed to be homologous, and

two domains from different folds are assumed to be unrelated. For pairs of proteins

in the same fold but different superfamilies, their relationship is uncertain, and so

these pairs are not used in evaluating the algorithm. This labeling scheme has been

used in several previous studies of remote homology detection algorithms (Jaakkola

et al., 2000; Liao and Noble, 2002). We use the same 54 target families and the

same test and training set splits as in the remote homology experiments in Liao

and Noble (2002). The sequences are 7329 SCOP domains obtained from version

1.59 of the database after purging with astral.stanford.edu (Brenner et al.,

2000) so that no pair of sequences share more than 95% identity. Compared to Liao

and Noble (2002), we reduce the number of available labeled training patterns by

roughly a third. Data set sequences that were neither in the training nor test sets

for experiments from Liao and Noble (2002) are included as unlabeled data.

All methods are evaluated using ROC analysis (Hanley and McNeil, 1982). An

ROC curve plots the rate of true positives as a function of the rate of false positives

at varying decision thresholds. The ROC score is the area under this curve. A perfect

classifier, which places all positive examples above all negative examples, receives

an ROC score of 1, and a random classifier receives a score of approximately 0.5. In

addition to the ROC score, we compute the ROC50 score, which is the ROC score

computed only up to the first 50 false positives (Gribskov and Robinson, 1996).

This score focuses on the top of the ranking, which in some applications is the

most important. More details concerning the experimental setup can be found at

http://www1.cs.columbia.edu/compbio/svm-pairwise.

In all experiments, we use an SVM classifier with a small soft-margin parameter,

set as Kii ← Kii + γ, where γ is 0.02ρ times the median diagonal kernel entry,

and ρ is the fraction of training set sequences that have the same label as the ith

sequence. The SVM computations are performed using the freely available Spider

Matlab machine learning package available at http://www.kyb.tuebingen.mpg.

de/bs/people/spider. More information concerning the experiments, including

data and source code scripts, can be found at http://www.kyb.tuebingen.mpg.

de/bs/people/weston/semiprot.

We split our experiments into three settings: semi-supervised setting, transduc-

tive setting, and large-scale experiments. The first two sets of experiments are

smaller so that we can compare with existing methods that are intractable for

larger data sets. The transductive setting is included for methods that do not eas-

ily generalize to the semi-supervised case.

19.4.1 Semi-Supervised Setting

Our first experiment shows that the neighborhood mismatch kernel makes better

use of unlabeled data than the baseline method of “pulling in homologs” prior to

354 Semi-Supervised Protein Classification Using Cluster Kernels

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ROC−50

N
u

m
b

e
r

o
f

fa
m

ili
e

s

Using BLAST for homologs & neighborhoods

mismatch(5,1)
mismatch(5,1)+homologs
neighborhood mismatch(5,1)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ROC−50

N
u

m
b

e
r

o
f

fa
m

il
ie

s

Using PSI−BLAST for homologs & neighborhoods

mismatch(5,1)
mismatch(5,1)+homologs
neighborhood mismatch(5,1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Neighborhood Mismatch(5,1) ROC−50

M
is

m
a
tc

h
(5

,1
)+

h
o
m

o
lo

g
s
 R

O
C

−
5
0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Neighborhood Mismatch(5,1) ROC−50

M
is

m
a
tc

h
(5

,1
)+

h
o
m

o
lo

g
s
 R

O
C

−
5
0

Figure 19.3 Comparison of protein representations and classifiers using un-

labeled data. The mismatch kernel is used to represent proteins, with close homologs
being pulled in from the unlabeled set with BLAST (left) or PSI-BLAST (right). Building
a neighborhood with the neighborhood mismatch kernel in both cases improves over the
baseline of pulling in homologs. Note: We also pull in homologs during the SVM training
for the neighborhood kernel.

training the SVM classifier, that is, simply finding close homologs of the positive

training examples in the unlabeled set and adding them to the positive training

set for the SVM. Homologs come from the unlabeled set (not the test set), and

“neighbors” for the neighborhood kernel come from the training plus unlabeled

data. We compare the methods using the mismatch kernel representation with

p = 5 and m = 1, as used in Leslie et al. (2003). Homologs are chosen via BLAST

or PSI-BLAST as having a pairwise E-value less than 0.05 (the default parameter

setting (Altschul et al., 1990)) with any of the positive training samples. The

neighborhood mismatch kernel uses the same threshold to choose neighborhoods.

For the neighborhood kernel, we normalize before and after the averaging operation

via Kij ← Kij/
√

KiiKjj . The results are given in figure 19.3 and table 19.1.

Figure 19.3 plots the number of families achieving a given ROC50 score. Thus,

a strongly performing method produces a curve close to the top right of the plot.

A signed rank test shows that the neighborhood mismatch kernel yields significant

improvement over adding homologs (p-value 3.9e-05). Note that the PSI-BLAST

scores in these experiments are built using the whole database of 7329 sequences

19.4 Experiments 355

Table 19.1 Mean ROC50 and ROC scores over 54 target families for semi-supervised
experiments, using BLAST and PSI-BLAST for adding homologs and defining the neigh-
borhood kernel

BLAST PSI-BLAST

ROC50 ROC ROC50 ROC

mismatch kernel 0.416 0.870 0.416 0.870

mismatch kernel + homologs 0.480 0.900 0.550 0.910

neighborhood mismatch kernel 0.639 0.922 0.699 0.923

(that is, test sequences in a given experiment are also available to the PSI-BLAST

algorithm), so these results are slightly optimistic. However, the comparison of

methods in a truly inductive setting using BLAST shows the same improvement of

the neighborhood mismatch kernel over adding homologs (p-value 8.4e-05).

The improvement from the neighborhood kernel does not come from the BLAST

and PSI-BLAST representations alone: the mean ROC50 score for these represen-

tations using an empirical map (see the transductive setting for a description) are

0.368 and 0.533 respectively without pulling in homologs, and 0.448 and 0.595 with

pulled-in homologs. Moreover, simply adding the BLAST and mismatch kernels

together (using an empirical map) without using homologs yields a mean ROC50 of

0.3943, so it is also not because the methods give independent information about

the targets which can be easily combined.

19.4.2 Transductive Setting

In the following experiments, we consider a transductive setting, in which the test

points are given to the methods in advance as unlabeled data, giving slightly

improved results over the last section. Although this setting is unrealistic for a real

protein classification system, it enables comparison with random walk and spectral

clustering kernels, which do not easily work in another setting. In figure 19.4 (left),

we again show the mismatch kernel compared with pulling in homologs and the

neighborhood kernel. This time we also compare with the bagged mismatch kernel

using bagged k-means with k = 100 and N = 100 runs, which gave the best results.

We observed an improvement over the baseline for several values of k; the result

for k = 400 is also given in table 19.2. We then compare these methods to using

random walk and spectral clustering kernels. Both methods do not work well for

the mismatch kernel (see online supplement), perhaps because the feature vectors

are so orthogonal. However, for a PSI-BLAST representation via empirical kernel

map, the random walk outperforms pulling in homologs. We take the empirical

map with Φ(x) = (exp(−λd(x1, x)), . . . , exp(−λ(d(xl, x))), where d(x, y) are PSI-

BLAST E-values and λ = 1
1000 , which improves over a linear map. We report

results for the best parameter choices, t = 2 for the random walk and k = 200 for

spectral clustering. We found the latter quite brittle with respect to the parameter

choice; results for other parameters can be found on the supplemental website.

For pulling in close homologs, we take the empirical kernel map only for points in

356 Semi-Supervised Protein Classification Using Cluster Kernels

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ROC−50

N
u
m

b
e
r

o
f
fa

m
ili

e
s

Mismatch kernel, PSI−BLAST distance

mismatch(5,1)
mismatch(5,1)+homologs
neighborhood mismatch(5,1)
bagged mismatch(5,1) k=100

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

ROC−50

N
u

m
b

e
r

o
f

fa
m

il
ie

s

PSI−BLAST kernel, varying methods

PSI−BLAST
+ close homologs
spectral cluster, k=100
random walk, t=2

Figure 19.4 Comparison of protein representations and classifiers using unlabeled data
in a transductive setting. Neighborhood and bagged mismatch kernels outperform pulling
in close homologs (left) and equal or outperform previous semi-supervised methods (right).
Note: We also pull in homologs during the SVM training for the neighborhood and bagged
kernels.

Table 19.2 Mean ROC50 and ROC scores over 54 target families for transductive
experiments

ROC50 ROC

mismatch kernel 0.416 0.875

mismatch kernel + homologs 0.625 0.924

neighborhood mismatch kernel 0.704 0.917

bagged mismatch kernel (k = 100) 0.719 0.943

bagged mismatch kernel (k = 400) 0.671 0.935

PSI-BLAST kernel 0.533 0.866

PSI-BLAST+homologs kernel 0.585 0.873

spectral clustering kernel 0.581 0.861

random walk kernel 0.691 0.915

transductive SVM 0.637 0.874

the training set and the chosen close homologs. Finally, we also run transductive

SVMs. The results are given in table 19.2 and figure 19.4 (right). A signed rank

test (with adjusted p-value cutoff of 0.05) finds no significant difference between

the neighborhood kernel, the bagged kernel (k = 100), and the random walk kernel

in this transductive setting. Thus the new techniques are comparable with random

walk, but are feasible to calculate on full-scale problems.

19.4.3 Large-Scale Experiments

Semi-supervised and transductive methods are most interesting and potentially give

greatest benefit in the realistic setting where a large amount of unlabeled data is

used. We therefore test the cluster kernel methods in large-scale experiments, using

101,602 Swiss-Prot protein sequences as additional unlabeled data. For simplicity,

we first give results for both the neighborhood and bagged kernels in the trans-

19.4 Experiments 357

ductive setting, that is, in the case where test sequences are available as additional

unlabeled examples in all the experiments. Then, for a clean comparison against

the profile kernel, we test the neighborhood kernel and the profile kernel in a semi-

supervised setting, where the Swiss-Prot database alone is used as the source of

unlabeled data.

For the large-scale neighborhood mismatch kernel experiments, we first compute

the entire SCOP plus Swiss-Prot kernel (108, 931 x 108, 931) matrix with mismatch

kernel parameters p = 5 and m = 1. We then apply the neighborhood averaging

operation to produce the 7329 x 7329 kernel matrix for SCOP sequences needed for

SVM training. We normalize the kernel matrix before and after the neighborhood

averaging operation. Results in table 19.3 clearly show that the inclusion of a

large amount of additional unlabeled data from Swiss-Prot significantly improves

classification performance. Moreover, the neighborhood kernel again outperforms

the baseline method of adding homologs of the positive training sequences to the

training set.

For the large-scale bagged mismatch kernel experiments, the fact that many of

the sequences in the Swiss-Prot database are multidomain protein sequences com-

plicates the clustering step: since the PSI-BLAST E-values used as the dissimilarity

metric are based on local alignment, a multidomain sequence can be similar to many

unrelated single-domain sequences, and hence the clustering algorithm may fail to

converge. As an approximate remedy, we only use Swiss-Prot protein sequences

with maximal length of 250 for the large-scale k-means clustering, reasoning that

most multidomain sequences would be eliminated by this length constraint. We ran-

domly sample 30,000 protein sequences from the set of Swiss-Prot with length 250

or less to use as unlabeled data for clustering. Since the method mainly depends on

the quality of the clusters containing the labeled points, we terminate the k-means

clustering algorithm once there are no more changes in the label assignment for the

SCOP sequences. It is worth noting that a small amount of two-domain sequences

may have length below our cutoff, but we observe that the k-means clustering algo-

rithm still behaves relatively stably. We use the same mismatch kernel parameters

for the bagged kernel as the ones we use for the small-scale bagged kernel experi-

ments. A comparison of results is shown in table 19.3. Again, bagged kernel perfor-

mance significantly improves when a large amount of unlabeled data is provided to

the clustering algorithm. Finally, we also compare with the semi-supervised profile

kernel approach. The profile kernel representation depends on estimating sequence

profiles for each input sequence using a large sequence database, and therefore we

only present results in the large-scale setting. The profile kernel performs very well.

Note that adding homologs (the baseline approach to semi-supervised learning) can

be used in conjunction with any of the cluster kernel methods. We found that this

combination of approaches improved the results in all cases.

Finally, in order to make a clean comparison of the stronger of the cluster kernels,

the neighborhood kernel, with the profile kernel, we ran a separate experiment,

where we use a semi-supervised training setup: the Swiss-Prot database alone

is used as the source of unlabeled data for estimating PSI-BLAST profiles and

358 Semi-Supervised Protein Classification Using Cluster Kernels

Table 19.3 Mean ROC50 and ROC scores over 54 target families for large-scale trans-
ductive experiments. Note: We include homologs from the unlabeled set and the test set
(SCOP + Swiss-Prot) for the training of all the SVMs, apart from the profile kernel, which
does not use any homologs.

Without Swiss-Prot With Swiss-Prot

ROC50 ROC ROC50 ROC

mismatch kernel + homologs 0.625 0.924 0.706 0.945

bagged mismatch kernel (k = 100) 0.719 0.943 0.803 0.953

bagged mismatch kernel (k = 400) 0.671 0.935 0.775 0.955

neighborhood mismatch kernel 0.704 0.917 0.871 0.971

profile kernel - - 0.84 0.98

profile kernel + homologs - - 0.916 0.989

Table 19.4 Mean ROC50 and ROC scores over 54 target families for large-scale semi-
supervised experiments. Note: We do not include homologs from the unlabeled set (Swiss-
Prot) for the training of the SVMs in these experiments.

ROC50 ROC

neighborhood mismatch kernel 0.810 0.955

profile kernel 0.842 0.980

defining sequence neighborhoods; SCOP sequences are not used for profile learning

or for neighborhood averaging. For the cleanest comparison, we do not add SCOP

homologs to the positive training set before training the SVMs. Mean ROC50 and

ROC results are given in table 19.4, and a comparison of ROC50 results over all

experiments is given in figure 19.5. Results from the cluster kernel and profile kernel

methods are similar (20 wins, 25 losses, 9 ties for the cluster kernel); a signed rank

test with a p-value threshold of 0.05 finds no significant difference in performance

between the two methods.

19.5 Discussion

Two of the most important issues in protein classification are representation of

sequences and handling unlabeled data. Two developments in recent kernel methods

research, string kernels and cluster kernels, address these issues separately. We have

described two kernels—the neighborhood mismatch kernel and the bagged mismatch

kernel—that combine both approaches and yield state-of-the-art performance in

protein classification. The former is the best way we found in this problem to

incorporate local structure; the latter gave good performance by using global

structure information.

Practical use of semi-supervised protein classification techniques requires compu-

tational efficiency. Many cluster kernels require diagonalization of the full labeled

plus unlabeled data kernel matrix. The neighborhood and bagged kernel approaches,

used with an efficient string kernel, are fast and scalable cluster kernels for sequence

19.5 Discussion 359

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(5,1)−Neighborhood Kernel

(5
,7

.5
)−

P
ro

fil
e
 K

e
rn

e
l

Figure 19.5 Comparison of neighborhood kernel and profile kernel ROC50 performance
for large-scale semi-supervised experiments. No homologs were added to the training set
for the purpose of training the SVMs.

data and do not require diagonalization of the kernel matrix as in other cluster ker-

nel methods.

Moreover, these techniques can be applied to any problem with a meaningful local

similarity measure or distance function. A potential direction for improvement in

the neighborhood kernel would be to extract only those segments of “neighboring”

sequences that correspond to the local alignment-based E-value score; when we use

entire multidomain Swiss-Prot sequences as neighbors of a single-domain SCOP

sequence, these neighbor sequences may include long regions that are unrelated to

the SCOP domain, and hence we introduce noise in the neighborhood averaging

operation.

While we have motivated these kernels by earlier work on cluster kernels and the

cluster assumption, one can also view the neighborhood and bagged kernels as using

unlabeled data locally (from nearby sequences or the local cluster) for smoothing the

kernel representation. Related work using probabilistic models instead of unlabeled

data for smoothing includes the recently introduced Bhattacharyya kernel (Jebara

et al., 2004), which assigns a probability distribution to each example and defines

a kernel on these distributions.

We also compared to the profile-based string kernels of Kuang et al. (2004),

which are also based on a semi-supervised learning paradigm. These string kernels

are also scalable and achieve very high classification accuracy; in our experiments,

the neighborhood kernel performs similarly to the profile kernel. However, the

profile kernel method requires producing a profile for each query sequence, which is

necessarily tied to alignment. In contrast, the cluster kernels that we present here

are more general, in that any dissimilarity measure can be used for neighborhood

averaging or bagging and any base kernel chosen for the initial representation.

Moreover, for the bagged kernel any clustering algorithm, not just k-means, can be

employed. These kernels may therefore be applicable to a wider range of problems.

For example, one could use expression coherence in a set of microarray experiments

as a measure of functional similarity of genes combined with a base kernel to define

360 Semi-Supervised Protein Classification Using Cluster Kernels

cluster kernels for functional gene classification. One could also hope to further

improve performance for the protein classification task by using a more powerful

base kernel than the mismatch kernel (for example, the string alignment kernel of

Saigo et al. (2004)), though the computational expense of the improved base kernel

representation may become a concern.

All the experiments described in this chapter compare methods using a binary

classification approach, which is a setup that seems to be established for kernel-

based approaches. However, common methods like BLAST and PSI-BLAST address

the full multiclass problem directly, and the binary framework seems to favor

SVM methods and ignores the additional benefit from methods that address the

multiclass task. However, some of our recent work (Ie et al., 2005) does address this

issue by applying the profile kernel-based SVM to the multiclass fold recognition

task. The results, which are beyond the scope of this chapter to describe in detail,

indicate that semi-supervised SVMs are significantly better than PSI-BLAST when

applied to the multiclass problem as well.

Future work should extend these results by combining cluster kernels with learn-

ing methods that address other additional challenges of protein classification: fur-

ther analysis of the full multiclass problem, which potentially involves thousands of

classes; dealing with very small classes with few homologs; incorporating hierarchi-

cal labels and knowledge of relationships between classes; and dealing with missing

classes, for which no labeled examples exist.

Supplementary data and source code are available at www.kyb.tuebingen.mpg.

de/bs/people/weston/semiprot. The Spider Matlab package is available at www.

kyb.tuebingen.mpg.de/bs/people/spider.

20 Prediction of Protein Function from

Networks

Hyunjung Shin shin@tuebingen.mpg.de

Koji Tsuda koji.tsuda@tuebingen.mpg.de

In computational biology, it is common to represent domain knowledge using

graphs. Frequently there exist multiple graphs for the same set of nodes, represent-

ing information from different sources, and no single graph is sufficient to predict

class labels of unlabeled nodes reliably. One way to enhance reliability is to integrate

multiple graphs, since individual graphs are partly independent and partly comple-

mentary to each other for prediction. In this chapter, we describe an algorithm

to assign weights to multiple graphs within graph-based semi-supervised learning.

Both predicting class labels and searching for weights for combining multiple graphs

are formulated into one convex optimization problem. The graph-combining method

is applied to functional class prediction of yeast proteins. When compared with in-

dividual graphs, the combined graph with optimized weights performs significantly

better than any single graph. When compared with the semi-definite programming-

based support vector machine (SDP/SVM), it shows comparable accuracy in a re-

markably short time. Compared with a combined graph with equal-valued weights,

our method could select important graphs without loss of accuracy, which implies

the desirable property of integration with selectivity.

20.1 Introduction

In computational biology, many types of genomic data are frequently represented

using graphs. The nodes correspond to genes or proteins, and the edges correspond

to biological relationships between them. Some of the proteins have known func-graph

representation in

biological

networks

tion classes through biological experiments while those of the others are unknown

because of the demanding experimental cost and effort. It is valuable to predict the

unknown function of proteins in order to guide experiments and help to understand

362 Prediction of Protein Function from Networks

Figure 20.1 Functional class prediction on a protein network: Focusing on a particular
functional class, the function prediction problem boils down to two-class classification.
An annotated protein is labeled either by +1 or −1. The positive label indicates that the
protein belongs to the class. Edges represent associations between proteins. The task is to
predict the class of the unlabeled proteins marked as ?.

the complex mechanisms of the cell (Alberts et al., 1998). The function prediction

problem can be depicted on an undirected graph (see figure 20.1). Focusing on a

particular functional class, the task boils down to a two-class classification problem.

A protein whose class label is known is annotated +1 if it belongs to the class, −1

otherwise. The protein whose class label is to be predicted is unannotated (i.e.,

“?” in the figure). Once a graph is defined, the problem can be dealt with within

the framework of graph-based semi-supervised learning thanks to recent progress

by (Zhou et al., 2004; Belkin and Niyogi, 2003b; Zhu et al., 2003b; Chapelle et al.,

2003). See also part III in this book. The class label of an unannotated protein is

inferred from those of adjacent nodes, proportionally being affected by weights of

the edges. See section 20.2 for details.

Typically, multiple graphs are available to represent the same set of proteins

in terms of various source of information. For instance, an edge set can representmultiple data

sources, Graph

fusion

physical interactions of the proteins (Schwikowski et al., 2000; Uetz et al., 2000; von

Mering et al., 2002), gene regulatory relationships (Lee et al., 2002; Ihmels et al.,

2002; Segal et al., 2003a), closeness in a metabolic pathway (Kanehisa et al., 2004),

similarities between protein sequences (Yona et al., 1999), etc. (see figure 20.2).

Each source contains partially independent and partially complementary informa-

tion about the task at hand. However, no single information source is sufficient to

identify protein functions reliably. One way to enhance reliability is to integrate mul-

tiple sources. In computational biology, a number of methods have been proposed

to classify proteins based on networks such as majority vote (Schwikowski et al.,

2000; Hishigaki et al., 2001), graph-based methods (Vazquez et al., 2003), Bayesian

methods (Deng et al., 2003), discriminative learning methods (Vert and Kane-

hisa, 2003; Lanckriet et al., 2004c), and probabilistic integration by log-likelihood

scores (Lee et al., 2004). See also (Tsuda and Noble, 2004) and references therein.

20.1 Introduction 363

Figure 20.2 Multiple graphs: A set of graphs is given, each of which depicts a different
aspect of the proteins. Since different graphs contain partly independent and partly
complementary pieces of information, one can enhance the total information by combining
these graphs.

Among those approaches, the semi-definite programming-based SVM method

(SDP/SVM) has been particularly successful (Lanckriet et al., 2004c,b). Ina kernel method

combining

multiple data

sources—

SDP/SVM

SDP/SVM, each of the data sources (e.g., vectors, trees, and networks) is rep-

resented by a kernel matrix. Then a linear combination of such kernel matrices

becomes a linear matrix inequality (LMI) which forms the constraints of semi-

definite programming (Nesterov and Nemirovsky, 1994; Vandenberghe and Boyd,

1996; Boyd and Vandenberghe, 2004). Since it has been reduced to SDP, finding

the weights for combining multiple kernel matrices becomes a convex optimization

problem. Practically, the SDP/SVM method has led to good empirical results.

However, when trying to apply SDP/SVM to large problems, the computational

cost can become prohibitive. The reasons can be categorized into three viewpoints.

First, it is not easy to define a kernel on graphs that plays the role of a similarityPractical

difficulties of

graph-based

kernel methods

metric. For example, Lanckriet et al. (2004b) used the diffusion kernel, which has

the time complexity of O(n3) where n is the number of data. The second obstacle is

the density of the kernel matrices. In general, it is difficult to make kernel methods

faster than O(n3) without rather radical approximations (e.g., low rank approxima-

tion) (Schölkopf and Smola, 2002). One may attempt to sparsify the kernel matrix

by setting small values to zero, but, typically, a kernel matrix artificially sparsified

is no longer positive definite. Finally, solving SDP/SVM is also computationally

inefficient. In theory, the method has the time complexity of O(mn3) where m is the

number of kernel matrices. 1 Therefore, in spite of their theoretical soundness and

1. Recently, a fast and greedy approximation method was proposed (Bach et al., 2004),
but the worst-case complexity does not change.

364 Prediction of Protein Function from Networks

good performance, graph-based kernel methods may not be finished in a reasonable

time when applied in large-scale problems.

One way to circumvent the difficulties of kernel methods is to take a learning

algorithm which is directly applicable to graphs. A useful approach will be semi-

supervised learning. Thanks to the inherent sparsity of a similarity matrix derived

from an edge set, the solution can be obtained by solving a linear system with a

sparse coefficient matrix, which is faster than SVM learning by orders of magni-

tude (Spielman and Teng, 2004). However, in graph-based semi-supervised learning,

it has not yet been addressed how to integrate multiple graphs.

In this chapter, we describe an algorithm to assign weights to multiple graphs

within graph-based semi-supervised learning. Local minima problems are avoided,semi-supervised

learning with

multiple graphs

since both predicting class labels and searching for weights combining multiple

graphs can be formulated into one convex optimization problem. Aside from the

capability of integrating all the graphs into one, the method is capable of selecting

the subset of graphs critical for learning against redundant ones. In the sense of

learning, a redundant graph stands for a graph which hardly affects or changes the

prediction results. This will be a desirable property, especially as the number of

available data sources increases. The selection mechanism is close to the way that

the SVM selects support vectors (Schölkopf and Smola, 2002). The graph-combining

method is applied to functional class prediction of 3588 yeast proteins. When com-

pared with individual graphs, the combined graph with optimized weights performs

significantly better than any single graph. When compared with the state-of-the-

art SDP/SVM method, it shows comparable accuracy in a remarkably short time.

Compared with a combined graph with equal-valued weights, our method could

select important graphs for prediction without loss of accuracy, which implies the

desirable property of integration with selectivity.

The remainder of this chapter is organized as follows. In section 20.2, we briefly

introduce semi-supervised learning and review the recent literature. Section 20.3

gives a detailed explanation of the graph-combining method. In section 20.4, we

show experimental results. We conclude in section 20.5 with some future challenges.

20.2 Graph-Based Semi-Supervised Learning

In this section, we briefly introduce a graph-based learning algorithm for a sin-

gle graph (Zhou et al., 2004). One can have more insight from chapter 11 which

provides a unified framework of various types of graph-based learning algorithms.

Let us assume a weighted graph G with n nodes indexed as 1, . . . , n. A symmetric

weight matrix, denoted as W , represents the strength of linkage. All weights are

non-negative (wij ≥ 0), and if wij = 0, there is no edge between nodes i and j.

We assume that the first l training nodes have binary labels, y1, y2, . . . , yl, where

20.2 Graph-Based Semi-Supervised Learning 365

yi ∈ {−1, 1}, and the remaining u = n − l test nodes are unlabeled. The goal is to

predict the labels yl+1, . . . , yn by exploiting the structure of the graph under the

assumption that a label of an unlabeled node is likely to be similar to the labels

of its neighboring nodes. A more adjacent or a more strongly connected neighbor

node will more significantly affect the node.

Let us define an n-dimensional score vector Ŷ = (ŷ1, · · · , ŷn)⊤. In learning, weobjective

function on a

single graph in

semi-supervised

learning

determine Ŷ using all the available information, and in prediction, the labels are

predicted by thresholding the score ŷl+1, . . . , ŷn. It is assumed that (a) the score ŷi

should be close to the given label yi in training nodes, and (b) overall, the score ŷi

should not be too different from the scores of adjacent vertices. One can obtain Ŷ

by minimizing the following quadratic functional:

l∑

i=1

(ŷi − yi)
2 + c

n∑

i,j=1

wij(ŷi − ŷj)
2. (20.1)

The first term corresponds to the loss function in terms of condition (a), and the

second term represents the smoothness of the scores in terms of condition (b).

The parameter c trades off loss versus smoothness. Another small regularization

term, μ
∑n

i=l+1 ŷ2
i , can be added in order to keep the scores of unlabeled nodes

in a reasonable range. However, for simplicity, we degenerate this term into the

smoothness term (b) by assuming μ = 1. Alternative choices of smoothness and loss

functions can be found in Chapelle et al. (2003). It is more prevalent to represent

(20.1) with matrices

min
Ŷ

(Ŷ − Y)⊤(Ŷ − Y) + cŶ T LŶ , (20.2)

where Y = (y1, . . . , yl, 0, . . . , 0)⊤, and the matrix L is called the graph Laplacian

matrix (Chung, 1997), which is defined as L = D − W where D = diag(di),

di =
∑

j wij . Instead of L, the normalized Laplacian, L = D− 1
2 LD− 1

2 can be

used to get a similar result (Chung, 1997). The solution of this problem is obtained

as

Ŷ = (I + cL)−1Y, (20.3)

where I is the identity matrix.//

Actually, the score vector Ŷ is obtained by solving a large sparse linear system

Y = (I + cL)Ŷ . This numerical problem has been intensively studied, and therea large sparse

linear system exist efficient algorithms, whose computational time is nearly linear in the number

of non-zero entries in the coefficient matrix (Spielman and Teng, 2004). Therefore,

the computation gets faster as the Laplacian matrix gets sparser. Moreover, when

the linear system solver is parallelized and distributed on a cluster system, the

graph-based learning algorithm easily scales to much larger networks.

366 Prediction of Protein Function from Networks

20.3 Combining Multiple Graphs

When multiple graphs are available, it is natural to incorporate them as additional

information sources. For instance, proteins can be represented as graphs accord-

ing to their amino acid sequences, structures, interactions, or other relationships.

Selecting one graph out of m graphs would be relatively easy. One can solve the

learning problem using each graph, and simply select the best one in terms of, say,

the cross-validation error. However, according to a recent study (Lanckriet et al.,

2004c), the integration of multiple data sources can achieve higher accuracy than

any single graph alone. To incorporate all the graphs, one can straightforwardly

combine the graphs with fixed uniform weights. However, as the number of available

data sources increases a better approach seems to be to select important m0 (≤ m)

graphs out of m. This poses the problem of deciding which combination of the

graphs will be the best for prediction; examination of every possible combination

of learning problems amounts to the combinatorial number
(

m
m0

)
. In this section,

we introduce a convex programming-based graph-combining algorithm which only

selects the subset of graphs critical for learning against redundant ones. Note that,

in the sense of learning, a redundant graph stands for a graph which hardly affects

or changes the prediction results (e.g., a graph almost identical to another, is a lin-

ear combination of others, or which otherwise already fits well with the prediction).

Without loss of generality, the optimization problem with a single Laplacian

matrix (20.2) is rewritten in a constrained form as

min
Ŷ ,γ

(Ŷ − Y)⊤(Ŷ − Y) + cγ, Ŷ ⊤LŶ ≤ γ. (20.4)

When we have multiple Laplacian matrices, L1, . . . , Lm, the problem can be ex-

tended in order to take all of them into account,

min
Ŷ ,γ

(Ŷ − Y)⊤(Ŷ − Y) + cγ, Ŷ ⊤LkŶ ≤ γ, ∀ k ∈ {1, . . . , m}. (20.5)

This amounts to taking the upper bound of the smoothness function Ŷ ⊤LkŶ over

all graphs and applying it for regularization. To investigate the properties of the

solution of the primal problem (20.5), let us derive the dual problem in a similar

way to that of Schölkopf and Smola (2002). Then, the convex optimization problem

can be rewritten as the following min-max problem using Lagrange multipliers,

max
α,η

min
Ŷ ,γ

(Ŷ − Y)⊤(Ŷ − Y) + cγ +

m∑

k=1

αk(Ŷ T LkŶ − γ) − ηγ, (20.6)

where the Lagrange multipliers satisfy αk, η ≥ 0. If the inner (minimization) prob-

lem is solved analytically, one ends up with the outer (maximization) problem with

respect to the Lagrange multipliers only. The maximization problem corresponds to

the dual problem of (20.5), which is easier to solve in many cases. When expressed

20.3 Combining Multiple Graphs 367

in terms of the Lagrange multipliers, the optimal solution of the primal problem

gains more interpretability. For example, for support vector machines, the analysis

using the dual problem is effectively used for explaining the basic properties of the

discriminant hyperplane (e.g., large margin and support vectors) (Schölkopf and

Smola, 2002).

Now, let us solve the inner optimization problem. By setting the derivative with

respect to γ to zero, (20.6) becomes

c −
m∑

k=1

αk = η. (20.7)

Since η ≥ 0, the sum of αk is constrained as
∑m

k=1 αk ≤ c. Substituting (20.7) into

(20.6), we have

max
α

min
Ŷ

(Ŷ − Y)⊤(Ŷ − Y) +
m∑

k=1

αkŶ T LkŶ . (20.8)

Setting the derivative with respect to Ŷ to zero, we get

(I +

m∑

k=1

αkLk)Ŷ = Y, (20.9)

which leads to the optimal solution

Ŷ = (I +
m∑

k=1

αkLk)−1Y. (20.10)

Now the optimal solution of Ŷ is written in terms of the Lagrange multipliers αk.

Comparing (20.10) with the single graph solution (20.3), one can see that the La-

grange multipliers αk’s play the role of the weights for combining graphs. Note that

the role of the parameter c can also be interpreted similarly to its role in the single

graph case. In the case of multiple graphs, the parameter c controls the influence

of graph Laplacians in an implicit way by constraining the sum of all weights. See

the Eq. 20.7.

By substituting (20.10), the Lagrangian (20.6) becomes the following dual prob-

lem,

max
α

Y ⊤Y − Y ⊤(I +
m∑

k=1

αkLk)−1Y

m∑
k=1

αk ≤ c.
(20.11)

Ignoring a constant term, the maximization problem is equivalent to the following

368 Prediction of Protein Function from Networks

minimization problem:

min
α

Y ⊤(I +
m∑

k=1

αkLk)−1Y

m∑
k=1

αk ≤ c.
(20.12)

Denote by d(α) the dual objective function (20.12). Due to the Karush-Kuhn-

Tucker (KKT) conditions, we have αk(Ŷ ⊤LkŶ − γ) = 0 at the optimal solution.

Therefore, αk = 0 iff Ŷ ⊤LkŶ < γ, and αk > 0 iff Ŷ ⊤LkŶ = γ. If the constraint

Ŷ ⊤LkŶ ≤ γ is satisfied as an equality only for some of the graphs, we obtain a

sparse solution for αk, since the αk corresponding to the other graphs are zeros.

This implies integration with selectivity. A graph with zero weight (i.e., αk = 0) is

considered unnecessary or redundant since the optimal score vector Ŷ would not

change even if it is removed. On the other hand, a graph with non-zero weight (i.e.,

αk > 0) satisfies Ŷ ⊤LkŶ = γ, and accordingly plays an essential role in determining

the value of the score vector.

20.3.1 Regularized Version

The principle of combining multiple graphs, integration with selectivity, is a com-

bination of two contradicting goals, integration versus selection, which needs to

be balanced. In practical applications, we found the proposed algorithm too selec-

tive (i.e., the maximum weight is too dominant) leading to poorer generalization

performance. To spread the weights {αk}m
k=1, we introduce another term as follows:

min
Ŷ ,ξ,γ

(Ŷ − Y)⊤(Ŷ − Y) + cγ + c0

m∑
k=1

ξk

Ŷ T LkŶ ≤ γ + ξk, ξk ≥ 0, γ ≥ 0.

(20.13)

The dual problem then leads to

min
α

Y ⊤(I +
m∑

k=1

αkLk)−1Y ≡ d(α)

0 ≤ αk ≤ c0,
m∑

k=1

αk ≤ c.
(20.14)

The new parameter c0 extends flexibility. When c0 = c, (20.14) becomes selection-

oriented by recovering the solution of (20.12). And at the other extreme c0 = c/m,

(20.14) becomes integration-oriented by uniformly spreading a fixed value to all

weights.

20.3.2 Optimization

We can simply solve the optimization problem, for instance, with the gradient

descent method. This requires the computation of the dual objective d(α) as well

20.4 Experiments on Function Prediction of Proteins 369

as its partial derivatives. The derivatives are

∂d

∂αj
= −Y ⊤(I +

m∑

k=1

αkLk)−1Lj(I +

m∑

k=1

αkLk)−1Y, (20.15)

by means of the relation ∂
∂aB−1 = −B−1(∂

∂aB)B−1. Although we have the inverse

matrix (I +
∑m

k=1 αkLk)−1 in the solution (20.10), the objective (20.12), and the

derivative (20.15) as well, we do not need to calculate it explicitly, because it always

appears as a vector form of (I +
∑m

k=1 αkLk)−1Y , which can be obtained as the

solution of sparse linear systems. Therefore, the computational cost of the dual

objective and the derivative is nearly linear in the number of non-zero entries of∑m
k=1 αkLk (Spielman and Teng, 2004).

20.4 Experiments on Function Prediction of Proteins

The graph-combining method was evaluated on the data set provided by Lanck-

riet et al. (2004c). The task is to classify the function of yeast proteins into

the 13 highest-level categories of the functional hierarchy (see table 20.1). The

function of 3588 proteins is labeled according to the MIPS comprehensive yeast

genome database (CYGD, http://mips.gsf.de/projects/fungi/yeast.html).

Note that a protein can belong to several functional classes. We solved a two-class

classification problem to determine membership or nonmembership of each func-

tional class, and evaluated the accuracy of each classification.

Table 20.2 lists the five different types of protein graphs (or networks) used in the

experiments. The graphs W1 and W5 are created from vectorial data, i.e., Pfam do-

main structure and gene expression, respectively. The graphs W2, W3, and W4 are

directly taken from the database in graph form, corresponding to coparticipation

in a protein complex, physical interactions, and genetic interactions, respectively.

See (Lanckriet et al., 2004c) for more information. The density of the Laplacian

matrices (i.e. the fraction of non-zero entries) is shown in the last column of the

table. All the matrices are very sparse (maximum density 0.8%), which contributes

to memory-saving. If one were to try to use a diffusion kernel, it would take much

more memory factor (1/0.007 ≈ 142). In learning, each graph was transformed into

a normalized Laplacian matrix Lk.

Prediction accuracy is evaluated by fivefold cross-validation with three repeti-

tions. For each partition of training and test nodes, the ROC (receiver operating

characteristic) score is calculated, and then averaged over all the five partitions. The

ROC score is calculated as the area under the ROC curve which plots true positive

rate (sensitivity) as a function of false positive rate (1-specificity) for differing clas-

sification thresholds (Gribskov and Robinson, 1996). It measures the overall quality

of the ranking induced by the classifier, rather than the quality of a single value of

370 Prediction of Protein Function from Networks

Table 20.1 Thirteen CYGD functional classes

classes

1 metabolism

2 energy

3 cell cycle and DNA processing

4 transcription

5 protein synthesis

6 protein fate

7 cellular transportation and transportation mechanism

8 cell rescue, defense, and virulence

9 interaction with cell environment

10 cell fate

11 control of cell organization

12 transport facilitation

13 others

threshold in that ranking. An ROC score of 0.5 corresponds to random guessing,

and an ROC score of 1.0 implies that the algorithm succeeded in putting all of

the positive examples ahead of all of the negatives. The value of parameter c was

determined by five cross-validation searching over

c ∈ {0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 25, 50, 100}.

The following values were obtained for the thirteen classes

(5, 5, 25, 25, 10, 10, 5, 5, 10, 10, 100, 2.5, 25),

respectively.

The graph-combining method was compared with individual graphs, and with

the state-of-the-art SDP/SVM method based on the reported results (Lanckriet

et al., 2004c). We then compared integration by optimized weights with integration

by fixed weights.

20.4.1 Comparison with Individual Graphs

When compared with individual graphs (Lk’s), the combined graph (Lopt) outper-

formed Lk in terms of ROC score. To test the significance of the difference, McNe-

mar’s test was conducted. In principle, McNemar’s test is used to determine whether

one learning algorithm outperforms another on a particular learning task (Diet-

20.4 Experiments on Function Prediction of Proteins 371

Table 20.2 Protein networks used in the experiment. Density shows the fraction of
non-zero entries in the respective Laplacian matrices.

matrix description density (%)

W1

Graph created from Pfam domain structure. A protein
is represented by a 4950-dimensional binary vector, in
which each bit represents the presence or absence of one
Pfam domain. An edge is created if the inner product
between two vectors exceeds 0.06. The edge weight cor-
responds to the inner product.

0.7805

W2

Coparticipation in a protein complex (determined by
tandem affinity purification, TAP). An edge is created
if there is a bait-prey relationship between two proteins.

0.0570

W3 Protein-protein interactions (MIPS physical interactions) 0.0565

W4 Genetic interactions (MIPS genetic interactions) 0.0435

W5

Graph created from the cell cycle gene expression mea-
surements (Spellman et al., 1998). An edge is created if
the Pearson coefficient of two profiles exceeds 0.8. The
edge weight is set to 1. This is identical with the network
used in (Deng et al., 2003).

0.0919

terich, 1998). Figure 20.3 shows the empirical p-value distribution of McNemar’s

test. A small p-value indicates that Lopt is better than Lk. The total number of

trials amounts to 975 (= 3 repetitions×5 pairwise tests×5 CVs×13 classes). In 594

(61%) trials, there is a statistically significant difference (significance level α=0.05),

which corresponds to the leftmost bar in figure 20.3. Specifically, in each pairwise

comparison, Lopt significantly outperforms single Lk’s in 55.31%, 58.31%, 60.03%,

68.21%, and 61.03% of the total number of trials, respectively. Figure 20.4 presents

the comparison of ROC scores between Lopt and the best performing individual

graph.

20.4.2 Comparison with SDP/SVM

Figure 20.5 presents the comparison results between the graph-combining method

and SDP/SVM method. The ROC score of the SDP/SVM method was obtained

from Lanckriet et al. (2004c). The ROC score of the Markov random field (MRF)accuracy

method from Deng et al. (2003) is also plotted in the figure. The MRF method

is an early work which shares the same data sources as ours for yeast protein

372 Prediction of Protein Function from Networks

Figure 20.3 p-Value distribution of McNemar’s test: For most of 975 McNemar’s test
trials, Lopt outperforms Lk’s. Particulary, for 61% of the total number of trials, there is
a statistically significant difference (at a significance level of α=0.05), which corresponds
to the leftmost bar in the figure.

Figure 20.4 Comparing ROC scores of combined networks and the best performing
individual graph. Within each group of bars, a blue bar corresponds to the best individual
graph, while a black bar corresponds to Lopt. Across the 13 classes, Lopt outperforms the
best performing individual.

function prediction. For most classes, the graph-combining method achieves high

scores, which are similar to SDP/SVM methods. In classes 11 and 13, the graph-

combining method does not perform as well as SDP/SVM (but still better than the

MRF method), which is an indication of the superior generalization performance of

the SVM. We could not perform tests of significance since the detailed experimental

results of MRF or SDP/SVM were not available.

Now, let us compare the computational time. Solving the sparse linear system,

which appears in the solution (20.10), the objective (20.12), and the derivativecomputational

time

20.4 Experiments on Function Prediction of Proteins 373

Figure 20.5 ROC score comparison between MRF, SDP/SVM, and Lopt for 13 func-
tional protein classes: Green bars correspond to the MRF method of Deng et al. (2003);
blue bars correspond to the SDP/SVM method of Lanckriet et al. (2004c). Black bars
correspond to Lopt.

(20.15), only took 1.41 seconds (standard deviation 0.013) with the Matlab com-

mand mldivide in a standard 2.2GHz PC with 1GB of memory. Solving the dual

problem (20.14) that includes multiple times of computation for the sparse lin-

ear system took 49.3 seconds (standard deviation 14.8) with the Matlab command

fmincon. In contrast, the SDP/SVM method takes several hours using a commer-

cial SDP solver (G.R.G. Lanckriet, personal communication). Thus, in the light

of its simplicity and efficiency (and hence scalability), the shorter computational

time of the graph-combining method compensates considerably for the slight loss

of accuracy against the SDP/SVM method.

20.4.3 Comparison with Fixed Weight Integration

A combined graph with fixed weights was defined as Lfix = 1
m

∑m
k=1 Lk. Note that

the fixed weights correspond to the solution of (20.14) when c0 = c/m = 0.2c.

The ROC scores for all functional classes are shown in figure 20.6, together with

the weights for the graphs. The optimization of weights did not always lead to

better ROC scores (except for classes 10, 11, 13). This can be explained using

SVM theory. The graph combined with fixed weights can be regarded as an SVM

decision function with all training data points, and the graph combined with

optimized weights as an SVM decision function with only support vectors. There is

no difference in accuracy between the two decision functions. Therefore we prefer

integration with optimized weights since it has the advantage of being able to single

out important graphs for learning over redundant ones without loss of accuracy.

Looking at the weights of Lopt in the figure, W4 and W5 almost always have very

low weights, which suggests that these two graphs can be redundant for learning.

The capability of selecting more important graphs would be especially valuable as

the number of available data sources increases. There was no statistically significant

difference between Lopt and Lfix in performance (McNemar’s test, significance level

α=0.05). Figure 20.7 presents typical ROC curves of Lopt and Lfix for class 1.

374 Prediction of Protein Function from Networks

Figure 20.6 Prediction accuracy for 13 functional protein classes. The yellow bars and
the blue bars in the upper panel show the ROC scores of Lfix and Lopt, respectively. The
middle and lower panels depict the combination weights Lfix and Lopt, respectively.

Figure 20.7 ROC curve for protein functional class 1. The thin blue and thick black
curves correspond to Lfix and Lopt, respectively.

20.5 Conclusion and Outlook

In this chapter, we have presented an algorithm for formulating a semi-supervised

learning problem with multiple graphs. Both prediction of unknown class labelsSummary

and searching for weights for combining multiple graphs are cast into one convex

optimization problem. The graph-combining method showed promising results on

function classification of yeast proteins, performing significantly better than any

single graph, and when compared with SDP/SVM it showed comparable accuracy

in a remarkably short time. When compared with fixed-weight integration it em-

20.5 Conclusion and Outlook 375

pirically proved a desirable property, integration with selectivity.

Although the graph-combining method provides a straightforward and principled

way of combining multiple graphs, there still remain several challenges for futureFuture work

work. First, it will be useful to perform a more in-depth time complexity analysis.

From the literature, we know that one iteration of our method is nearly linear in

the total number of non-zero entries across all Laplacian matrices (Spielman and

Teng, 2004). However, the analysis of the overall complexity analysis is not yet

done. Second, we have to confirm whether the weights assigned by our methods

are biologically meaningful or not. Third, it will be interesting to compare our

method with the prediction-combination approach, where the predictions based on

individual networks are combined by, e.g., majority vote.

21 Analysis of Benchmarks

In order to assess strengths and weaknesses of different semi-supervised learning

(SSL) algorithms, we invited the chapter authors to apply their algorithms to eight

benchmark data sets. These data sets encompass both artificial and real-world

problems. We provide details on how the algorithms were applied, especially how

hyperparameters were chosen given the few labeled points. Finally, we present and

discuss the empirical performance.

21.1 The Benchmark

21.1.1 Data Sets

The benchmark consists of eight data sets as shown in table 21.1. Three of them

were artificially created in order to create situations that correspond to certain

assumptions (cf. chapter 1); this was done to allow for relating the performance

of the algorithms to those assumptions. The five other benchmark data sets were

derived from real data. It can thus be hoped that the performance on these is

indicative of the performance in real applications.

Table 21.1 Basic properties of benchmark data sets

Data set Classes Dimension Points Comment

g241c 2 241 1500 artificial

g241d 2 241 1500 artificial

Digit1 2 241 1500 artificial

USPS 2 241 1500 imbalanced

COIL 6 241 1500

BCI 2 117 400

Text 2 11,960 1500 sparse discrete

SecStr 2 315 83,679 sparse binary

378 Analysis of Benchmarks

The purpose of the benchmark was to evaluate the power of the presented

algorithms themselves in a way as neutral as possible. Thus ideally the data

preprocessing should be similar for all algorithms; in particular, it should be avoided

that in some cases it takes advantage of domain knowledge, when in others it does

not. To prevent the experimenters from using domain knowledge, we tried to obscure

structure in the data (e.g. by shuffling the pixels in the images), and even to hide the

identity of the data sets (e.g. by also shuffling the data points). Also, we used the

same number of dimensions (241) and points (1500) for most data sets in the same

attempt to obscure the origin of the data and in order to increase the comparability

of the results. However, we did provide information as to which data sets originate

from images and which from text.

All data sets are available for further research at http://www.kyb.tuebingen.

mpg.de/ssl-book/.

g241c This data set was generated such that the cluster assumption holds, i.e. the

classes correspond to clusters, but the manifold assumption does not. First, 750

points were drawn from each of two unit-variance isotropic Gaussians (i.e., from

N(µi, I)), the centers of which had a distance of 2.5 in a random direction (i.e.,

‖µ1 − µ2‖ = 2.5). The class label of a point represents the Gaussian it was drawn

from. Finally, all dimensions are standardized, i.e. shifted and rescaled to zero-mean

and unit variance. A two-dimensional projection of the data is shown on the left

side of figure 21.1.

−5 0 5
−5

0

5

direction that separates class centers

fi
rs

t
P

C
A

 d
ir
e

c
ti
o

n
 o

f
re

m
a

in
d

e
r

g241c

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

direction that separates class centers

fi
rs

t
P

C
A

 d
ir
e

c
ti
o

n
 o

f
re

m
a

in
d

e
r

g241d

Figure 21.1 Two-dimensional projections of g241c (left) and g241d (right). Black
circles, class +1; gray crosses, class -1.

g241d This data set was constructed to have potentially misleading cluster

structure, and no manifold structure. First 375 points were drawn from each of

two unit-variance isotropic Gaussians, the centers of which have a distance of 6

in a random direction; these points form the class +1. Then the centers of two

21.1 The Benchmark 379

further Gaussians for class −1 were fixed by moving from each of the former

centers a distance of 2.5 in a random direction. Again, the identity matrix was

used as covariance matrix, and 375 points were sampled from each new Gaussian.

A two-dimensional projection of the resulting data is shown on the right side of

figure 21.1.

Digit1 This data set was designed to consist of points close to a low-dimensional

manifold embedded into a high-dimensional space, but not to show a pronounced

cluster structure. We therefore started from a system that generates artificial

writings (images) of the digit “1” developed by Matthias Hein (Hein and Audibert,

2005). The images are constructed starting from an abstract “1” implemented

as a function [0, 1]2 → {0, 1}, with the main vertical line ranging from y = 0.2

to y = 0.8 at x = 0.5. There are five degrees of freedom in this function: two

for translations ([−0.13, +0.13] each), one for rotation ([−90◦, +90◦]), one for line

thickness ([0.02, 0.05]), and one for the length of a small line at the bottom ([0, 0.1]).

The resulting function is then discretized to an image of size 16×16. As an example,

the first data point is shown in figure 21.2 (left).

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 21.2 First data point from Digit1 data set. (Left) Original image. (Right) After
rescaling, adding noise, and masking dimensions (x).

We randomly sampled 1500 such images. The class label was set according to the

tilt angle, with the boundary corresponding to an upright digit. To make the task

a bit more difficult, we apply a sequence of transformations to the data as shown

in algorithm 21.1, with σ set to 0.05. The result of this transformation (except for

bias and permutation) applied to the first data point is shown in the right part of

figure 21.2.

Since the data lie close to a five-dimensional manifold, SSL methods based on the

manifold assumption are expected to improve substantially on supervised learning.

380 Analysis of Benchmarks

Algorithm 21.1 Obscure image data

Require: σ {standard deviation of random noise}
1: randomly select and permute 241 columns (features)

2: add to each column a random bias drawn from N(0, 1)

3: multiply each column by a value from unif([−1,−0.5] ∪ [0.5, 1])

4: add independent noise from N(0, σ2I) to each row (data point)

USPS We derived a benchmark data set from the famous USPS set of handwrit-

ten digits as follows. We randomly drew 150 images of each of the ten digits. The

digits “2” and “5” were assigned to the class +1, and all the others formed class

−1. The classes are thus imbalanced with relative sizes of 1:4. We also expect both

the cluster assumption and the manifold assumption to hold.

To prevent people from realizing the origin of this benchmark data set and

exploiting its known structure (e.g. the spatial relationship of features in the image),

we again obscured the data by application of algorithm 21.1, this time with σ = 0.1.

Figure 21.3 illustrates the impact.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 21.3 Fourth data point from the USPS data set. (Left) Original image. (Right)
After rescaling, adding noise, and masking dimensions (x).

COIL The Columbia object image library (COIL-100) is a set of color images

of 100 different objects taken from different angles (in steps of 5 degrees) at a

resolution of 128 × 128 pixels (Nene et al., 1996).1 To create our data set, we first

downsampled the red channel of each image to 16 × 16 pixels by averaging over

blocks of 8 × 8 pixels. We then randomly selected 24 of the 100 objects (with

24 ∗ 360/5 = 1728 images). The set of 24 objects was partitioned into six classes of

four objects each. We then randomly discarded 38 images of each class, to leave 250

1. at http://www1.cs.columbia.edu/CAVE/research/softlib/coil-100.html

21.1 The Benchmark 381

each. Finally, we applied algorithm 21.1 (with σ = 2) to hide the image structure

from the benchmark participants. Figure 21.4 gives an illustration.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 21.4 First data point from the COIL data set. (Left) Original image. (Right)
After rescaling, adding noise, and masking dimensions (x).

BCI This data set originates from research toward the development of a brain

computer interface (BCI) (Lal et al., 2004). A single person (subject C) performed

400 trials in each of which he imagined movements with either the left hand (class

-1) or the right hand (class +1). In each trial, EEG (electroencephalography) was

recorded from 39 electrodes. An autoregressive model of order 3 was fitted to each

of the resulting 39 time series. The trail was represented by the total of 117 = 39∗3

fitted parameters. We thank Navin Lal for providing these data.

Text This is the 5 comp.* groups from the Newsgroups data set and the goal is to

classify the ibm category versus the rest (Tong and Koller, 2001). We are thankful to

Simon Tong for providing this data set. A tf-idf (term frequency – inverse document

frequency) encoding resulted in a sparse representation with 11,960 dimensions.

For the benchmark, 750 points of each class have been randomly selected and the

features randomly permuted.

SecStr The main purpose of this benchmark data set is to investigate how far

current methods can cope with large-scale application. The task is to predict the

secondary structure of a given amino acid in a protein based on a sequence window

centered around that amino acid. Our data set is based on the CB513 set,2 which

was created by Cuff and Barton and consists of 513 proteins (Cuff and Barton,

1999). The 513 proteins consist of a total of 84,119 amino acids, of which 440 were

X, Z, or B, and were therefore not considered.

2. e.g. at http://www.compbio.dundee.ac.uk/~www-jpred/data/pred_res/

382 Analysis of Benchmarks

For the remaining 83,679 amino acids, a symmetric sequence window of amino

acids [-7,+7] was used to generate the input x. Positions before the beginning or

after the end of the protein are represented by a special (21st) letter. Each letter

is represented by a sparse binary vector of length 21 such that the position of

the single 1 indicates the letter. The 28,968 α-helical and 18,888 β-sheet protein

positions were collectively called class -1, while the 35,823 remaining points (“coil”)

formed class +1.

We supplied another 1,189,472 unlabeled data points. However, none of the

benchmark participants chose to utilize these data in their experiments.

21.1.2 Experimental Setup

We decided to carry out the experiments in the transductive setting (cf. chapter 1):transductive

setting the test set coincides with the set of unlabeled points. First, this is most economical

in terms of the required amount of data points. Second, this poses the smallest

requirements to participating methods. Otherwise it would have been necessary

to develop and implement “out-of-sample extensions” (e.g. Bengio et al. (2004b))

for the inherently transductive algorithms. We expect the prediction accuracy on

the unlabeled points to be similar to that achieved on out-of-sample points (after

having trained on the same sets of labeled and unlabeled points). Recall, however,

that transductive methods have to be retrained for every new set of test data, which

may be prohibitive in some practical applications. On the other hand, the retraining

offers the potential to learn from an increasing amount of unlabeled data, namely

the accumulated test points. This potential is wasted when an inductive classifier

is trained only once and from there on used.

An important question is how many labeled points are required to achieve decent

classification accuracy. To shed some light on this, we equipped the benchmark data

sets with subsets of labeled points of different sizes. More precisely, the number ofnumbers of

labeled points labeled points is either 10 or 100 for all data sets except for SecStr, for which it

is 100, 1000, or 10,000. In order to make the accuracy estimates derived from the

experiments robust and independent of coincidental properties of the chosen points,

we devised twelve subsets for each combination of data set and number of labeled

points (ten for data set SecStr). When choosing the subsets of labeled points, we

take care to pick at least one point from each class.

Since the unions of the sets of labeled points already cover substantial parts

of the entire data sets, we provided the labels of all points to the participants of

the benchmarks. This allowed for finding hyperparameter values by minimizing the

test error, which is not possible in real applications; however, the results of thismodel selection

procedure can be useful to judge the potential of a method. To obtain results that

are indicative of real world performance, the model selection has to be performed

using only the small set of labeled points.

21.2 Application of SSL Methods 383

Table 21.2 TSVM results. For the linear kernel the algorithm described in chapter 6
has been used, for the nonlinear kernel the one of (Chapelle and Zien, 2005).

g241c g241d Digit1 USPS COIL BCI Text

Linear 20.95 46.35 20.59 30.66 50.04 28.60

Nonlinear 24.71 50.08 17.77 25.20 67.50 49.15 31.21
n = 10

Linear 18.18 23.76 18.05 21.12 42.67 22.31

Nonlinear 18.46 22.42 6.15 9.77 25.80 33.25 24.52
n = 100

21.2 Application of SSL Methods

A major problem in the application of SSL methods to problems with very few

labeled data points is the model selection. In the following we describe for each

method how this was approached. Unless mentioned otherwise, the experiments

have been conducted by the authors of the corresponding chapters.

Several authors have provided results corresponding to different variations of

their algorithm. In order to keep the final results table as concise as possible, we

have in these cases compared them and preselected the best one.

Finally, all the results reported on the tables below are test errors in %.

21.2.1 Transductive Support Vector Machines

Thorsten Joachims has reported results for the transductive support vector machine

(TSVM) algorithm described in chapter 6 and for the spectral graph transducer

(SGT) (Joachims, 2003). He used the code available on his webpage.

No model selection or parameter tuning has been performed, and according

to Joachims the results are likely to be improved by appropriate preprocessing

and/or model selection. For TSVM, a linear kernel was used and C was fixed to

C−1 = 1
n

∑n
i=1 ||xi||2. For the SGT algorithm, the hyperparameters were set as in

(Joachims, 2003): C = 3200, d = 80, and k = 100.

Since we believe that on some data sets nonlinearity might be important, we ran

our own implementation of TSVM (Chapelle and Zien, 2005) with a radial basis

function (RBF) kernel. Its width was chosen as the median of the pairwise distances

and C was fixed to 100. Results are presented in table 21.2. The tables at the end

of this chapter will refer to the nonlinear version.

21.2.2 Entropy Regularization

The method described in chapter 9 can be kernelized, but the experiments have been

reported using a linear classifier. The hyperparameters (λ and weight decay) have

been chosen by cross-validation. In case of a tie the smaller λ and the larger weight

decay have been selected. Since the algorithm is similar to TSVM (cf. section 21.2.1)

384 Analysis of Benchmarks

Table 21.3 Performances of the entropy regularization method (cf. chapter 9). Because
of the links with TSVM and the use of a linear classifier, the comparison with linear TSVM
(see table 21.2) is relevant.

g241c g241d Digit1 USPS COIL BCI Text

Entropy-Reg. 47.36 45.81 24.44 20.25 66.53 47.71 42.07

Linear TSVM 20.95 46.35 20.59 30.66 50.04 28.60
n = 10

Entropy-Reg. 20.97 25.36 7.28 12.21 29.48 28.89 24.86

Linear TSVM 18.18 23.76 18.05 21.12 42.67 22.31
n = 100

and a linear class of function has been used, we decided to compare the results with

those of the linear TSVM. The comparison is shown in table 21.3.

21.2.3 Data-Dependent Regularization

The experiments were run using the distributed propagation data-dependent reg-

ularization, which is applicable to both relational data and data derived from a

metric. The most important modeling decision in applying data-dependent regu-

larization is the selection of the regions that bias label similarity. In the absence

of domain knowledge, k-nearest neighbor regions, centered at each data point as

induced by the default Euclidean distance metric, were considered.

In order to determine the number of points in each region tenfold cross-validation

experiments were run. For this purpose, points that were graph-disconnected from

training data were always treated as errors; this encouraged selecting a k that makes

the information regularization graph connected.

The weight of labeled training data against unlabeled data, λ, was set to 0,

meaning that the posterior labels of training data were not allowed to change

from their given values. The regularization iteration proceeded until the change

in parameters became insignificant.

As a result of data-dependent regularization, each previously unlabeled point

now had a probabilistic class label. This probabilistic class label was converted to a

real label by thresholding the probability. The threshold was applied as an additive

term to the log probability of each class. Then the class assigned by the classifier

was determined by maximizing the threshold-adjusted (log) probability.

Proper selection of the threshold requires cross-validation. However, for computa-

tional efficiency reasons the authors cross-validated only between two scenarios: the

first, in which the threshold applied to each class is 0, which corresponds to treating

the output of information regularization as plain probabilities; and the second, in

which the threshold of each run is optimized so that the resulting class frequency

on the unlabeled data matches the empirical class frequency on the labeled ob-

servations. Data sets 1, 3, 4, and 6 preferred the first algorithm for selecting the

threshold (that is, no threshold), while data sets 2, 5, and 7 preferred the second

algorithm.

21.2 Application of SSL Methods 385

Table 21.4 Influence of the class mass normalization (CMN, cf. chapter 11)

g241c g241d Digit1 USPS COIL BCI Text

Without CMN 50.07 49.47 19.66 19.63 61.50 50.66 49.99

With CMN 39.96 46.55 9.80 13.61 59.63 50.36 40.79
n = 10

Without CMN 39.37 36.42 3.17 10.65 10.01 46.92 30.54

With CMN 22.05 28.20 3.15 6.36 10.03 46.22 25.71
n = 100

21.2.4 Label Propagation and Quadratic Criterion

A fully connected graph with an RBF kernel has been chosen for the algorithm

described in chapter 11. More precisely, the cost function (11.11) is minimized

giving the closed-form solution (11.12). The kernel bandwidth σ was selected in the

following way:

For data sets with 100 labeled examples, by cross-validation on the first split, the

same σ being used on all other splits

For data sets with 10 labeled examples, with the following basic heuristic: σ = d/3,

where d is the estimated average distance between a point in the data set and its

10th nearest neighbor

The tradeoff coefficient μ was set to 10−6.

As shown in table 21.4, the class mass normalization (cf. section 11.5) seemed to

be very important, and later results are reported using this technique.

21.2.5 The Manifold Basis of Semi-Supervised Learning

Experiments have been conducted using the semi-supervised kernel introduced in

section 12.4. This kernel was used either in an SVM or in regularized least squares

(RLS; aka kernel ridge regression).

The kernel is of the form

K̃(x, z) = K(x, z) − k⊤
x (I + rLpG)−1Lpkz,

where K(x, z) is a base kernel, [kx]i = K(xi, x), G is the Gram matrix (of size

l + u), L is the normalized graph Laplacian, and r is the ratio γI

γA
.

The base kernel was chosen to be an RBF with width σ. L is computed from

an adjacency matrix W corresponding to a weighted k nearest neighbors graph

with weights Wij = exp
(
− ||xi−xj ||2

2σG

)
if there is an edge between xi and xj , and

0 otherwise. The width σG is fixed as the mean distance between adjacent nodes

on this graph. The adjacency matrix is symmetrized by setting Wij = Wji for

any non-zero edge weight Wji. The normalized graph Laplacian is computed as

L = I−D−1/2WD−1/2 where D is a diagonal degree matrix given by Dii =
∑

j Wij .

386 Analysis of Benchmarks

For all data sets except Text, k = 5, p = 2 was used. For Text, those values

are k = 50, p = 5. This is based on the experimental experience of the authors:

relatively smaller values of k and p tend to work well for image data sets and larger

values are useful for textual data sets. No further optimization on these parameters

was attempted.

For the multiclass data set, a one-vs.-the-rest strategy was used. For each of

the classifiers, the bias b was selected such that a sixth of the unlabeled data was

classified in the positive class (because of a prior on uniform class probabilities for

the six classes).

The hyperparameters were chosen by performing a search over the following grid:

1. regularization parameter γA ∈ {10−6, 10−4, 10−2, 1, 100};
2. base kernel width σ ∈ {σ0

8 , σ0

4 , σ0

2 , σ0, 2σ0, 4σ0, 8σ0}, where σ0 is the mean norm

of the feature vectors in the data set;

3. ratio r = γI

γA
∈ {0, 10−4, 10−2, 1, 100, 104, 106}.

For data sets COIL and SecStr, the best mean test error across splits was

reported. For other data sets, the model selection criterion used was either

fivefold cross-validation error for 100 labeled points, or

for 10 labeled points, the normalized cut, y⊤Lpy
|i,yi=1| |i,yi=−1| , where y is the vector

of predicted labels.

Data set 8 was treated differently due to its size. The linear Laplacian support

vector machine/regularized least squares (SVM/RLS) was run as described in

section 12.5 and (Keerthi and DeCoste, 2005). The values k = 5, p = 4 were

set based on a crude search. Efficient nonlinear methods are currently under

development and may possibly return better performance on this data set.

It is important to note that Laplacian SVM/RLS also provides out-of-sample

prediction on completely unseen test points. Experimental results on data set

Digit1 are provided in chapter 12 Results are presented on table 21.5. Since

LapRLS achieved slightly better performances, we consider this method for the

table at the end of this chapter.

21.2.6 Discrete Regularization

This method consists in minimizing (13.12) with p = 2 as explained in section 13.3.1.

The experiments have been carried out by Mingrui Wu. The value μ was set to 0.05.

A k-nearest neighbor graph was constructed with weights on edges (i, j) computed

as exp(−γ||xi − xj ||2). The values for k and γ were selected by tenfold cross-

validation in the sets {5, 10, 20, 50,∞} and { 1
64 , 1

16 , 1
4 , 1, 4, 16, 64} respectively. The

input data are normalized such that the 1
c2 quantile of the pairwise distances equals

1, where c is number of classes.

21.2 Application of SSL Methods 387

Table 21.5 Semi-supervised kernel (chapter 12). No MS stands for “no model selection”:
this is the best mean test error achieved across all hyperparameter values.

g241c g241d Digit1 USPS COIL BCI Text

LapRLS 43.95 45.68 5.44 18.99 – 48.97 33.68

LapRLS – no MS 41.74 41.46 6.54 14.67 54.54 46.35 33.35

LapSVM 46.21 45.15 8.97 19.05 – 49.25 37.28
n = 10

LapSVM – no MS 45.53 43.55 6.58 14.99 56.87 46.43 34.04

LapRLS 24.36 26.46 2.92 4.68 – 31.36 23.57

LapRLS – no MS 23.45 24.77 1.81 4.31 11.92 27.89 23.32

LapSVM 23.82 26.36 3.13 4.70 – 32.39 23.86
n = 100

LapSVM – no MS 23.43 24.66 2.19 4.36 13.21 28.58 23.08

21.2.7 Semi-Supervised Learning with Conditional Harmonic Mixing

This method is used to improve the performance of a supervised base classifier.

A detailed description of its application to five of the benchmark data sets can be

found in chapter 14. In a nutshell, an SVM is trained on the labeled points, and used

to predict an initial (delta-) distribution on each unlabeled point. These are used

to estimate conditional probability distributions that are associated to the edges of

a directed graph with the data points as nodes. The authors took care to make the

method essentially free of hyperparameters by averaging over a number of graphs

constructed in different ways, although they conclude from their experiments that

clever model selection might be able to perform better (cf. chapter 14).

21.2.8 Spectral Methods for Dimensionality Reduction

For the dimensionality methods described in chapter 16, a number k of nearest

neighbors has to be chosen and the manifold dimensionality has to be estimated.

k was set 3 for maximum variance unfolding (MVU), 12 for locally linear embed-

ding (LLE), and 6 for Isomap and Laplacian eigenmaps. The dimensionality was

estimated such that MVU explains 99% of the variance of the data (cf. table 21.6).

After dimensionality reduction, the 1-nearest neighbor algorithm was used.

Table 21.6 First line: number of components kept in the dimensionality reduction;
second line: “true” manifold dimension; third line: estimate of the manifold dimension
according to the method described in (Hein and Audibert, 2005). 3

g241c g241d Digit1 USPS COIL BCI Text

38 33 4 9 3 8 29

241 241 5 ? 1 ? ?

66 63 15 4 2 9 7

388 Analysis of Benchmarks

Table 21.7 Nonlinear dimensionality reduction (chapter 16)

g241c g241d Digit1 USPS COIL BCI Text

Isomap 47.88 46.72 13.65 16.66 63.36 49.00 38.12

LapEig 47.47 45.34 12.04 19.14 67.96 49.94 40.84

LLE 47.15 45.56 14.42 23.34 62.62 47.95 45.32

MVU 48.68 47.28 11.92 14.88 65.72 50.24 39.40
n = 10

PCA 39.38 37.03 21.70 23.40 67.88 49.17 41.65

None 44.05 43.22 23.47 19.82 65.91 48.74 39.44

Isomap 43.93 42.45 3.89 5.81 17.35 48.67 30.11

LapEig 42.14 39.43 2.52 6.09 36.49 48.64 30.92

LLE 43.01 38.20 2.83 6.50 28.71 47.89 32.83

MVU 44.05 43.21 3.99 6.09 32.27 47.42 30.74
n = 100

PCA 33.51 25.92 8.27 9.50 28.41 48.58 28.83

None 40.28 37.49 6.12 7.64 23.27 44.83 30.77

The performances of the different dimensionality reduction methods can be found

in table 21.7. Note that principal components analysis (PCA) can achieve a very

good performance on some data sets; for instance, with 100 labeled points, the test

error is 17.3% on g241c, 9% on g241d, and 27.7% on Text, if, respectively, 1, 3, and

20 components are chosen. For the first two data sets, this is not really surprising

given the artificial nature of the data. For Text, this can be explained by the fact

that PCA performs latent semantic analysis (Deerwester et al., 1990). Finally, note

that additional dimensions would have been helpful for the COIL data set. Indeed,

with 12 components, Isomap achieve a test error of 12% (for 100 labeled points).

21.2.9 Large-Scale Algorithms

The large-scale methods described in chapter 18 use a small set of size m on which

to expand the solution. m was fixed to 100, except for the large-scale data set

SecStr where m was set to 1000.

The length scale σ was selected as explained in section 21.2.4, except that for

ten labeled points, the distance d used in the heuristic σ = d/3 is calculated as the

average distance between a point and its 10th nearest neighbor among m+10 other

points randomly selected.

3. We thank Matthias Hein for having computed those estimates.

21.2 Application of SSL Methods 389

Table 21.8 Large-scale strategies (chapter 18)

g241c g241d Digit1 USPS COIL BCI Text

NoSub 39.96 46.55 9.80 13.61 59.63 50.36 40.79

RandSub 40.11 41.93 15.21 15.64 65.11 49.96 37.37

SmartSub 39.56 42.20 14.19 18.56 65.94 48.31 38.60
n = 10

SmartOnly 39.82 42.24 12.60 16.95 63.97 49.47 38.23

NoSub 22.05 28.20 3.15 6.36 10.03 46.22 25.71

RandSub 23.60 25.85 4.20 7.97 19.74 44.61 25.60

SmartSub 22.07 26.16 4.11 7.51 22.86 44.36 25.71
n = 100

SmartOnly 22.07 25.98 3.50 6.90 15.70 44.78 25.75

Table 21.8 presents results for the following algorithms:

NoSub: No subsampling, i.e. the results of section 21.2.4.

RandSub: Random subsampling.

SmartSub: The method described in algorithm 18.1.

SmartOnly: Training using only a subset of the data selected by algorithm 18.1.

This is to be able to assess the usefulness of actually using the rest of the data in

the cost (cf. matrix CRS in Eq. 18.7).

21.2.10 Cluster Kernels

The kernel proposed in chapter 19 is a product of two kernels:

1. korig is a standard RBF kernel with width σ and ridge C−1. Those two hy-

perparameters have been optimized with the code available at http://www.kyb.

tuebingen.mpg.de/bs/people/chapelle/ams/.

2. kbag resulting from repeated runs of the k-means algorithm. k has been found

by tenfold cross-validation in the set {2, 4, 6, 8, 10, 20, 30, 40, 50}, the kernel korig

being fixed.

Finally, the method mentioned in footnote 2 in chapter 19 was used with λ = 0.5

on data sets COIL and SecStr because it worked better.

21.2.11 Low-Density Separation

This method is not described in the book, but in (Chapelle and Zien, 2005). The

code used to run the experiments is available at http://www.kyb.tuebingen.mpg.

de/bs/people/chapelle/lds/. The hyperparameter ρ is found by cross-validation,

the other hyperparameters being fixed to their default values. The reason for

390 Analysis of Benchmarks

not optimizing on more hyperparameters is that the the model selection becomes

unreliable, especially with only ten labeled points. Note that if the number k of

nearest neighbors is optimized on the test error, the test error can be dramatically

decreased: for instance, on Digit1 with ten labeled points, a test error of 3.7% was

achieved with k = 5. This has to be compared to the 15.6% achieved by cross-

validation on ρ only.

21.2.12 Boosting

Ayhan Demiriz ran experiments on data set SecStr using the assemble algorithm

(Bennett et al., 2002), which is a modified version of AdaBoost for semi-supervised

learning. It turns out that the algorithm was not very well suited for a very small

number of labeled points, as the algorithm stops whenever a weak learner correctly

classifies all labeled points. On the other hand, it seems much better suited for large

data sets, because the run time increases only linearly in the number of labeled and

unlabeled points.

The weak learner was a two-level decision tree. AdaBoost and Assemble have both

been run for 50 iterations. In this case, it seems that semi-supervised learning was

not helpful: AdaBoost achieved 30.8% test error, while Assemble achieved 32.2%.

21.3 Results and Discussion

To compare the results of the different methods, we summarize them in tables.

Tables 21.9 and 21.10 show the mean test errors and the ROC (receiver operating

characteristic) scores for training with 10 labeled points; similarly tables 21.11 and

21.12 for 100 labeled points. The results for SecStr are presented separately in

table 21.13 since the numbers of labeled points differ from the other data sets.

Further, only a small number of methods competed in this benchmark.

Tables 21.9 and 21.11 contain a lot of results and might be a bit difficult to parse.

For this reason, we propose to perform some clustering on the results. Concerning

the data sets, we can identify two main categories:

Manifold-like: The data lie near a low-dimensional manifold. Based on table 21.6,manifold-like

data sets this seems to be the case of data sets Digit1, USPS, COIL, and BCI. For the first

three, this can be easily explained by the fact the data represent images; for BCI,

this is less obvious, but it seems plausible that the signals captured by an EEG

have rather few degrees of freedom.

Cluster-like: The data are clustered, and they tend cluster in such a way that twocluster-like data

sets classes do not share the same cluster. By construction this is the case for data sets

g241c and g241d. We conjecture that Text belongs also to this category, because

cluster-based algorithms (see below) usually perform well on text data. As for the

algorithms, we can also identify two categories, which correspond to the two types

21.3 Results and Discussion 391

Table 21.9 Test errors (%) with 10 labeled training points. Values printed in italics
were obtained by performing model selection w.r.t. the test error.

g241c g241d Digit1 USPS COIL BCI Text

1-NN 47.88 46.72 13.65 16.66 63.36 49.00 38.12

SVM 47.32 46.66 30.60 20.03 68.36 49.85 45.37

21.2.8 MVU + 1-NN 47.15 45.56 14.42 23.34 62.62 47.95 45.32

21.2.8 LEM + 1-NN 44.05 43.22 23.47 19.82 65.91 48.74 39.44

21.2.4 QC + CMN 39.96 46.55 9.80 13.61 59.63 50.36 40.79

21.2.6 Discrete Reg. 49.59 49.05 12.64 16.07 63.38 49.51 40.37

21.2.1 TSVM 24.71 50.08 17.77 25.20 67.50 49.15 31.21

21.2.1 SGT 22.76 18.64 8.92 25.36 – 49.59 29.02

21.2.10 Cluster-Kernel 48.28 42.05 18.73 19.41 67.32 48.31 42.72

21.2.3 Data-Dep. Reg. 41.25 45.89 12.49 17.96 63.65 50.21 –

21.2.11 LDS 28.85 50.63 15.63 17.57 61.90 49.27 27.15

21.2.5 Laplacian RLS 43.95 45.68 5.44 18.99 54.54 48.97 33.68

21.2.7 CHM (normed) 39.03 43.01 14.86 20.53 – 46.90 –

Table 21.10 ROC scores (area under curve; %) with 10 labeled training points.

g241c g241d Digit1 USPS BCI Text

1-NN – – – – – –

SVM 64.68 63.04 88.38 75.56 51.59 67.97

21.2.8 MVU + 1-NN – – – – – –

21.2.8 LEM + 1-NN – – – – – –

21.2.4 QC + CMN 64.24 62.45 96.32 90.76 49.47 70.71

21.2.6 Discrete Reg. 51.75 52.73 91.03 80.65 51.45 53.79

21.2.1 TSVM 82.41 50.65 86.98 68.21 50.92 73.42

21.2.1 SGT 87.41 89.40 97.58 73.08 50.70 80.09

21.2.10 Cluster-Kernel 61.63 77.68 89.49 74.28 51.77 73.09

21.2.3 Data-Dep. Reg. 63.43 56.92 96.22 84.91 50.31 –

21.2.11 LDS 77.35 49.70 90.10 75.88 49.75 80.68

21.2.5 Laplacian RLS 59.23 57.07 99.50 85.70 51.69 76.55

21.2.7 CHM (normed) 64.83 62.29 92.91 81.16 52.75 –

of data sets mentioned above:

Manifold-based: These algorithms come from parts III and IV of this book:manifold-based

algorithms Discrete Reg, QC, Laplacian RLS, CHM, SDE, LEM, SGT. Note in particular that

Discrete Reg and QC minimize a similar cost function, the difference being the

normalization of the Laplacian.

Cluster-based (or low-density separation as explained in part II of the book: Therecluster-based

algorithms are three algorithms in this category which are expected to behave similarly: TSVM,

Data-Dep Reg, Entropy-Reg (see section 21.2.2). Finally, Cluster-Kernel and LDS

also belong to this category, but are not closely related to the former three.

A first conclusion that we can draw from these experiments is that no algorithm

392 Analysis of Benchmarks

Table 21.11 Test errors (%) with 100 labeled training points. Values printed in italics
were obtained by performing model selection w.r.t. the test error.

g241c g241d Digit1 USPS COIL BCI Text

1-NN 43.93 42.45 3.89 5.81 17.35 48.67 30.11

SVM 23.11 24.64 5.53 9.75 22.93 34.31 26.45

21.2.8 MVU + 1-NN 43.01 38.20 2.83 6.50 28.71 47.89 32.83

21.2.8 LEM + 1-NN 40.28 37.49 6.12 7.64 23.27 44.83 30.77

21.2.4 QC + CMN 22.05 28.20 3.15 6.36 10.03 46.22 25.71

21.2.6 Discrete Reg. 43.65 41.65 2.77 4.68 9.61 47.67 24.00

21.2.1 TSVM 18.46 22.42 6.15 9.77 25.80 33.25 24.52

21.2.1 SGT 17.41 9.11 2.61 6.80 – 45.03 23.09

21.2.10 Cluster-Kernel 13.49 4.95 3.79 9.68 21.99 35.17 24.38

21.2.3 Data-Dep. Reg. 20.31 32.82 2.44 5.10 11.46 47.47 –

21.2.11 LDS 18.04 23.74 3.46 4.96 13.72 43.97 23.15

21.2.5 Laplacian RLS 24.36 26.46 2.92 4.68 11.92 31.36 23.57

21.2.7 CHM (normed) 24.82 25.67 3.79 7.65 – 36.03 –

Table 21.12 ROC scores (area under curve; %) with 100 labeled training points.

g241c g241d Digit1 USPS BCI Text

1-NN – – – – – –

SVM 85.57 83.54 99.09 95.76 71.17 84.26

21.2.8 MVU + 1-NN – – – – – –

21.2.8 LEM + 1-NN – – – – – –

21.2.4 QC + CMN 86.40 82.23 99.59 91.11 56.48 84.62

21.2.6 Discrete Reg. 52.81 52.97 98.84 92.24 52.36 71.53

21.2.1 TSVM 88.55 84.18 98.02 92.74 73.09 80.96

21.2.1 SGT 91.74 97.48 99.76 96.72 56.79 85.22

21.2.10 Cluster-Kernel 93.15 98.95 99.36 94.50 70.50 85.90

21.2.3 Data-Dep. Reg. 87.50 74.18 99.81 97.74 54.38 –

21.2.11 LDS 89.37 83.13 99.23 95.62 57.22 84.77

21.2.5 Laplacian RLS 83.54 81.54 99.40 98.65 74.83 85.05

21.2.7 CHM (normed) 81.13 81.36 99.49 96.69 66.32 –

is uniformly better than the others, and that for a given semi-supervised learning

problem, the algorithm needs to be selected carefully as a function of the nature

of the data set. A general rule (which seems obvious a posteriori) is that manifold-

based algorithms should be used for manifold-like data sets, and cluster-based

algorithms should be used for cluster-like data sets.

It should be also noted that model selection was challenging for most of themodel selection

competitors, especially in the case of only 10 labeled points, where the use of cross-

validation can be unreliable. In this respect, the results with 100 labeled points are

expected to be more reliable and to give a better indication of the strength of the

different algorithms.

One of the disappointing results of this benchmark is the Text data set. Indeed,limits of

semi-supervised

learning

it has been shown that semi-supervised learning can be very useful for this type

21.3 Results and Discussion 393

Table 21.13 Results for SecStr for different numbers of labeled points. (Left) Test error
(%). (Right) ROC score (%). Values printed in italics were obtained by performing model
selection w.r.t. the test error.

100 1000 10000 100 1000 10000

SVM 44.59 33.71 – 59.09 70.86 –

Cluster Kernel 42.95 34.03 – 58.79 70.37 –

QC randsub (CMN) 42.32 40.84 – 54.77 59.99 –

QC smartonly (CMN) 42.14 40.71 – 55.59 60.25 –

QC smartsub (CMN) 42.26 40.84 – 55.35 60.08 –

Boosting (Assemble) – – 32.21 – – –

LapRLS 42.59 34.17 28.55 59.02 70.33 77.95

LapSVM 43.42 33.96 28.53 58.40 70.54 77.95

of data (Joachims, 1999; Nigam et al., 2000; Chapelle and Zien, 2005), but the

results from tables 21.9 and 21.11 exhibit only a moderate improvement over plain

supervised learning. The fact that the data set has been constructed in a one-vs-rest

setting could be a possible explanation (cf. section 21.1.1). To test this hypothesis

we tried to classify only two topics, namely ibm and x. A linear SVM achieved a

mean test error of 12% (over several subsets of 100 labeled points), while a linear

TSVM was able to reduce the test error to 2%. Further investigation is required to

understand why such a large improvement is possible in this case.

Finally, it is worth pointing out that one should not necessarily expect an

improvement with unlabeled data. The data sets BCI and SecStr seem to be

examples where it is difficult to do better than standard supervised learning.

At least for SecStr, this might be a problem of the amounts of unlabeled data

that are utilized. Current approaches to protein secondary structure prediction use

essentially all known protein sequences, which amount to tens or hundreds of million

unlabeled data points. This is only possible due to the use of a very simple strategy:

roughly speaking, each protein is represented by an average of the proteins in its

neighborhood (Rost and Sander, 1993). Clearly, bringing the more sophisticated

(and probably more powerful) SSL methods to this scale is an important open

problem.

In all cases, we believe that there is no “black box” solution and that a good

understanding of the nature of the data is required to perform successful semi-

supervised learning. Indeed, in supervised learning, it seems that a good generic

learning algorithm can perform well on a lot of real-world data sets without specific

domain knowledge. In contrast, semi-supervised learning is possible only due to

the special form of the data distribution that correlates the label of a data point

with its situation within the distribution; therefore it seems much more difficult

to design a general semi-supervised classifier. Instead, powerful semi-supervised

learning algorithms distinguish themselves through the ability to make use of

available prior knowledge about the domain and data distribution, in order to relate

data and labels and improve classification. 4

4. Part of this paragraph has been inspired by comments from Adrian Corduneanu.

VI Perspectives

22 An Augmented PAC Model for Semi-

Supervised Learning

Maria-Florina Balcan ninamf@cs.cmu.edu

Avrim Blum avrim@cs.cmu.edu

The standard PAC (probably approximately correct) learning model has proven

to be a useful theoretical framework for thinking about the problem of supervised

learning. However, it does not tend to capture the assumptions underlying many

semi-supervised learning methods. In this chapter we describe an augmented version

of the PAC model designed with semi-supervised learning in mind, that can be used

to help think about the problem of learning from labeled and unlabeled data and

many of the different approaches taken. The model provides a unified framework

for analyzing when and why unlabeled data can help, in which one can discuss both

sample-complexity and algorithmic issues.

Our model can be viewed as an extension of the standard PAC model, where in

addition to a concept class C, one also proposes a compatibility function: a type of

compatibility that one believes the target concept should have with the underlying

distribution of data. For example, it could be that one believes the target should

cut through a low-density region of space, or that it should be self-consistent in

some way, as in co-training. This belief is then explicitly represented in the model.

Unlabeled data are then potentially helpful in this setting because they allow one

to estimate compatibility over the space of hypotheses, and to reduce the size of

the search space from the whole set of hypotheses C down to those that, according

to one’s assumptions, are a priori reasonable with respect to the distribution.

After proposing the model, we then analyze sample-complexity issues in this

setting: that is, how much of each type of data one should expect to need in order

to learn well, and what are the basic quantities that these numbers depend on. We

provide examples of sample-complexity bounds both for uniform convergence and

ǫ-cover-based algorithms, as well as several algorithmic results.

398 An Augmented PAC Model for Semi-Supervised Learning

22.1 Introduction

As we have already seen in the previous chapters, there has been growing interest

in using unlabeled data together with labeled data in machine learning, and a

number of different approaches have been developed. However, the assumptions

these methods are based on are often quite distinct and not captured by standard

theoretical models.

One difficulty from a theoretical point of view is that standard discriminative

learning models do not really capture how and why unlabeled data can be of

help. In particular, in the PAC model there is purposefully a complete disconnect

between the data distribution D and the target function f being learned (Valiant,

1984; Blumer et al., 1989; Kearns and Vazirani, 1994). The only prior belief is

that f belongs to some class C: even if D is known fully, any function f ∈ C

is still possible. For instance, it is perfectly natural (and common) to talk about

the problem of learning a concept class such as DNF (disjunctive normal form)

formulas (Linial et al., 1989; Verbeurgt, 1990) or an intersection of halfspaces

(Baum, 1990; Blum and Kannan, 1997; Vempala, 1997; Klivans et al., 2002) over

the uniform distribution; but clearly in this case unlabeled data are useless — you

can just generate the data yourself. For learning over an unknown distribution

(the standard PAC setting), unlabeled data can help somewhat, by allowing one to

use distribution-specific sample-complexity bounds, but this does not seem to fully

capture the power of unlabeled data in practice.

In generative-model settings, one can easily talk theoretically about the use

of unlabeled data, e.g., (Castelli and Cover, 1995, 1996). However, these results

typically make strong assumptions that essentially imply that there is only one

natural distinction to be made for a given (unlabeled) data distribution. For

instance, a typical generative-model setting would be that we assume positive

examples are generated by one Gaussian, and negative examples are generated by

another Gaussian. In this case, given enough unlabeled data, we could in principle

recover the Gaussians and would need labeled data only to tell us which Gaussian is

the positive one and which is the negative one.1 This is too strong an assumption for

most real-world settings. Instead, we would like our model to allow for a distribution

over data (e.g., documents we want to classify) where there are a number of plausible

distinctions we might want to make.2 In addition, we would like a general framework

that can be used to model many different uses of unlabeled data.

In this chapter, we present a PAC-style framework that bridges these positions

1. Castelli and Cover (1995, 1996) do not assume Gaussians in particular, but they do
assume the distributions are distinguishable, which from our perspective has the same
issue.
2. In fact, there has been recent work in the generative model setting on the practical side
that goes in this direction (see (Nigam et al., 2000; Nigam, 2001)). We discuss connections
to generative models further in section 22.5.2.

22.1 Introduction 399

and which we believe can be used to help think about many of the ways unlabeled

data are typically used, including approaches discussed in other chapters. This

framework extends the PAC model in a way that allows one to express not only the

form of target function one is considering but also relationships that one hopes the

target function and underlying distribution will possess. We then analyze sample-

complexity issues in this setting: that is, how much of each type of data one should

expect to need in order to learn well, and also give examples of algorithmic results

in this model.

Specifically, the idea of the proposed model is to augment the PAC notion of a

concept class, which is a set of functions (like linear separators or decision trees),

with a notion of compatibility between a function and the data distribution that we

hope the target function will satisfy. Then, rather than talking of “learning a conceptmain idea

class C,” we will talk of “learning a concept class C under compatibility notion χ”.

For example, suppose we believe there should exist a good linear separator, and that

furthermore, if the data happen to cluster, then this separator probably does not

slice through the middle of any such clusters. Then we would want a compatibility

notion that penalizes functions that do, in fact, slice through clusters. In this

framework, the extent to which unlabeled data help depends on two quantities:

first, the extent to which the true target function satisfies the given assumption,

and second, the extent to which the distribution allows this assumption to rule

out alternative hypotheses. For instance, if the data do not cluster at all, then all

functions equally satisfy this compatibility notion and the assumption ends up not

helping. From a Bayesian perspective, one can think of this as a PAC model for a

setting in which one’s prior is not just over functions, but also over how the function

and underlying distribution relate to each other.

To make our model formal, we will need to ensure that the degree of compatibility

be something that can be estimated from a finite sample. To do this, we will require

that the compatibility notion χ actually be a function from C × X to [0, 1], where

the compatibility of a function f with the data distribution D is Ex∼D[χ(f, x)].

The degree of incompatibility is then something we can think of as a kind of

“unlabeled error rate” that measures how a priori unreasonable we believe some

proposed hypothesis to be. For instance, in the example above of a “margin-style”

compatibility, we could define χ(f, x) to be an increasing function of the distance of

x to the separator f . In this case, the unlabeled error rate, 1−χ(f, D), is a measure

of the probability mass close to the proposed separator. In co-training, where each

example x has two “views” (x = 〈x1, x2〉), the underlying belief is that the true

target c∗ can be decomposed into functions 〈c∗1, c∗2〉 over each view such that for

most examples, c∗1(x1) = c∗2(x2). In this case, we can define χ(〈f1, f2〉, 〈x1, x2〉) = 1

if f1(x1) = f2(x2), and 0 if f1(x1)
= f2(x2). Then the compatibility of a hypothesis

〈f1, f2〉 with an underlying distribution D is Pr〈x1,x2〉∼D[f1(x1) = f2(x2)].

This setup allows us to analyze the ability of a finite unlabeled sample to reduce

our dependence on labeled examples, as a function of the compatibility of the target

function (i.e., how correct we were in our assumption) and various measures of the

“helpfulness” of the distribution. In particular, in our model, we find that unlabeled

400 An Augmented PAC Model for Semi-Supervised Learning

data can help in several distinct ways.

If the target function is highly compatible with D, then if we have enough

unlabeled data to estimate compatibility over all f ∈ C, we can in principle reduce

the size of the search space from C down to just those f ∈ C whose estimated

compatibility is high. For instance, if D is “helpful,” then the set of such functions

will be much smaller than the entire set C.

By providing an estimate of D, unlabeled data can allow us to use a moreways in which

unlabeled data

can help

refined distribution-specific notion of “hypothesis space size” such as annealed

(Vapnik-Chervonenkis) VC entropy (Devroye et al., 1996), Rademacher complexi-

ties (Koltchinskii, 2001; Bartlett and Mendelson, 2002; Boucheron et al., 2005) or

the size of the smallest ǫ-cover (Benedek and Itai, 1991), rather than VC dimension

(Blumer et al., 1989; Kearns and Vazirani, 1994). In fact, for natural cases (such

as those above) we find that the sense in which unlabeled data reduces the “size”

of the search space is best described in these distribution-specific measures.

Finally, if the distribution is especially nice, we may find that not only does the

set of “compatible” f ∈ C have a small ǫ-cover but also the elements of the cover

are far apart. In that case, if we assume the target function is fully compatible, we

may be able to learn from even fewer labeled examples than the 1/ǫ needed just to

verify a good hypothesis! (Though here D is effectively committing to the target

as in generative models.)

Our framework also allows us to address the issue of how much unlabeled data

we should expect to need. Roughly, the “VCdim/ǫ2” form of standard PAC sample

complexity bounds now becomes a bound on the number of unlabeled examples we

need. However, technically, the set whose VC dimension we now care about is not

C but rather a set defined by both C and χ: that is, the overall complexity depends

both on the complexity of C and the complexity of the notion of compatibility (see

section 22.3.2). One consequence of our model is that if the target function and

data distribution are both well behaved with respect to the compatibility notion,

then the sample-size bounds we get for labeled data can substantially beat what

one could hope to achieve through pure labeled-data bounds, and we illustrate this

with a number of examples throughout the chapter.

22.2 A Formal Framework

In this section we formally introduce what we mean by a notion of compatibility,

and illustrate it through a number of examples, including margins and co-training.

We assume that examples (both labeled and unlabeled) come according to a

fixed unknown distribution D over an instance space X, and they are labeled

by some unknown target function c∗. As in the standard PAC model, a concept

class or hypothesis space is a set of functions over the instance space X, and we

will often make the assumption (the “realizable case”) that the target function

22.2 A Formal Framework 401

belongs to a given class C. For a given hypothesis f , the (true) error rate of f is

defined as err(f) = errD(f) = Prx∼D[f(x)
= c∗(x)]. For any two hypotheses

f1, f2 ∈ C, the distance with respect to D between f1 and f2 is defined as

d(f1, f2) = dD(f1, f2) = Prx∼D[f1(x)
= f2(x)]. We will use êrr(f) to denote

the empirical error rate of f on a given labeled sample and d̂(f1, f2) to denote the

empirical distance between f1 and f2 on a given unlabeled sample.

We define a notion of compatibility to be a mapping from a hypothesis f and a

distribution D to [0, 1] indicating how “compatible” f is with D. In order for this to

be estimable from a finite sample, we require that compatibility be an expectation

over individual examples. (Though one could imagine more general notions with

this property as well.) Specifically, we define:legal notion of

compatibility
Definition 22.1 A legal notion of compatibility is a function χ : C × X → [0, 1]

where we (overloading notation) define χ(f, D) = Ex∼D[χ(f, x)]. Given a sample

S, we define χ(f, S) to be the empirical average over the sample.

Remark 22.2 One could also allow compatibility functions over k-tuples of exam-

ples, in which case our (unlabeled) sample-complexity bounds would simply increase

by a factor of k. For settings in which D is actually known in advance (e.g., trans-

ductive learning; see section 22.5.1) we can drop this requirement entirely and allow

any notion of compatibility χ(f, D) to be legal.

Definition 22.3 Given compatibility notion χ, the incompatibility of f with D is

1 − χ(f, D). We will also call this its unlabeled error rate, errunl(f), when χ and

D are clear from context. For a given sample S, we use êrrunl(f) to denote the

empirical average over S.

Finally, we need a notation for the set of functions whose incompatibility is at

most some given value τ .

Definition 22.4 Given threshold τ , we define CD,χ(τ) = {f ∈ C : errunl(f) ≤ τ}.
So, e.g., CD,χ(1) = C. Similarly, for a sample S, we define CS,χ(τ) = {f ∈ C :

êrrunl(f) ≤ τ}

We now give several examples to illustrate this framework:

Example 1: Suppose examples are points in R
d and C is the class of linear separators.

A natural belief in this setting is that data should be “well-separated”: not onlymargins

should the target function separate the positive and negative examples but it should

do so by some reasonable margin γ. This is the assumption used by transductive

support vector machines (SVM) (see (Joachims, 1999) and also chapter 6 in this

book). In this case, if we are given γ up front, we could define χ(f, x) = 1 if

x is farther than distance γ from the hyperplane defined by f , and χ(f, x) = 0

otherwise. So, the incompatibility of f with D is probability mass within distance

γ of f · x = 0. Or we could define χ(f, x) to be a smooth function of the distance

of x to the separator, if we do not want to commit to a specific γ in advance. (In

402 An Augmented PAC Model for Semi-Supervised Learning

contrast, defining compatibility of a hypothesis based on the largest γ such that

D has probability mass exactly zero within distance γ of the separator would not

fit our model: it cannot be written as an expectation over individual examples and

indeed would not be a good definition since one cannot distinguish “zero” from

“exponentially close to zero” from a small sample of unlabeled data.)

Example 2: In co-training (Blum and Mitchell, 1998), we assume examples come

as pairs 〈x1, x2〉, and our goal is to learn a pair of functions 〈f1, f2〉. For instance,

if our goal is to classify webpages, x1 might represent the words on the page it-co-training

self and x2 the words attached to links pointing to this page from other pages.

The hope that underlies co-training is that the two parts of the example are con-

sistent, which then allows the co-training algorithm to bootstrap from unlabeled

data. For example, iterative co-training uses a small amount of labeled data to

get some initial information (e.g., if a link with the words “my advisor” points

to a page, then that page is probably a faculty member’s home page) and then

when it finds an unlabeled example where one half is confident (e.g., the link says

“my advisor”), it uses that to label the example for training its hypothesis over

the other half. This approach and several variants have been used for a variety of

learning problems, including named entity classification (Collins and Singer, 1999),

text classification (Nigam and Ghani, 2000; Ghani, 2001), natural language process-

ing (Pierce and Cardie, 2001), large-scale document classification (Park and Zhang,

2003), and visual detectors (Levin et al., 2003).3 As mentioned in section 22.1, the

assumptions underlying co-training fit naturally into our framework. In particular,

we can define the incompatibility of some hypothesis 〈f1, f2〉 with distribution D

as Pr〈x1,x2〉∼D[f1(x1)
= f2(x2)].

Example 3: In transductive graph-based methods, we are given a set of unlabeled

examples connected in a graph g, where the interpretation of an edge is that we

believe the two endpoints of the edge should have the same label. Given a few

labeled vertices, various graph-based methods then attempt to use them to infer

labels for the remaining points. If we are willing to view D as a distribution overgraph-based

methods edges (a uniform distribution if g is unweighted), then as in co-training we can

define the incompatibility of some hypothesis f as the probability mass of edges

that are cut by f , which then motivates various cut-based algorithms. For instance,

if we require f to be Boolean, then the min-cut method of Blum and Chawla (2001)

finds the most-compatible hypothesis consistent with the labeled data; if we allow f

to be fractional and define 1−χ(f, 〈x1, x2〉) = (f(x1)−f(x2))
2, then the algorithm

of Zhu et al. (2003b) finds the most-compatible consistent hypothesis. If we do not

wish to view D as a distribution over edges, we could have D be a distribution over

vertices and broaden definition 22.1 to allow for χ to be a function over pairs of

examples. In fact, as mentioned in remark 22.2, since we have perfect knowledge of

D in this setting we can allow any compatibility function χ(f, D) to be legal. We

3. For more discussion regarding co-training see also chapter 2 in this book.

22.3 Sample Complexity Results 403

discuss more connections with graph-based methods in section 22.5.1.

Example 4: As a special case of co-training, suppose examples are pairs of points

in R
d, C is the class of linear separators, and we believe the two points in each

pair should both be on the same side of the target function. (So, this is a version

of co-training where we require f1 = f2.) The motivation is that we want to use

pairwise information as in example 3, but we also want to use the features of each

data point. For instance, in the word-sense disambiguation problem studied by

Yarowsky (1995), the goal is to determine which of several dictionary definitions

is intended for some target word in a piece of text (e.g., is “plant” being used to

indicate a tree or a factory?). The local context around each word can be viewedlinear separator

graph cuts as placing it into R
d, but the edges correspond to a completely different type of

information: the belief that if a word appears twice in the same document, it is

probably being used in the same sense both times. In this setting, we could use the

same compatibility function as in example 3, but rather than having the concept

class C be all possible functions, we reduce C to just linear separators.

Example 5: In a related setting to co-training, considered by Leskes (2005), examples

are single points in X but we have a pair of hypothesis spaces 〈C1, C2〉 (or moreagreement

generally a k-tuple 〈C1, . . . ,Ck〉), and the goal is to find a pair of hypotheses

〈f1, f2〉 ∈ C1 × C2 with low error over labeled data and that agree over the

distribution. For instance, if data are sufficiently “well-separated,” one might expect

there to exist both a good linear separator and a good decision tree, and one would

like to use this assumption to reduce the need for labeled data. In this case one

could define compatibility of 〈f1, f2〉 with D as Prx∼D[f1(x) = f2(x)], or the similar

notion given in (Leskes, 2005).

22.3 Sample Complexity Results

We now present several sample-complexity bounds that fall out of this framework,

showing how unlabeled data, together with a suitable compatibility notion, can

reduce the need for labeled examples.

The basic structure of all of these results is as follows. First, given enough unla-

beled data (where “enough” will be a function of some measure of the complexity

of C and possibly of χ as well), we can uniformly estimate the true compatibilities

of all functions in C by their empirical compatibilities over the sample. Then, by

using this quantity to give a preference ordering over the functions in C, we can

reduce “C” down to “the set of functions in C whose compatibility is not much

larger than the true target function” in bounds for the number of labeled examples

needed for learning. The specific bounds differ in terms of the exact complexity

measures used (and a few other issues such as stratification and realizability) and

we provide examples illustrating when certain complexity measures can be signifi-

cantly more powerful than others. In particular, ǫ-cover bounds (section 22.3.3) can

provide especially good bounds for co-training and graph-based settings.

404 An Augmented PAC Model for Semi-Supervised Learning

22.3.1 Uniform Convergence Bounds for Finite Hypothesis Spaces

We begin with uniform convergence bounds (later in section 22.3.3 we give tighter

ǫ-cover bounds that apply to algorithms of a particular form). For clarity, we begin

with the case of finite hypothesis spaces where we measure the “size” of a set

of functions by just the number of functions in the set. We then discuss several

issues that arise when considering infinite hypothesis spaces, such as what is an

appropriate measure for the “size” of the set of compatible functions, and the

need to account for the complexity of the compatibility notion itself. Note that in

the standard PAC model, one typically talks of either the realizable case, where we

assume that c∗ ∈ C, or the agnostic case where we do not (see (Kearns and Vazirani,

1994)). In our setting, we have the additional issue of unlabeled error rate, and can

either make an a priori assumption that the target function’s unlabeled error is low,

or else aim for a more “Occam-style” bound in which we have a stream of labeled

examples and halt once they are sufficient to justify the hypothesis produced.

We first give a bound for the “doubly realizable” case.

Theorem 22.5 If we see mu unlabeled examples and ml labeled examples, where

mu ≥ 1

ǫ

[
ln |C| + ln

2

δ

]
and ml ≥

1

ǫ

[
ln |CD,χ(ǫ)| + ln

2

δ

]
,

then with probability at least 1 − δ, all f ∈ C with êrr(f) = 0 and êrrunl(f) = 0

have err(f) ≤ ǫ.

Proof The probability that a given hypothesis f with errunl(f) > ǫ has

êrrunl(f) = 0 is at most (1 − ǫ)mu < δ/(2|C|) for the given value of mu. There-

fore, by the union bound, the number of unlabeled examples is sufficient to ensure

that with probability 1− δ/2, only hypotheses in CD,χ(ǫ) have êrrunl(f) = 0. The

number of labeled examples then similarly ensures that with probability 1 − δ/2,

none of those whose true error is at least ǫ have an empirical error of 0, yielding

the theorem.

So, if the target function indeed is perfectly correct and compatible, then theo-

rem 22.5 gives sufficient conditions on the number of examples needed to ensure

that an algorithm that optimizes both quantities over the observed data will, in

fact, achieve a PAC guarantee. To emphasize this, we will say that an algorithm

efficiently PACunl-learns the pair (C, χ) if it is able to achieve a PAC guarantee

using time and sample sizes polynomial in the bounds of theorem 22.5.

We can think of theorem 22.5 as bounding the number of labeled examples we

need as a function of the “helpfulness” of the distribution D with respect to our

notion of compatibility. That is, in our context, a helpful distribution is one inInterpretation

which CD,χ(ǫ) is small, and so we do not need much labeled data to identify a good

function among them. We can get a similar bound in the situation when the target

function is not fully compatible:

22.3 Sample Complexity Results 405

Theorem 22.6 Given t ∈ [0, 1], if we see mu unlabeled examples and ml labeled

examples, where

mu ≥ 2

ǫ2

[
ln |C| + ln

4

δ

]
and ml ≥

1

ǫ

[
ln |CD,χ(t + 2ǫ)| + ln

2

δ

]
,

then with probability at least 1− δ, all f ∈ C with êrr(f) = 0 and êrrunl(f) ≤ t + ǫ

have err(f) ≤ ǫ, and furthermore all f ∈ C with errunl(f) ≤ t have êrrunl(f) ≤
t + ǫ.

In particular, this implies that if errunl(c
∗) ≤ t and err(c∗) = 0 then with high

probability the f ∈ C that optimizes êrr(f) and êrrunl(f) has err(f) ≤ ǫ.

Proof Same as theorem 22.5 except apply Hoeffding bounds (see Devroye et al.

(1996)) to the unlabeled error rates.

Finally, we give a simple Occam/luckiness type of bound for this setting. Given

a sample S, let us define descS(f) = ln |CS,χ(êrrunl(f))|. That is, descS(f) is

the description length of f (in “nats”) if we sort hypotheses by their empirical

compatibility and output the index of f in this ordering. Similarly, define ǫ-

descD(f) = ln |CD,χ(errunl(f) + ǫ)|. This is an upper bound on the description

length of f if we sort hypotheses by an ǫ-approximation to their true compatibility.

Then we can get a bound as follows:

Theorem 22.7 For any set S of unlabeled data, given ml labeled examples, with

probability at least 1−δ, all f ∈ C satisfying êrr(f) = 0 and descS(f) ≤ ǫml−ln(1/δ)

have err(f) ≤ ǫ. Furthermore, if |S| ≥ 2
ǫ2 [ln |C|+ln 2

δ], then with probability at least

1 − δ, all f ∈ C satisfy descS(f) ≤ ǫ-descD(f).

The point of this theorem is that an algorithm can use observable quantities to

determine if it can be confident. Furthermore, if we have enough unlabeled data,Interpretation

the observable quantities will be no worse than if we were learning a slightly less

compatible function using an infinite-size unlabeled sample.

Note that if we begin with a non-distribution-dependent ordering of hypotheses,

inducing some description length desc(f), and our compatibility assumptions turn

out to be wrong, then it could well be that descD(c∗) > desc(c∗). In this case our

use of unlabeled data would end up hurting rather than helping.

22.3.2 Uniform Convergence Bounds for Infinite Hypothesis Spaces

To reduce notation, we will assume in the rest of this chapter that χ(f, x) ∈ {0, 1}
so that χ(f, D) = Prx∼D[χ(f, x) = 1]. However, all our sample complexity results

can be easily extended to the general case.

For infinite hypothesis spaces, the first issue that arises is that in order to achieve

uniform convergence of unlabeled error rates, the set whose complexity we care

about is not C but rather χ(C) = {χf : f ∈ C} where we define χf (x) = χ(f, x). For

instance, suppose examples are just points on the line, and C = {fa(x) : fa(x) = 1

406 An Augmented PAC Model for Semi-Supervised Learning

iff x ≤ a}. In this case, VCdim(C) = 1. However, we could imagine a compatibility

function such that χ(fa, x) depends on some complicated relationship between the

real numbers a and x. In this case, VCdim(χ(C)) is much larger, and indeed we

would need many more unlabeled examples to estimate compatibility over all of C.

A second issue is that we need an appropriate measure for the “size” of the set

of surviving functions. VC dimension tends not to be a good choice: for instance,

if we consider the case of example 1 (margins), then even if data are concentrated

in two wellseparated “blobs,” the set of compatible separators still has as large a

VC dimension as the entire class even though they are all very similar with respect

to D. Instead, it is better to consider distribution-dependent complexity measures

such as annealed VC entropy or Rademacher averages. For this we introduce some

notation. Specifically, for any C, we denote by C[m, D] the expected number of

splits of m points (drawn i.i.d.) from D with concepts in C. Also, for a given (fixed)

S ⊆ X, we will denote by S the uniform distribution over S, and by C[m, S] the

expected number of splits of m points (drawn i.i.d.) from S with concepts in C.

Then we can get bounds as follows:

Theorem 22.8 An unlabeled sample of size

mu = O

(
V Cdim (χ(C))

ǫ2
log

1

ǫ
+

1

ǫ2
log

2

δ

)

and a labeled sample of size

ml >
2

ǫ

[
log(2s) + log

2

δ

]
, where s = CD,χ(t + 2ǫ)[2ml, D]

(i.e., s is the expected number of splits of 2ml points drawn from D using concepts

in C of unlabeled error rate ≤ t + 2ǫ) is sufficient so that with probability 1 − δ, all

f ∈ C with êrr(f) = 0 and êrrunl(f) ≤ t + ǫ have err(f) ≤ ǫ, and furthermore all

f ∈ C have |errunl(f) − êrrunl(f)| ≤ ǫ.

This is the analogue of theorem 22.6 for the infinite case. In particular, this implies

that if err(c∗) = 0 and errunl(c
∗) ≤ t, then with high probability the f ∈ C thatInterpretation

optimizes êrr(f) and êrrunl(f) has err(f) ≤ ǫ.

Proof sketch: By standard VC bounds (Devroye et al., 1996; Vapnik, 1998), the

number of unlabeled examples is sufficient to ensure that with probability 1−δ/2 we

can estimate, within ǫ, Prx∈D[χf (x) = 1] for all χf ∈ χ(C). Since χf (x) = χ(f, x),

this implies we can estimate, within ǫ, the unlabeled error rate errunl(f) for all

f ∈ C, and so the set of hypotheses with êrrunl(f) ≤ t+ǫ is contained in CD,χ(t+2ǫ).

The bound on the number of labeled examples follows from (Devroye et al., 1996)

(where it is shown that the expected number of partitions can be used instead of

the maximum in the standard VC proof). This bound ensures that with probability

1− δ/2, none of the functions in CD,χ(t + 2ǫ) whose true (labeled) error is at least

ǫ have an empirical (labeled) error of 0.

We can also give a bound where we specify the number of labeled examples as a

function of the unlabeled sample; this is useful because we can imagine our learning

22.3 Sample Complexity Results 407

algorithm performing some calculations over the unlabeled data and then deciding

how many labeled examples to purchase.

Theorem 22.9 Given t ≥ 0, an unlabeled sample S of size

O

(
max[V Cdim(C), V Cdim(χ(C))]

ǫ2
log

1

ǫ
+

1

ǫ2
log

2

δ

)

is sufficient so that if we label ml examples drawn uniformly at random from S,

where

ml >
4

ǫ

[
log(2s) + log

2

δ

]
and s = CS,χ(t + ǫ)

[
2ml, S

]
,

then with probability ≥ 1 − δ, all f ∈ C with êrr(f) = 0 and êrrunl(f) ≤ t + ǫ have

err(f) ≤ ǫ. Furthermore all f ∈ C have |errunl(f) − êrrunl(f)| ≤ ǫ.

Proof Standard VC bounds (in the same form as for theorem 22.8) imply that

the number of labeled examples ml is sufficient to guarantee the conclusion of the

theorem with “err(f)” replaced by “errS(f)” (the error with respect to S) and “ǫ”

replaced with “ǫ/2”. The number of unlabeled examples is enough to ensure that,

with probability ≥ 1−δ/2, for all f ∈ C, |err(f)−errS(f)| ≤ ǫ/2. Combining these

two statements yields the theorem.

So, if err(c∗) = 0 and errunl(c
∗) ≤ t, then with high probability the f ∈ C that

optimizes êrr(f) and êrrunl(f) has err(f) ≤ ǫ. If we assume errunl(c
∗) = 0, then

we can use CS,χ(0) instead of CS,χ(t + ǫ).

Notice that for the case of example 1, in the worst case (over distributions D)

this will essentially recover the standard margin sample-complexity bounds. Ininterpretation

particular, CS,χ(0) contains only those separators that split S with margin ≥ γ,

and therefore s is no greater than the maximum number of ways of splitting 2ml

points with margin γ. However, if the distribution is nice, then the bounds can be

much better because there may be many fewer ways of splitting S with margin γ.

For instance, in the case of two well-separated “blobs” discussed above, if S is large

enough, we would have just s = 4.

We finally give a stratified version of theorem 22.9 as follows:

Theorem 22.10 An unlabeled sample S of size

O

(
max[V Cdim(C), V Cdim(χ(C))]

ǫ2
log

1

ǫ
+

1

ǫ2
log

2

δ

)

is sufficient so that with probability ≥ 1 − δ we have that simultaneously for every

k ≥ 0 the following is true: if we label mk examples drawn uniformly at random

from S, where

mk >
4

ǫ

[
log(2s) + log

2(k + 1)(k + 2)

δ

]
and s = CS,χ((k + 1)ǫ)

[
2mk, S

]
,

408 An Augmented PAC Model for Semi-Supervised Learning

then all f ∈ C with êrr(f) = 0 and êrrunl(f) ≤ (k + 1)ǫ have err(f) ≤ ǫ.

This theorem is an analogue of theorem 22.7 and it essentially justifies a strati-

fication based on the estimated unlabeled error rates. We can also imagine having

data-dependent bounds for both labeled and unlabeled data, and also doing a double

stratification, with respect to both labeled and unlabeled error rates. In particular,

we can derive a bound as follows:

Theorem 22.11 An unlabeled sample S of size

O

(
max[V Cdim(C), V Cdim(χ(C))]

ǫ2
log

1

ǫ
+

1

ǫ2
log

2

δ

)

is sufficient so that with probability ≥ 1− δ we have that simultaneously for every

i ≥ 0, k ≥ 0 the following is true: if we label mk,i examples drawn uniformly at

random from S, where

mk,i > 8
ǫ2

[
log(2s) + log 4(k+1)(k+2)(i+1)(i+2)

δ

]
and

s = CS,χ((k + 1)ǫ)
[
2mk, S

]
,

then all f ∈ C with êrr(f) ≤ (i+1)ǫ and êrrunl(f) ≤ (k+1)ǫ have err(f) ≤ (i+2)·ǫ.

We can similarly derive tight bounds using Rademacher averages. For different

versions of our statements using recent stronger bounds (Boucheron et al., 2000,

2005), see (Balcan and Blum, 2005).

22.3.3 ǫ-Cover-Based Bounds

The bounds in the previous section are for uniform convergence: they provide

guarantees for any algorithm that optimizes well on the observed data. In this

section, we consider stronger bounds based on ǫ-covers that can be obtained for

algorithms that behave in a specific way: they first use the unlabeled examples to

choose a “representative” set of compatible hypotheses, and then use the labeled

sample to choose among these. Bounds based on ǫ-covers exist in the classical PAC

setting, but in our framework these bounds and algorithms of this type are especially

natural and convenient.

Recall that a set Cǫ ⊆ 2X is an ǫ-cover for C with respect to D if for every f ∈ C

there is a f ′ ∈ Cǫ which is ǫ-close to f . That is, Prx∼D(f(x)
= f ′(x)) ≤ ǫ.

To illustrate how this can produce stronger bounds, consider the setting of

example 3 (graph-based algorithms) where the graph g consists of two cliques of

n/2 vertices, connected together by o(n2) edges (in particular, the number of edges

connecting the cliques is small compared to ǫn2). Suppose the target function labels

one of the cliques as positive and one as negative, and we define compatibility of a

hypothesis to be the fraction of edges in g that are cut by it (so the target functionexamples where

ǫ-cover bounds

beat uniform

convergence

bounds

indeed has unlabeled error rate less than ǫ). Now, given any set SL of ml ≪ ǫn

22.3 Sample Complexity Results 409

labeled examples, there is always a highly compatible hypothesis consistent with

SL that just separates the positive points in SL from the entire rest of the graph:

the number of edges cut will be at most nml ≪ ǫn2. However, such a hypothesis

clearly has high true error since it is so unbalanced. So, we do not have uniform

convergence. On the other hand, the set of functions of unlabeled error rate less

than ǫ/4 has a small ǫ-cover: in particular, any partition of g that cuts less than

ǫn2/4 edges must be ǫ-close to (a) the all-positive function, (b) the all-negative

function, (c) the target function c∗, or (d) the complement of the target function

1 − c∗. So, ǫ-cover bounds act as if the concept class had only four functions, and

so require only a constant number of labeled examples.4

For another case where ǫ-cover bounds can beat uniform-convergence bounds,

imagine examples are pairs of points in {0, 1}d, C is the class of linear separators,

and compatibility is determined by whether both points are on the same side

of the separator (i.e., the case of example 4). Now suppose for simplicity that

the target function just splits the hypercube on the first coordinate, and the

distribution is uniform over pairs having the same first coordinate (so the target is

fully compatible). It is not hard to show that given polynomially many unlabeled

examples SU and 1
4 log d labeled examples SL, with high probability there will exist

high-error functions consistent with SL and compatible with SU .5 So, we do not

yet have uniform convergence. In contrast, the cover-size of the set of functions

compatible with SU is constant, so ǫ-cover-based bounds again allow learning from

just a constant number of labeled examples.

In particular, we can give an ǫ-cover-based bound as follows:

Theorem 22.12 If t is an upper bound for errunl(c
∗) and p is the size of a

minimum ǫ-cover for CD,χ(t+4ǫ), then using mu unlabeled examples and ml labeled

examples for

mu = O

(
V Cdim (χ(C))

ǫ2
log

1

ǫ
+

1

ǫ2
log

2

δ

)
and ml = O

(
1

ǫ
ln

p

δ

)
,

we can with probability 1 − δ identify a hypothesis which is 10ǫ close to c∗.

Proof sketch: First, given the unlabeled sample SU , define Hǫ ⊆ C as follows: for

4. Effectively, ǫ-cover bounds allow one to rule out a hypothesis that, say, just separates
the positive points in SL from the rest of the graph by noting that this hypothesis is very
close (with respect to D) to the all-negative hypothesis, and that hypothesis has a high
labeled-error rate.
5. Proof: Let V be the set of all variables that (a) appear in every positive example of SL

and (b) appear in no negative example of SL. Over the draw of SL, each variable has a
(1/2)2|SL| = 1/

√
d chance of belonging to V , so with high probability V has size at least

1
2

√
d. Now, consider the hypothesis corresponding to the conjunction of all variables in V .

This correctly classifies the examples in SL, and w.h.p. it classifies every other example
in SU negative because each example in SU has only a 1/2|V | chance of satisfying every
variable in V , and the size of SU is much less than 2|V |. So, this means it is compatible
with SU and consistent with SL, even though its true error is high.

410 An Augmented PAC Model for Semi-Supervised Learning

every labeling of SU that is consistent with some f in C, choose a hypothesis in

C for which êrrunl(f) is smallest among all the hypotheses corresponding to that

labeling. Next, we obtain Cǫ by eliminating from Hǫ those hypotheses f with the

property that êrrunl(f) > t + 3ǫ. We then apply a greedy procedure on Cǫ, and we

obtain Gǫ = {g1, · · · , gs}, as follows:

Initialize H1
ǫ = Cǫ and i = 1.

1. Let gi = argmin
f∈Hi

ǫ

êrrunl(f).

2. Using unlabeled data, determine H i+1
ǫ by crossing out from H i

ǫ those hypotheses

f with the property that d̂(gi, f) < 3ǫ.

3. If H i+1
ǫ = ∅ then set s = i and stop; else, increase i by 1 and go to 1.

Our bound on mu is sufficient to ensure that, with probability ≥ 1 − δ/2, Hǫ is

an ǫ-cover of C, which implies that, with probability ≥ 1− δ/2, Cǫ is an ǫ-cover for

CD,χ(t). It is then possible to show Gǫ is, with probability ≥ 1− δ/2, a 5ǫ-cover for

CD,χ(t) of size at most p. The idea here is that by greedily creating a 3ǫ-cover of

Cǫ with respect to distribution SU , we are creating a 4ǫ-cover of Cǫ with respect to

D, which is a 5ǫ-cover of CD,χ(t) with respect to D. Furthermore, we are doing this

using no more functions than would a greedy 2ǫ-cover procedure for CD,χ(t + 4ǫ)

with respect to D, which is no more than the optimal ǫ-cover of CD,χ(t + 4ǫ).

Now to learn c∗ we use labeled data and we do empirical risk minimization on Gǫ.

By standard bounds (see, for instance, (Benedek and Itai, 1991)), the number of

labeled examples is enough to ensure that with probability ≥ 1− δ/2 the empirical

optimum hypothesis in Gǫ has true error at most 10ǫ. This implies that overall,

with probability ≥ 1 − δ, we find a hypothesis of error at most 10ǫ.

As an interesting case where unlabeled data help substantially, consider a co-

training setting where the target c∗ is fully compatible and D satisfies the con-

ditional independence given the label property. As shown by Blum and Mitchell

(1998), one can boost any weak hypothesis from unlabeled data in this setting (as-

suming one has enough labeled data to produce a weak hypothesis). Related sample

complexity results are given in (Dasgupta et al., 2001). We can actually show that

given enough unlabeled data, in fact we can learn from just a single labeled exam-

ple. Specifically, it is possible to show that for any concept classes C1 and C2, we

have:

Theorem 22.13 Assume that err(c∗) = errunl(c
∗) = 0 and D satisfies indepen-

dence given the label. Then using mu unlabeled examples and ml labeled examples

we can find a hypothesis that with probability 1 − δ has error at most ǫ, provided

that

mu = O

(
1

ǫ
·
[
(V Cdim(C1) + V Cdim(C2)) · ln

(
1

ǫ

)
+ ln

(
1

δ

)])

22.3 Sample Complexity Results 411

and

ml = O

(
log(1

ǫ)

(
1

δ

))
.

ǫ-cover bounds

for co-training
Proof sketch: For convenience we will show a bound with 6ǫ instead of ǫ, 3δ instead

of δ, and we will assume for simplicity the setting of example 3, where c∗ = c∗1 = c∗2
and also that D1 = D2 = D (the general case is handled similarly, but just requires

more notation). We first characterize the hypotheses with true unlabeled error rate

at most ǫ. Recall that χ(f, D) = Pr〈x1,x2〉∼D[f(x1) = f(x2)], and for concreteness

assume f predicts using x1 if f(x1)
= f(x2). Consider f ∈ C with errunl(f) ≤ ǫ and

let’s define p− = Prx∈D [c∗(x) = 0], p+ = Prx∈D [c∗(x) = 1] and for i, j ∈ {0, 1}
define pij = Prx∈D [f(x) = i, c∗(x) = j]. We clearly have err (f) = p10 + p01. From

errunl(f) = Pr(x1,x2)∼D [f (x1)
= f (x2)] ≤ ǫ, using the independence given the

label of D, we get 2p10p00

p−
+ 2p01p11

p+
≤ ǫ. This implies that the almost compatible

hypothesis f must be one of the following four types:

1. f is “close to c∗” or more exactly err(f) ≤ 2ǫ.

2. f is “close to the opposite of c∗” or more exactly err(f) ≥ 1 − 2ǫ.

3. f “predicts almost always negative” or more exactly p10 + p11 ≤ 3ǫ.

4. f “predicts almost always positive” or more exactly p01 + p00 ≤ 3ǫ.

Now, consider f1 to be the constant positive function, f0 to be the constant negative

function. The unlabeled sample SU is sufficient to ensure that probability ≥ 1 − δ,

every hypothesis with zero estimated unlabeled error has true unlabeled error at

most ǫ. Therefore, by our previous analysis, there are only four kinds of hypotheses

consistent with unlabeled data: those close to c∗, those close to its complement

c∗, those close to f0, and those close to f1. Furthermore, c∗, c∗, f0, and f1 are

compatible with the unlabeled data.

We now check if there exists a hypothesis g ∈ C with êrrunl(g) = 0 such that

d̂f1,g ≥ 4ǫ and d̂f0,g ≥ 4ǫ. If such a hypothesis g exists, then we know that one of

{g, g}, where g is the opposite of g, is 2ǫ-close to c∗. If not, we must have p+ ≤ 6ǫ

or p− ≤ 6ǫ, in which case we know that one of {f0, f1} is 6ǫ-close to c∗. So, we

have a set of two functions, opposite to each other, one of which is at least 6ǫ-close

to c∗. We now use labeled data to pick one of these to output, using lemma 22.14

below.

Lemma 22.14 Consider ǫ < 1
8 . Let Cǫ =

{
f, f

}
be a subset of C containing

two opposite hypotheses with the property that one of them is ǫ-close to c∗. Then,

ml > 6 log(1
ǫ)
(

1
δ

)
labeled examples are sufficient so that with probability ≥ 1 − δ,

the concept in Cǫ that is ǫ-close to c∗ in fact has lower empirical error.

Proof Easy calculation: if ml > 6 log 1
ǫ

(
1
δ

)
, then

⌊ml
2 ⌋∑

k=0

(
ml

k

)
ǫ(ml−k) (1 − ǫ)

k ≤ δ.

In particular, by reducing ǫ to poly(δ), we can reduce the number of labeled

412 An Augmented PAC Model for Semi-Supervised Learning

examples needed ml to 1. In fact, this result can be extended to the case considered

in (Balcan et al., 2004), that D+ and D− merely satisfy constant expansion.

This example illustrates that if data are especially well behaved with respect to

the compatibility notion, then our bounds on labeled data can be extremely good.

In section 22.4.2, we show for the case of linear separators and independence given

the label, we can give efficient algorithms, achieving the bounds in theorem 22.13 in

terms of labeled examples by a polynomial time algorithm. Note, however, that both

these bounds rely heavily on the assumption that the target is fully compatible. If

the assumption is more of a “hope” than a belief, then one would need additional

labeled examples just to validate the hypothesis produced.

22.4 Algorithmic Results

In this section we give several examples of efficient algorithms in our model.

22.4.1 A Simple Case

We give here a simple example to illustrate the bounds in section 22.3.1, and for

which we can give a polynomial-time algorithm that takes advantage of them. Let

the instance space X = {0, 1}d, and for x ∈ X, let vars(x) be the set of variables

set to 1 by x. Let C be the class of monotone disjunctions (e.g., x1 ∨ x3 ∨ x6),

and for f ∈ C, let vars(f) be the set of variables disjoined by f . Now, suppose we

say an example x is compatible with function f if either vars(x) ⊆ vars(f) or else

vars(x) ∩ vars(f) = φ. This is a very strong notion of “margin”: it says, in essence,

that every variable is either a positive indicator or a negative indicator, and no

example should contain both positive and negative indicators.

Given this setup, we can give a simple PACunl-learning algorithm for this pair

(C, χ). We begin by using our unlabeled data to construct a graph on d vertices (one

per variable), putting an edge between two vertices i and j if there is any example x

in our unlabeled sample with i, j ∈ vars(x). We now use our labeled data to label the

components. If the target function is fully compatible, then no component will get

multiple labels (if some component does get multiple labels, we halt with failure).

Finally, we produce the hypothesis f such that vars(f) is the union of the positively

labeled components. This is fully compatible with the unlabeled data and has zero

error on the labeled data, so by theorem 22.5, if the sizes of the data sets are as

given in the bounds, with high probability the hypothesis produced will have error

≤ ǫ.

Notice that if we want to view the algorithm as “purchasing” labeled data, then

we can simply examine the graph, count the number of connected components k,

and then request 1
ǫ [k ln 2 + ln 2

δ] labeled examples. (Here, 2k = |CS,χ(0)|.) By the

proof of theorem 22.5, with high probability 2k ≤ |CD,χ(ǫ)|, so we are purchasing

no more than the number of labeled examples in the theorem statement.

Also, it is interesting to see the difference between a “helpful” and “nonhelpful”

22.4 Algorithmic Results 413

distribution for this problem. An especially nonhelpful distribution would be the

uniform distribution over all examples x with |vars(x)| = 1, in which there are d

components. In this case, unlabeled data do not help at all, and one still needs Ω(d)

labeled examples (or, even Ω(d/ǫ) if the distribution is nonuniform as in the lower

bounds of Ehrenfeucht et al. (1989)). On the other hand, a helpful distribution is

one such that with high probability the number of components is small, such as the

case of features appearing independently given the label.

22.4.2 Co-Training with Linear Separators

We now consider the case of co-training where the hypothesis class is the class of

linear separators. For simplicity we focus first on the case of example 4: the target

function is a linear separator in R
d and each example is a pair of points, both of

which are assumed to be on the same side of the separator (i.e., an example is a line

segment that does not cross the target hyperplane). We then show how our results

can be extended to the more general setting.

As in the previous example, a natural approach is to try to solve the “consistency”

problem: given a set of labeled and unlabeled data, our goal is to find a separator

that is consistent with the labeled examples and compatible with the unlabeled ones

(i.e., it gets the labeled data correct and doesn’t cut too many edges). Unfortunately,

this consistency problem is NP-hard: given a graph g embedded in R
d with two

distinguished points s and t, it is NP-hard to find the linear separator that cuts

the minimum number of edges, even if the minimum is 0 (Flaxman, 2003). For this

reason, we will make an additional assumption, that the two points in an example

are each drawn independently given the label. That is, there is a single distribution

D over R
d, and with some probability p+, two points are drawn i.i.d. from D+

(D restricted to the positive side of the target function) and with probability

1 − p+, the two are drawn i.i.d from D− (D restricted to the negative side of the

target function). Note that our sample complexity results in section 22.3.3 extendneed to assume

independence for

our algorithmic

results

to weaker assumptions such as distributional expansion introduced by Balcan et al.

(2004), but we need true independence for our algorithmic results. Blum and

Mitchell (1998) have also given positive algorithmic results for co-training when

(a) the two halves of an example are drawn independently given the label (which

we are assuming now), (b) the underlying function is learnable via statistical query

algorithms6 (which is true for linear separators (Blum et al., 1998)), and (c) we

have enough labeled data to produce a weakly useful hypothesis (defined below)

on one of the halves to begin with. We give here an improvement over that result

by showing how we can run the algorithm in (Blum and Mitchell, 1998) with only

a single labeled example, thus obtaining an efficient algorithm in our model. It is

worth noticing that in the process, we also simplify the results of Blum et al. (1998)

6. For a detailed description of the statistical query model see (Kearns, 1998) and (Kearns
and Vazirani, 1994).

414 An Augmented PAC Model for Semi-Supervised Learning

somewhat.

For the analysis below, we need the following definition. A weakly useful predictor

is a function f such that for some ǫ that is at least inverse polynomial in the input

size,

Pr[f(x) = 1|c∗(x) = 1] > Pr[f(x) = 1|c∗(x) = 0] + ǫ.

It is equivalent to the usual notion of a “weak hypothesis”(see (Kearns and Vazirani,

1994)) when the target function is balanced, but requires that the hypothesis give

more information when the target function is unbalanced; see (Blum and Mitchell,

1998).

Theorem 22.15 There is a polynomial-time algorithm (in d and b, where b is the

number of bits per example) to learn a linear separator under the above assumptions,

from a polynomial number of unlabeled examples and a single labeled example.

Proof sketch: Assume for convenience that the target separator passes through the

origin, and let us denote the separator by c∗ · x = 0. We will also assume for

convenience that PrD(c∗(x) = 1) ∈ [ǫ/2, 1− ǫ/2]; that is, the target function is not

overwhelmingly positive or overwhelmingly negative (if it is, this is actually an easy

case, but it makes the arguments more complicated). Define the margin of some

point x as the distance of x/|x| to the separating plane, or equivalently, the cosine

of the angle between c∗ and x.

We begin by drawing a large unlabeled sample S =
{
〈xi

1, x
i
2〉
}
; denote by Sj

the set
{
xi

j

}
, for j = 1, 2. (We describe our algorithm as working with the fixed

unlabeled sample S, since we just need to apply standard VC-dimension arguments

to get the desired result.) The first step is to perform a transformation T on S1

to ensure that some reasonable (1/poly) fraction of T (S1) has margin at least

1/poly, which we can do via the outlier removal lemma of Blum et al. (1998)

and Dunagan and Vempala (2001).7 The outlier removal lemma states that one

can algorithmically remove an ǫ′ fraction of S1 and ensure that for the remainder,

for any vector w, maxx∈S1(w · x)2 ≤ poly(n, b, 1/ǫ′)Ex∈S1 [(w · x)2], where b is the

number of bits needed to describe the input points. We reduce the dimensionality (if

necessary) to get rid of any of the vectors for which the above quantity is zero. We

then determine a linear transformation (as described in Blum et al. (1998)) so that

in the transformed space for all unit-length w, Ex∈T (S1)[(w · x)2] = 1). Since the

maximum is bounded, this guarantees that at least a 1/poly fraction of the points

in T (S1) have at least a 1/poly margin with respect to the separating hyperplane.

To avoid cumbersome notation in the rest of the discussion, we drop our use

of “T ” and simply use S and c∗ to denote the points and separator in the

transformed space. (If the distribution originally had a reasonable probability mass

at a reasonable margin from c∗, then T could be the identity anyway.)

7. If the reader is willing to allow running time polynomial in the margin of the data set,
then this part of the argument is not needed.

22.4 Algorithmic Results 415

The second step is we argue that a random halfspace has at least a 1/poly chance

of being a weak predictor on S1. ((Blum et al., 1998) use the Perceptron algorithm

to get weak learning; here, we need something simpler since we do not yet have any

labeled data.) Specifically, consider a point x such that the angle between x and c∗

is π/2− γ, and imagine that we draw f at random subject to f · c∗ ≥ 0 (half of the

f ’s will have this property). Then,

Prf (f(x)
= c∗(x)|f · c∗ ≥ 0) = (π/2 − γ)/π = 1/2 − γ/π.

Since at least a 1/poly fraction of the points in S1 have at least a 1/poly margin,

this implies that

Prf,x[f(x) = 1|c∗(x) = 1] > Prf,x[f(x) = 1|c∗(x) = 0] + 1/poly.

This means that a 1/poly probability mass of functions f must in fact be weakly

useful predictors.

The final step of the algorithm is as follows. Using the above observation, we pick

a random f , and plug it into the bootstrapping theorem of (Blum and Mitchell,

1998) (which, given unlabeled pairs 〈xi
1, x

i
2〉 ∈ S, will use f(xi

1) as a noisy label

of xi
2, feeding the result into a statistical query algorithm), repeating this process

poly(n) times. With high probability, our random f was a weakly useful predictor

on at least one of these steps, and we end up with a low-error hypothesis. For

the rest of the runs of the algorithm, we have no guarantees. We now observe the

following. First of all, any function f with small err(f) must have small errunl(f).

Second, because of the assumption of independence given the label, as shown in

theorem 22.13, the only functions with low unlabeled error rate are functions close

to c∗, close to ¬c∗, close to the “all-positive” function, or close to the “all-negative”

function.

So, if we simply examine all the hypotheses produced by this procedure, and pick

some h with a low unlabeled error rate that is at least ǫ/2-far from the “all-positive”

or “all-negative” functions, then either f or ¬f is close to c∗. We can now just draw

a single labeled example to determine which case is which.

We can easily extend our algorithm to the standard co-training setting (where c∗1
can be different from c∗2) as follows: we repeat the procedure in a symmetric way,

and then, in order to find a good pair of functions, just try all combinations of pairs

of functions to find one of small unlabeled error rate, not close to “all positive,” or

“all negative.” Finally we use one labeled example to produce a low-error hypothesis

(and here we use only one part of the example and only one of the functions in the

pair).

416 An Augmented PAC Model for Semi-Supervised Learning

22.5 Related Models and Discussion

22.5.1 A Transductive Analogue of our Model

We can also talk about a transductive analogue of our (inductive) model that

incorporates many of the existing transductive methods for learning with labeled

and unlabeled data. In a transductive setting one assumes that the unlabeled sample

S is given, a random small subset is labeled, and the goal is to predict well on

the rest of S. In order to make use of unlabeled examples, we will again express

the relationship we hope the target function has with the distribution through a

compatibility notion χ. However, since in this case the compatibility between a

given hypothesis and D is completely determined by S (which is known), we will

not need to require that compatibility be an expectation over unlabeled examples.

Given this setup, from the sample-complexity point of view we only care about how

much labeled data we need, and algorithmically we need to find a highly compatible

hypothesis with low error on the labeled data.

Rather than presenting general theorems, we instead focus on the modeling

aspect and give here several examples in the context of graph-based semi-supervised

algorithms for binary classification. In these methods one usually assumes that there

is weighted graph g defined over S, which is given a priori and encodes the prior

knowledge. In the following we denote by W the weighted adjacency matrix of g

and by CS the set of all binary functions over S.

Minimum Cut: Suppose for f ∈ CS we define the incompatibility of f to be the

weight of the cut in g determined by f . This is the implicit notion of compatibilityminimum cut

considered in (Blum and Chawla, 2001), and algorithmically the goal is to find the

most compatible hypothesis that gets the labeled data correct, which can be solved

efficiently using network flow. From a sample-complexity point of view, the number

of labeled examples we need is proportional to the VC dimension of the class of

hypotheses that are at least as compatible as the target function, which is known

to be O(k/λ) (see (Kleinberg, 2000; Kleinberg et al., 2004)), where k is the number

of edges cut by c∗ and λ is the size of the global minimum cut in the graph. Also

note that the randomized min-cut algorithm (considered by Blum et al. (2004)),

which is an extension of the basic min-cut approach, can be viewed as motivated

by a PAC-Bayes sample complexity analysis of the problem.

Normalized Cut: Consider the normalized cut setting of Joachims (2003) and for

f ∈ CS define size(f) to be the weight of the cut in g determined by f , and

let fneg and fpos be the number of points in S on which h predicts negative andnormalized graph

cuts with

constraints

positive, respectively. For f ∈ CS , define the incompatibility of f to be size(f)
fneg·fpos

.

Note that this is the implicit compatibility function used in Joachims (2003), and

again, algorithmically the goal would be to find a highly compatible hypothesis

that gets the labeled data correct. Unfortunately, the corresponding optimization

problem is in this case NP-hard. Still, several approximate solutions have been

22.5 Related Models and Discussion 417

considered, leading to different semi-supervised learning algorithms. For instance,

Joachims (2003) considers a spectral relaxation that leads to the “spectral graph

transducer” algorithm; another relaxation based on semi-definite programming is

considered by De Bie and Cristianini (2004b).8

Harmonic Function: We can also model the algorithms introduced in (Zhu et al.,

2003a,b) as follows. If we consider f to be a probabilistic prediction function defined

over S, then the incompatibility of f is given by
∑
i,j

wi,j (f(i) − f(j))
2

= fT Lf ,Gaussian random

field and

harmonic

function

where L is the unnormalized Laplacian of g. Similarly we can model the algorithm

introduced by Zhou et al. (2004) by noticing that the incompatibility of f is given by

fT Lf where L is the normalized Laplacian of g. More generally, all the graph kernel

methods can be viewed in our framework if we consider that the incompatibility of

f is given by ||f ||K = fT Kf where K is a kernel derived from the graph (see, for

instance, (Zhu et al., 2003c)).

22.5.2 Connections to Generative Models

It is also interesting to consider how generative models fit into our model. As

mentioned in section 22.1, a typical assumption in a generative setting is that D is

a mixture with the probability density function p(x|θ) = p0 · p0(x|θ0)+ p1 · p1(x|θ1)

(see, for instance, (Ratsaby and Venkatesh, 1995; Castelli and Cover, 1995, 1996)).

That means that the labeled examples are generated according to the following

mechanism: a label y ∈ {0, 1} is drawn according to the distribution of classes

{p0, p1} and then a corresponding random feature vector is drawn according to

the class-conditional density py. The assumption typically used is that the mixture

is identifiable. Identifiability ensures that the Bayes optimal decision border {x :

p0 · p0(x|θ0) = p1 · p1(x|θ1)} can be deduced if p(x|θ) is known, and therefore one

can construct an estimate of the Bayes border by using p(x|θ̂) instead of p(x|θ).
Essentially once the decision border is estimated, a small labeled sample suffices to

learn (with high confidence and small error) the appropriate class labels associated

with the two disjoint regions generated by the estimate of the Bayes decision border.how the

generative models

fit into our model

To see how we can incorporate this setting in our model, consider for illustration the

setting in Ratsaby and Venkatesh (1995); there they assume that p0 = p1, and that

the class-conditional densities are d-dimensional Gaussians with unit covariance and

unknown mean vectors θi ∈ R
d. The algorithm used is the following: the unknown

parameter vector θ = (θ0, θ1) is estimated from unlabeled data using a maximum-

likelihood estimate; this determines a hypothesis which is a linear separator that

passes through the point (θ̂0 + θ̂1)/2 and is orthogonal to the vector θ̂1 − θ̂0; finally

each of the two decision regions separated by the hyperplane is labeled according

to the majority of the labeled examples in the region. Given this setting, a natural

notion of compatibility we can consider is the expected log-likelihood function

8. For a more detailed discussion on this see also chapter 7 in this book.

418 An Augmented PAC Model for Semi-Supervised Learning

(where the expectation is taken with respect to the unknown distribution specified

by θ). Specifically, we can identify a legal hypothesis fθ with the set of parameters

θ = (θ0, θ1) that determine it, and then we can define χ(fθ, D) = Ex∈D[log(p(x|θ))].

Ratsaby and Venkatesh (1995) show that if the unlabeled sample is large enough,

then all hypotheses specified by parameters θ which are close enough to θ will have

the property that their empirical compatibilities will be close enough to their true

compatibilities. This then implies (together with other observations about Gaussian

mixtures) that the maximum-likelihood estimate will be close enough to θ, up to

permutations. (This actually motivates χ as a good compatibility function in our

model.)

More generally, if we deal with other parametric families (but we are in the

same setting), we can use the same compatibility notion; however, we will need to

impose certain constraints on the distributions allowed in order to ensure that the

compatibility is actually well defined (the expected log likelihood is bounded).

As mentioned in section 22.1 this kind of generative setting is really at the extreme

of our model. The assumption that the distribution that generates the data is really

a mixture implies that if we knew the distribution, then there are only two possible

concepts left (and this makes the unlabeled data extremely useful).

22.5.3 Connections to the Luckiness Framework

It is worth noticing that there is a strong connection between our approach and

the luckiness framework (see (Shawe-Taylor et al., 1998; Mendelson and Philips,

2003)). In both cases, the idea is to define an ordering of hypotheses that dependsrelationship to

the luckiness

framework

on the data, in the hope that we will be “lucky” and find that not too many other

functions are as compatible as the target. There are two main differences, however.

The first is that the luckiness framework (being designed for supervised learning

only) uses labeled data both for estimating compatibility and for learning: this is a

more difficult task, and as a result our bounds on labeled data can be significantly

better. For instance, in example 4 described in section 22.2, for any nondegenerate

distribution, a data set of d/2 pairs can with probability 1 be completely shattered

by fully compatible hypotheses, so the luckiness framework does not help. In

contrast, with a larger (unlabeled) sample, one can potentially reduce the space of

compatible functions quite significantly, and learn from o(d) or even O(1) labeled

examples depending on the distribution (see sections 22.3.3 and 22.4). Secondly, the

luckiness framework talks about compatibility between a hypothesis and a sample,

whereas we define compatibility with respect to a distribution. This allows us to

talk about the amount of unlabeled data needed to estimate true compatibility.

There are also a number of differences at the technical level of the definitions.

22.5.4 Conclusions

Given the easy availability of unlabeled data in many settings, there has been

growing interest in methods that try to use such data together with the (more

22.5 Related Models and Discussion 419

expensive) labeled data for learning. Nonetheless, there is still substantial disagree-

ment and no clear consensus about when unlabeled data help and by how much. In

this chapter, we have provided a PAC-style model for semi-supervised learning that

captures many of the ways unlabeled data are typically used, and provides a very

general framework for thinking about this issue. The high-level main implication

of our analysis is that unlabeled data are useful if (a) we have a good notion of

compatibility so that the target function indeed has a low unlabeled error rate, (b)

the distribution D is helpful in the sense that not too many other hypotheses also

have a low unlabeled error rate, and (c) we have enough unlabeled data to estimate

unlabeled error rates well. One consequence of our model is that if the target func-

tion and data distribution are both well behaved with respect to the compatibility

notion, then the sample-size bounds we get for labeled data can substantially beat

what one could hope to achieve through pure labeled-data bounds, and we have

illustrated this with a number of examples throughout the chapter.

23 Metric-Based Approaches for Semi-

Supervised Regression and Classification

Dale Schuurmans dale@cs.ualberta.ca

Finnegan Southey finnwork@lucubratio.org

Dana Wilkinson d3wilkinson@cs.uwaterloo.ca

Yuhong Guo yuhong@cs.ualberta.ca

Semi-supervised learning methods typically require an explicit relationship to be

asserted between the labeled and unlabeled data—as illustrated, for example, by the

neighborhoods used in graph-based methods. Semi-supervised model selection and

regularization methods are presented here that instead require only that the labeled

and unlabeled data are drawn from the same distribution. From this assumption, a

metric can be constructed over hypotheses based on their predictions for unlabeled

data. This metric can then be used to detect untrustworthy training error estimates,

leading to model selection strategies that select the richest hypothesis class while

providing theoretical guarantees against overfitting. This general approach is then

adapted to regularization for supervised regression and supervised classification

with probabilistic classifiers. The regularization adapts not only to the hypothesis

class but also to the specific data sample provided, allowing for better performance

than regularizers that account only for class complexity.

23.1 Introduction

The tradeoff between overfitting and underfitting is a fundamental dilemma in

machine learning and statistics. Given a collection of data points x ∈ X, each

associated with a dependent value y ∈ Y, one often wishes to learn a function

or hypothesis which effectively predicts the correct y given any x. If a hypothesis

is chosen from a class that is too complex for the data, there is a good chance

it will exhibit a large test error even though its training error is small—i.e.,

overfitting the training data. This occurs because complex classes generally containoverfitting

422 Metric-Based Approaches for Semi- Supervised Regression and Classification

several hypotheses that behave similarly on the training data and yet behave

quite differently in other parts of the domain—thus diminishing the ability to

distinguish good hypotheses from bad. Since significantly different hypotheses

cannot be simultaneously accurate, one must restrict the set of hypotheses to be

able to reliably differentiate between accurate and inaccurate predictors. On the

other hand, selecting hypotheses from an overly restricted class can prevent one

from being able to express a good approximation to the ideal predictor, thereby

causing important structure in the training data to be ignored—i.e., underfitting

the training data. Since both underfitting and overfitting result in large test error,underfitting

they must be avoided simultaneously. Consequently, a popular research topic in

learning is to find automated methods for calibrating hypothesis complexity. The

work presented here exploits unlabeled data in a novel fashion to achieve this goal.

We consider two classical approaches to this problem, typically referred to as

model selection and regularization, respectively (Cherkassky and Mulier, 1998; Vap-

nik, 1995, 1998). In model selection one first takes a base hypothesis class, H , decom-model selection

poses it into a discrete collection of subclasses H0 ⊂ H1 ⊂ · · · = H (say, organized

in a nested chain, or lattice) and then, given training data, attempts to identify

the optimal subclass from which to choose the final hypothesis.1 There have been a

variety of methods proposed for choosing the optimal subclass, but most techniques

fall into one of two basic categories: complexity penalization (e.g., the minimum de-

scription length principle (Rissanen, 1986) and various statistical selection criteria

(Foster and George, 1994)); and holdout testing (e.g., cross-validation and boot-

strapping (Efron, 1979)). Regularization is similar to model selection except thatregularization

one does not impose a discrete decomposition on the base hypothesis class. Instead,

a penalty criterion is imposed on the individual hypotheses, which either penalizes

their parametric form (e.g., as in ridge regression or weight decay in neural network

training (Cherkassky and Mulier, 1998; Ripley, 1996; Bishop, 1995)) or penalizes

their global smoothness properties (e.g., minimizing curvature (Poggio and Girosi,

1990)). These methods have shown impressive improvements over naive learning

algorithms in every area of supervised learning research. However, one difficulty

with these techniques is that they usually require expertise to apply properly, and

often involve free parameters that must be set by an informed practitioner.

The contribution presented here is the derivation of parameter-free methods for

model selection and regularization that improve on the robustness of standard

approaches by using unlabeled data. As has been seen in other sections of the book,

most semi-supervised learning techniques require explicit assumptions about the

relationship between labeled and unlabeled data. For the methods presented here,

the only assumption required is that the labeled data and the unlabeled data come

from the same distribution. The methods we propose automatically differentiate

1. The term model selection has also been used to refer to other processes in machine
learning and statistics, such as choosing the kernel for support vector machines or Bayesian
model selection, but we restrict our attention to the classical form described above.

23.2 Metric Structure of Supervised Learning 423

hypotheses based on the difference of their behavior off of the labeled training set

(i.e., behavior at points not covered by the training set). Like many of the semi-

supervised learning approaches proposed in this book (e.g., chapters 10 and 11), our

methods regularize in a data-specific fashion rather than simply penalizing model

complexity. This allows modern techniques to potentially outperform traditional

fixed regularizers that penalize complexity identically across different training

samples.

To begin, section 23.2 introduces the idea of metric spaces for hypotheses, allow-

ing the geometric characterization of the supervised learning problem. Section 23.3

investigates how unlabeled data can be used to perform model selection in nested

sequences of hypothesis spaces. The strategies developed are shown to experimen-

tally outperform standard model selection methods and have been proved to be

robust in theory. Section 23.4 considers regularization and shows how the proposed

model selection strategies can be extended to a generalized training objective for

supervised regression. Here the idea is to use unlabeled data to automatically tune

the degree of regularization for a given task without having to set free parameters by

hand. The resulting regularization technique adapts its behavior to a given training

set and can outperform standard fixed regularizers for a given problem. Section 23.5

extends the earlier regression approach from section 23.4 to probabilistic classifiers.

Finally, section 23.6 concludes with an examination of potential avenues for future

research.

23.2 Metric Structure of Supervised Learning

In supervised learning, one takes a sequence of training pairs 〈x1,y1〉 , ..., 〈xl,yl〉
and attempts to infer a hypothesis function h : X → Y that achieves small prediction

error err(h(x),y) on future test examples. This basic paradigm covers many of the

tasks studied in machine learning research.

For model selection and regularization tasks it is necessary to be able to compare

hypothesis functions. The approach we pursue in this chapter is to exploit a concrete

notion of distance between hypothesis functions. Consider the metric structure on

a space of hypothesis functions that arises from a simple statistical model of themetric on space

of hypotheses supervised learning problem: Assume the examples 〈x,y〉 are generated by a fixed

joint distribution PXY on X × Y. In learning a hypothesis function h : X → Y the

primary interest is in modeling some aspect of the conditional distribution PY|X .

Here the utility of using extra information about the marginal domain distribution

PX to choose a good hypothesis is investigated. Note that information about PX

can be obtained from a collection of unlabeled training examples xl+1, ...,xn. The

significance of having information about the domain distribution PX is that it

defines a natural (pseudo) metric on the space of hypotheses. That is, for any two

hypothesis functions f and g, one can obtain a measure of the distance between

424 Metric-Based Approaches for Semi- Supervised Regression and Classification

them by computing the expected disagreement in their predictions,

d(f, g)
△
= ϕ

(∫
err(f(x), g(x)) dPX

)
, (23.1)

where err(ŷ,y) is the natural measure of prediction error for the problem at hand

(e.g., regression or classification) and ϕ is an associated normalization function that

recovers the standard metric axioms.

For the problem of regression, prediction error can be measured by squared

difference err(ŷ,y) = (ŷ − y)2 or some similar loss. For classification problems,

prediction error can be measured with the misclassification loss err(ŷ,y) = 1(ŷ �=y).

The standard metric properties to be satisfied are non-negativity d(f, g) ≥ 0,

symmetry d(f, g) = d(g, f), and the triangle inequality d(f, g) ≤ d(f, h)+d(h, g). It

turns out that most typical prediction error functions admit a metric of this type.

For example, in regression the distance between two prediction functions can be

measured by

d(f, g) =

(∫
(f(x) − g(x))2 dPX

)1/2

,

where the normalization function ϕ(z) = z1/2 establishes the metric properties. In

classification, the distance between two classifiers can be measured by

d(f, g) =

∫
1(f(x) �=g(x)) dPX

= PX(f(x)
= g(x)),

where no normalization is required to achieve a metric. Importantly, these defini-

tions can be generalized to include the target conditional distribution in an analo-

gous manner:

d(PY|X , h)
△
= ϕ

(∫ ∫
err(h(x),y) dPY|x dPX

)
. (23.2)

That is, one can interpret the true error of a hypothesis function h with respect to

a target conditional PY|X as a distance between h and PY|X . The significance of this

definition is that it is consistent with the previous definition (23.1) and one can

therefore embed the entire supervised learning problem in a common metric space

structure.

To illustrate: in regression, (23.2) yields the root mean squared error of a

hypothesis:

d(PY|X , h) =

(∫ ∫
(h(x) − y)2 dPY|x dPX

)1/2

,

23.2 Metric Structure of Supervised Learning 425

and in classification it gives the true misclassification probability:

d(PY|X , h) =

∫ ∫
1(h(x) �=y) dPY|x dPX

= PXY (h(x)
= y).

H

•
g

•
f

•
h

• PY|X

Figure 23.1 Metric space view of supervised learning: Unlabeled data can accurately
estimate distances between functions f and g within H , however only limited labeled data
are available to estimate the closest function h to PY|X .

Together, the definitions in Eqs. 23.1 and 23.2 show how to impose a global metric

space view of the supervised learning problem (figure 23.1). Given labeled training

examples 〈x1,y1〉 , ..., 〈xl,yl〉, the goal is to find the hypothesis h in a space H that

is closest to a target conditional PY|X under the distance measure (Eq. 23.2). If there

is also a large set of u auxiliary unlabeled examples xl+1, ...,xn, such that u = n− l,

then one can also accurately estimate the distances between alternative hypotheses

f and g within H , effectively giving Eq. 23.1:

d̃(f, g)
△
= ϕ

⎛

⎝ 1

u

n∑

j=l+1

err(f(xj), g(xj))

⎞

⎠ . (23.3)

That is, for sufficiently large u, the distances defined in Eq. 23.3 will be very close

to the distances defined in Equation 23.1. In fact, below we sill generally assume

that u is large enough to ensure d̃(f, g) ≈ d(f, g). However, the distances between

hypotheses and the target conditional PY|X (Eq. 23.2) can only be weakly estimated

using the (presumably much smaller) set of labeled training data:

d̂(PY|X , h)
△
= ϕ

(
1

l

l∑

i=1

err(h(xi),yi)

)
. (23.4)

This measure need not be close to Equation 23.2. The challenge then is to ap-

proximate the closest hypothesis to the target conditional as accurately as possible

using the available information (Eqs. 23.3 and 23.4) in place of the true distances

(Eqs. 23.1 and 23.2).

This metric space perspective will be used to devise novel model selection

and regularization strategies that exploit interhypothesis distances measured on

426 Metric-Based Approaches for Semi- Supervised Regression and Classification

an auxiliary set of unlabeled examples. The proposed approach is applicable to

any supervised learning problem that admits a reasonable metric structure. In

particular, all strategies will be expressed in terms of a generic distance measure

that does not depend on other aspects of the problem.

23.3 Model Selection

First consider the process of using model selection to choose the appropriate

level of hypothesis complexity to fit to data. This is, conceptually, the simplest

approach to automatic complexity control for supervised learning. The idea is to

stratify the hypothesis class H into a sequence (or lattice) of nested subclasses

H0 ⊂ H1 ⊂ · · · = H , and then, given training data, somehow choose a class that

has the proper complexity for the given data. To understand how one might make

this choice, note that for a given training sample 〈x1,y1〉 , . . . , 〈xl,yl〉 one can,

in principle, obtain the corresponding sequence of empirically optimal functionsempirical risk

minimization h0 ∈ H0, h1 ∈ H1, . . .

hk = arg min
h∈Hk

ϕ

(
1

l

l∑

i=1

err(h(xi),yi)

)
= arg min

h∈Hk

d̂(PY|X , h).

That is, here we assume an empirical risk minimization procedure is used to select

a candidate function from each class, and moreover we assume a unique minimizer

exists for each Hk.2 The problem is to select one of these functions based on the

observed training errors d̂(PY|X , h0), d̂(PY|X , h1), . . . (figure 23.2). However, because

each hypothesis class subsumes those before it, these errors must monotonically

decrease (assuming one can fully optimize in each class) and therefore choosing

the function with smallest training error inevitably leads to overfitting. Some other

criterion beyond mere empirical-error minimization must be invoked to make the

final selection.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
..
..
..
..
..

h0 h1 h2 h3 h4

Figure 23.2 Sequence of empirically optimal functions induced by a chain H0 ⊂ H1 ⊂ ...
on a given training set: Dotted lines indicate decreasing optimal training distances
d̂(h0, PY|X), d̂(h1, PY|X), ... and solid lines indicate distances between hypotheses. The final
hypothesis must be selected on the basis of these estimates.

2. This uniqueness assumption is reasonable for regression problems, but generally does
not hold for classification problems under 0-1 loss; see section 23.5 below.

23.3 Model Selection 427

As mentioned, two basic model selection strategies currently predominate: com-

plexity penalization and holdout testing. However, neither of these approaches at-

tends to the metric distances between hypotheses, nor do they offer an obvious

way to exploit auxiliary unlabeled data. By adopting the metric space view of sec-

tion 23.2, however, a useful new perspective on model selection can be obtained.

In our setting, the chain H0 ⊂ H1 ⊂ · · · ⊂ H can be interpreted as a sequence

of hypothesis spaces wherein one can measure the distance between candidate hy-

potheses using unlabeled data. Note that it is still not possible to directly measure

the distances from hypotheses to the target conditional PY|X, and therefore they

must be estimated based on a small labeled training sample. However, the fact

that there are distances between functions in the sequence can be exploited—this

additional information being used to make a better choice (figure 23.2).

23.3.1 Strategy 1: Triangle Inequality

The first intuition explored is that interhypothesis distances can help detect over-

fitting in a very simple manner. Consider two hypotheses hk and hk+1 that both

have a small estimated distance to PY|X and yet have a large true distance between

them. In this situation there should be concern in selecting the second hypothe-

sis, because if the true distance between hk and hk+1 is indeed large, then both

functions cannot be simultaneously close to PY|X , by simple geometry. This implies

that at least one of the distance estimates to PY|X must be inaccurate. The earlier

estimate should be more trusted because it comes from a more restricted class that

is less likely to overfit. In fact, if both d̂(PY|X , hk) and d̂(PY|X , hk+1) really were ac-

curate estimates they would have to satisfy the triangle inequality with the knowntriangle

inequality distance d(hk, hk+1); that is,

d̂(PY|X , hk) + d̂(PY|X , hk+1) ≥ d(hk, hk+1). (23.5)

Since these empirical distances eventually become significant underestimates in

general (because a particular hi is explicitly chosen to minimize the empirical

distance on the labeled training set) the triangle inequality provides a useful test

for detecting when these estimates become inaccurate. In fact, this basic test forms

the basis of a simple model selection strategy, TRI (algorithm 23.1), that works

surprisingly well in many situations.

Algorithm 23.1 Triangle inequality model selection procedure.

Procedure TRI

• Given hypothesis sequence h0, h1, ...

• Choose the last hypothesis hℓ in the sequence that satisfies the triangle inequality,

d̃(hk, hℓ) ≤ d̂(hk, PY|X)+d̂(PY|X , hℓ), with every preceding hypothesis hk, 0 ≤ k < ℓ.

428 Metric-Based Approaches for Semi- Supervised Regression and Classification

23.3.2 Example: Polynomial Regression

To demonstrate this method (and all subsequent methods developed here), first

consider the problem of polynomial curve-fitting. This is a supervised learning

problem where X = R, Y = R, and the goal is to minimize the squared prediction

error, err(ŷ,y) = (ŷ− y)2. Specifically, consider polynomial hypotheses h : R → R

under the natural stratification H0 ⊂ H1 ⊂ ... into polynomials of degree at

most 0, 1, ..., etc. The motivation for studying this task is that it is a well-studied

problem that still attracts a lot of interest (Cherkassky et al., 1997; Galarza et al.,

1996; Vapnik, 1995, 1998). Moreover, polynomials create a difficult model selection

problem that has a strong tendency to produce catastrophic overfitting effects.

Another benefit is that polynomials are an interesting and nontrivial class for which

there are efficient techniques for computing best-fit hypotheses.

To apply the metric-based approach to this task, define the metric d in terms of

the squared prediction error err(ŷ, y) = (ŷ − y)2 with a square root normalization

ϕ(z) = z1/2, as discussed in section 23.2. To evaluate the efficacy of TRI on this

problem, its performance was compared to a number of standard model selection

strategies, including structural risk minimization (SRM) (Cherkassky et al., 1997;

Vapnik, 1998), risk inflation criterion (RIC) (Foster and George, 1994), Shibata’s

model selector (SMS) (Shibata, 1981), generalized cross-validation (GCV) (Craven

and Wahba, 1979), Bayesian information criterion (BIC) (Schwarz, 1978), Akaike

information criterion (AIC) (Akaike, 1974), Mallows’ Cp statistic (CP) (Mallows,

1973), and finite prediction error (FPE) (Akaike, 1970). TRI was also compared to

tenfold cross-validation (CVT; a standard holdout method (Efron, 1979; Kohavi,

1995)).

A simple series of experiments was conducted by fixing a domain distribution

PX on X = R and then fixing various target functions f : R → R. The specific

target functions used in the experiments are shown in figure 23.3. To generate

training samples a sequence of values (x1, . . . ,xl) were drawn, then the target

function values f(x1), . . . , f(xl) computed and perturbed by adding independent

Gaussian noise with standard deviation σ = 0.05 to each. This resulted in a

labeled training sequence 〈x1,y1〉 , . . . , 〈xl,yl〉. For a given training sample the

series of best-fit polynomials h0, h1, . . . of degree 0, 1, . . . was computed. Given this

sequence, each model selection strategy will choose some hypothesis hk on the basis

of the observed empirical errors. The implementation of TRI was given access to u

auxiliary unlabeled examples xl+1, . . . ,xn in order to estimate the true distances

between polynomials in the sequence.

The main emphasis in these experiments was to minimize the true distance

between the final hypothesis and the target conditional PY|X . That is, the primary

concern was choosing a hypothesis that obtained a small prediction error on future

test examples, independent of its complexity level. To determine the effectiveness

of the various selection strategies, the ratio of the true error (distance) of the

polynomial they selected to the best true error among polynomials in the sequence

h0, h1, ..., was measured. This means that the optimum achievable ratio was 1. The

23.3 Model Selection 429

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 23.3 Target functions used in the polynomial curve-fitting experiments (in
order): step(x ≥ 0.5), sin(1/x), sin2(2πx), and a fifth-degree polynomial.

rationale for doing this was to measure the model selection strategy’s ability to

approximate the best hypothesis in the given sequence—not find a better function

from outside the sequence.3

Table 23.1 Fitting f(x) = step(x ≥ 0.5) with PX = U(0, 1) and σ = 0.05. Distribution
of approximation ratios achieved at training sample size l = 30, showing percentiles of
approximation ratios achieved in 1000 repeated trials.

l = 30 TRI CVT SRM RIC GCV BIC AIC FPE ADJ

25 1.00 1.08 1.17 4.69 1.51 5.41 5.45 2.72 1.06

50 1.08 1.17 1.54 34.8 9.19 39.6 40.8 19.1 1.14

75 1.19 1.37 9.68 258 91.3 266 266 159 1.25

95 1.45 6.11 419 4.7e3 2.7e3 4.8e3 5.1e3 4.0e3 1.51

100 2.18 643 1.6e7 1.6e7 1.6e7 1.6e7 1.6e7 1.6e7 2.10

Table 23.1 shows the results obtained for approximating a step function f(x) =

step(x ≥ 0.5) corrupted by Gaussian noise, where the marginal distribution PX

is uniform on [0, 1]. The strategy ADJ (adjusted-distance estimate) in the tables

is explained in section 23.3.3 below. These results were obtained by repeatedly

generating training samples of a fixed size and recording the approximation ratio

achieved by each strategy. The tables record the distribution of ratios produced by

each strategy for a training sample size of l = 30, using u = 200 unlabeled examples

to measure interhypothesis distances, repeated over 1000 trials. The initial results

appear to be quite positive. TRI achieves a median approximation ratio of 1.08.

This compares favorably to the median approximation ratio 1.54 achieved by SRM,

and 1.17 achieved by CVT. The remaining complexity penalization strategies—

GCV, FPE, etc.—all performed significantly worse on these trials. However, the

most notable difference was TRI’s robustness against overfitting. In fact, although

3. One could consider more elaborate strategies that choose hypotheses from outside the
sequence; e.g., by averaging several hypotheses together (Krogh and Vedelsby, 1995; Opitz
and Shavlik, 1996; Breiman, 1996). However, this idea will not be pursued further here.

430 Metric-Based Approaches for Semi- Supervised Regression and Classification

Table 23.2 Fitting f(x) = sin(1/x) with PX = U(0, 1) and σ = 0.05. Distribution of
approximation ratios achieved at training sample size l = 30, showing percentiles of
approximation ratios achieved in 1000 repeated trials.

l = 30 TRI CVT SRM RIC GCV BIC AIC FPE ADJ

25 1.02 1.08 1.34 2.80 1.89 3.16 3.67 2.80 1.08

50 1.14 1.20 4.74 12.1 9.67 14.1 15.8 13.8 1.17

75 1.30 1.63 33.2 61.5 55.2 70.1 81.6 72.4 1.30

95 1.72 23.5 306 1.2e3 479 1.3e3 1.3e3 1.3e3 1.81

100 2.68 325 1.4e5 5.2e5 1.4e5 5.2e5 5.2e5 3.9e5 9.75

Table 23.3 Fitting f(x) = sin2(2πx) with PX = U(0, 1) and σ = 0.05. Distribution
of approximation ratios achieved at training sample size l = 30, showing percentiles of
approximation ratios achieved in 1000 repeated trials.

l = 30 TRI CVT SRM RIC GCV BIC AIC FPE ADJ

25 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.01

50 3.51 1.16 1.03 1.05 1.11 1.02 1.08 1.45 1.27

75 4.15 1.64 1.45 1.48 2.02 1.39 1.88 6.44 1.60

95 5.51 5.21 5.06 4.21 26.4 5.01 19.9 295 3.02

100 9.75 124 1.4e3 20.0 9.1e3 28.4 9.4e3 1.0e4 8.35

the penalization strategy SRM performed reasonably well much of the time, it was

prone to making periodic but catastrophic overfitting errors. Even the normally

well-behaved cross-validation strategy CVT made significant overfitting errors from

time to time. This is evidenced by the fact that in 1000 trials with a training

sample of size 30 (table 23.1) TRI produced a maximum approximation ratio of

2.18, whereas CVT produced a worst-case approximation ratio of 643, and the

penalization strategies SRM and GCV both produced worst-case ratios of 1.6×107.

The 95th percentiles were TRI 1.45, CVT 6.11, SRM 419, GCV 2.7 × 103. Similar

results for TRI are obtained for larger labeled sample sizes, such as l = 100 and

l = 200. 4 For a broader selection of results see (Schuurmans and Southey, 2002).

The results showing TRI’s robustness against overfitting are encouraging, but

it is further possible to prove that TRI cannot produce an approximation ratio

greater than 3 due to overfitting. That is, we can bound TRI’s approximation ratio

under two simple assumptions. First, that TRI makes it to the best hypothesis hm

in the sequence. Second, that the empirical error of hm is an underestimate—that

4. Although one might suspect that the large failures could be due to measuring relative
instead of absolute error, it turns out that all of these large relative errors also correspond
to large absolute errors. This is verified in section 23.4.1 below.

23.3 Model Selection 431

Table 23.4 Fitting a fifth-degree polynomial f(x) with PX = U(0, 1) and σ = 0.05.
Distribution of approximation ratios achieved at training sample size l = 30, showing
percentiles of approximation ratios achieved in 1000 repeated trials.

l = 30 TRI CVT SRM RIC GCV BIC AIC FPE ADJ

25 7.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

50 8.58 1.01 1.00 1.00 1.01 1.00 1.00 1.08 1.00

75 9.36 1.11 1.01 1.00 1.20 1.01 1.14 2.40 1.02

95 11.0 2.59 1.42 1.13 8.92 1.35 5.46 131 1.18

100 14.2 45.3 24.1 8.00 3.1e4 11.8 9.9e3 1.4e5 13.6

is, d̂(PY|X , hm) ≤ d(PY|X , hm). Note that this second assumption is likely to hold

because hypotheses are chosen by explicitly minimizing d̂(PY|X , hm) rather than

d(PY|X , hm) (see table 23.5). The proof for the following proposition can be found

in (Schuurmans and Southey, 2002).

Proposition 23.1 Let hm be the optimal hypothesis in the sequence h0, h1, ... (that

is, hm = argminhk
d(PY|X , hk)) and let hℓ be the hypothesis selected by TRI. If (i)

m ≤ ℓ and (ii) d̂(PY|X , hm) ≤ d(PY|X , hm) then:

d(PY|X , hℓ) ≤ 3d(PY|X , hm). (23.6)

Note that in proposition 23.1, as well as in propositions 23.2 and 23.3 below, it

is implicitly assumed that the true interhypothesis distances d(hm, hℓ) are known.

This, in principle, must be measured on the true marginal PX . This assumption will

be relaxed in section 23.3.4 below.

Continuing with the experimental investigation, the basic flavor of the results

remains unchanged at different noise levels and for different domain distributions

PX. In fact, much stronger results are obtained for wider-tailed domain distributions

like Gaussian (Schuurmans and Southey, 2002) and “difficult” target functions like

sin(1/x) (table 23.2). Here the complexity penalization methods (SRM, GCV, etc.)

can be forced into a regime of constant catastrophe, CVT noticeably degrades, and

yet TRI retains performance similar to the levels shown in table 23.1.

Of course, these results might be due to considering a pathological target function

from the perspective of polynomial curve-fitting. It is therefore important to

consider other more natural targets that might be better suited to polynomial

approximation. In fact, by repeating the previous experiments with a more benign

target function, f(x) = sin2(2πx), quite different results are obtained. Table 23.3

shows that procedure TRI does not fare as well in this case—obtaining a median

approximation ratio of 3.51 (compared to 1.03 for SRM, and 1.16 for CVT). A

closer inspection of TRI’s behavior reveals that the reason for this performance

drop is that TRI systematically gets stuck at low even-degree polynomials (cf.

table 23.5). In fact, there is a simple geometric explanation for this. The even-

432 Metric-Based Approaches for Semi- Supervised Regression and Classification

degree polynomials (after degree 4) all give reasonable fits to sin2(2πx) whereas

the odd-degree fits have a tail in the wrong direction. This creates a significant

distance between successive polynomials and causes the triangle inequality test

to fail between the even- and odd-degree fits, even though the larger even-degree

polynomials give a good approximation. Therefore, although the metric-based TRI

strategy is robust against overfitting, it can be prone to systematic underfitting

in seemingly benign cases. Similar results were obtained for fitting a fifth-degree

target polynomial corrupted by the same level of Gaussian noise (table 23.4). This

problem demonstrates that the first assumption used in proposition 23.1 above can

be violated in natural situations (see table 23.5). Consideration of this difficulty

leads to the development of a reformulated procedure.

23.3.3 Strategy 2: Adjusted Distance Estimates

�
�

�
��

�
�

�
�

��
.........................

.................

..........

PY|X

hℓhk

Figure 23.4 The real and estimated distances between successive hypotheses hk and
hℓ and the target PY|X . Solid lines indicate real distances, dotted lines indicate empirical
distance estimates.

Assume for the sake of argument that d̃ = d (i.e., our estimate of interhypothesis

distance, based on unlabeled data, is the true distance). The final idea explored

for model selection is to observe that there would then be two metrics — thecomparing d and

d̂ true metric d defined by the joint distribution PXY and an empirical metric d̂

determined by the labeled training sequence 〈x1,y1〉 , . . . , 〈xl,yl〉. Note that the

previous model selection strategy TRI ignored the fact that one could measure the

empirical distance between hypotheses d̂(hk, hℓ) on the labeled training data, as well

as estimate their “true” distance d(hk, hℓ) on the unlabeled data. However, the fact

that one can measure both interhypothesis distances actually gives an observable

relationship between d̂ and d in the local vicinity. This observation is now exploited

in an attempt to derive an improved model selection procedure.

Given the two metrics d and d̂, consider the triangle formed by two hypotheses

hk and hℓ and the target conditional PY|X (figure 23.4). Notice that there are six

distances involved—three real and three estimated—of which the true distances to

PY|X are the only two of importance, and yet these are the only two that are not

available. However, the observed relationship between d and d̂ can be exploited

to adjust the empirical training error estimate d̂(PY|X , hℓ). In fact, one could firstadjustment of

error estimates consider the simplest possible adjustment based on the naive assumption that the

observed relationship of the metrics d̂ and d between hk and hℓ also holds between

23.3 Model Selection 433

hℓ and PY|X . Note that if this were actually the case, a better estimate of d(PY|X , hℓ)

could be obtained by simply rescaling the training distance d̂(PY|X , hℓ) according to

the observed ratio d̃(hk, hℓ)/d̂(hk, hℓ). Since d̂ is expected to be an underestimate

in general, because we assume the hk are chosen by minimizing d̂, this ratio should

be larger than 1. In fact, adopting this as a simple heuristic yields another model

selection procedure, ADJ, which is also surprisingly effective (algorithm 23.2). This

simple procedure overcomes some of the underfitting problems associated with TRI

and yet retains much of TRI’s robustness against overfitting.

Algorithm 23.2 Adjusted-distance estimate model selection procedure.

Procedure ADJ

• Given hypothesis sequence h0, h1, ...

• For each hypothesis hℓ in the sequence

– multiply its estimated distance to the target d̂(PY|X , hℓ) by the worst ratio of

unlabeled

and labeled distance to some predecessor hk to obtain an adjusted distance

estimate:

ď(PY|X , hℓ)
△
= d̂(PY|X , hℓ)

d̃(hk, hℓ)

d̂(hk, hℓ)
.

• Choose the hypothesis hn with the smallest adjusted distance ď(hn, PY|X).

Although at first glance this procedure might seem to be ad hoc, it turns out that

one can prove an overfitting bound for ADJ that is analogous to that established for

TRI. In particular, if one assumes that ADJ makes it to the best hypothesis hm in

the sequence, and the adjusted error estimate ď(PY|X , hm) is an underestimate, then

ADJ cannot overfit by a factor much greater than 3. Again, the formal proposition

is stated, but refer to Schuurmans and Southey (2002) for a proof.

Proposition 23.2 Let hm be the optimal hypothesis in the sequence h0, h1, . . . and

let hℓ be the hypothesis selected by ADJ. If (i) m ≤ ℓ and (ii) ď(PY|X , hm) ≤
d(PY|X , hm), then

d(PY|X , hℓ) ≤
(

2 +
d̂(PY|X , hm)

d̂(PY|X , hℓ)

)
d(PY|X , hm). (23.7)

In this respect, not only does ADJ exhibit robustness against overfitting, it

also has a (weak) theoretical guarantee against underfitting. That is, with the

assumptions that the empirical distance estimates are underestimates and that the

adjusted distance estimates strictly increase the empirical distance estimates, then

if the true error of a successor hypothesis hm improves the true error of all of its

predecessors hℓ by a significant factor, hm will be selected in lieu of its predecessors.

See Schuurmans and Southey (2002) for a proof of this proposition.

434 Metric-Based Approaches for Semi- Supervised Regression and Classification

Proposition 23.3 Consider a hypothesis hm, and assume that (i) d̂(PY|X , hℓ) ≤
d(PY|X , hℓ) for all 0 ≤ ℓ ≤ m, and (ii) d̂(PY|X , hℓ) ≤ ď(PY|X , hℓ) for all 0 ≤ ℓ < m.

Then if

d(PY|X , hm) <
1

3

d̂(PY|X , hℓ)
2

d(PY|X , hℓ)
(23.8)

for all 0 ≤ ℓ < m (that is, d(PY|X , hm) is sufficiently small) it follows that

ď(PY|X , hm) < ď(PY|X , hℓ) for all 0 ≤ ℓ < m, and therefore ADJ will not choose

any predecessor of hm.

Table 23.5 Strengths of the assumptions used in propositions 23.1 and 23.2. Table shows
frequency (in percent) that the assumptions hold over 1000 repetitions of the experiments
conducted in tables 23.1, 23.2, 23.3, and 23.4 (at sample size l = 20).

step(x ≥ 0.5) sin(1/x) sin2(2πx) poly5(x)

(Table 23.1) (Table 23.2) (Table 23.3) (Table 23.4)

Prop. 23.1(i) holds 73 80 10 4

Prop. 23.1(ii) holds 87 86 99 98

Prop. 23.1 holds 61 66 9 4

Prop. 23.2(i) holds 27 32 28 67

Prop. 23.2(ii) holds 22 26 14 24

Prop. 23.2 holds 15 17 12 21

Therefore, although ADJ might not have originally appeared to be well moti-

vated, it possesses worst-case bounds against overfitting and underfitting that are

different from those that have been established for conventional methods. How-

ever, these bounds remain somewhat weak. Table 23.5 shows empirical results on

the frequency with which the underlying assumptions hold on experimental data,

demonstrating that both ADJ and TRI systematically underfit in the experiments.

That is, even though assumption (ii) of proposition 23.1 is almost always satisfied

(as expected), assumption (ii) of proposition 23.2 is only true one quarter of the

time. Therefore, propositions 23.1 and 23.2 can only provide a loose characteriza-

tion of the quality of these methods. However, both metric-based procedures remain

robust against overfitting.

To demonstrate that ADJ is indeed effective, the previous experiments were

repeated with ADJ as a new competitor. The results show that ADJ robustly

outperformed the standard complexity penalization and holdout methods in all

cases considered—spanning a wide variety of target functions, noise levels, and

domain distributions PX . Tables 23.1 through 23.4 show the previous data along

with the performance characteristics of ADJ. In particular, tables 23.3, 23.4, and

23.5 show that ADJ avoids the extreme underfitting problems that hamper TRI; it

23.3 Model Selection 435

appears to responsively select high-order approximations when this is supported

by the data. Moreover, tables 23.1 and 23.2 show that ADJ is still extremely

robust against overfitting, even in situations where the standard approaches make

catastrophic errors. Overall, this is the best model selection strategy observed for

these polynomial regression tasks, even though it possesses a weaker guarantee

against overfitting than TRI (Schuurmans and Southey, 2002).

Note that both proposed model selection procedures add little computational

overhead to traditional methods, since computing interhypothesis distances involves

making only a single pass down the reference list of unlabeled examples. This is

an advantage over standard holdout techniques like CVT which repeatedly call

the hypothesis-generating mechanism to generate pseudohypotheses—which can

sometimes be expensive.

Finally, note that ADJ possesses a subtle limitation: the multiplicative rescaling

it employs cannot penalize hypotheses that have zero training error (hence the

limiting of the degree of the polynomials to l − 2 in the above experiments to

avoid null training errors). However, despite this shortcoming the ADJ procedure

turns out to perform very well in experiments and most often outperforms the more

straightforward TRI strategy.

23.3.4 Robustness to Unlabeled Data

Before moving on to regularization, a comment on the robustness of these model

selection techniques to limited amounts of auxiliary unlabeled data. In principle,

one can always argue that the preceding empirical results are not useful because

the metric-based strategies TRI and ADJ might require significant amounts of

unlabeled data to perform well in practice. However, the 200 unlabeled examples

used in the previous experiments does not seem that onerous. In fact, the previous

theoretical results (propositions 23.1, 23.2, and 23.3) assumed knowledge of the

true marginal PX. To explore the issue of robustness to limited amounts of unlabeled

data, the previous experiments were repeated but TRI and ADJ were only given

a small auxiliary sample of unlabeled data to estimate interhypothesis distances.

In this experiment it was found that these strategies were actually quite robust

to using approximate distances. Table 23.6 shows that small numbers of unlabeled

examples were still sufficient for TRI and ADJ to perform nearly as well as before.

Moreover, table 23.6 shows that these techniques only seem to significantly degrade

with fewer unlabeled than labeled training examples. This robustness was observed

across the range of problems considered.

Although the empirical results in this section are anecdotal, the paper (Schu-

urmans et al., 1997) pursues a more systematic investigation of the robustness of

these procedures and reaches similar conclusions (also based on artificial data). Re-

cently, Bengio and Chapados have also found that using a density estimate for PX

based only on labeled data allows one to dispense with unlabeled data and, sur-

prisingly, still achieve beneficial results (Bengio and Chapados, 2003). Rather than

present a detailed investigation of these model selection strategies in more serious

436 Metric-Based Approaches for Semi- Supervised Regression and Classification

Table 23.6 Fitting f(x)=step(x ≥ 0.5) with PX =U(0, 1) and σ=0.05 (as in table 23.1).
This table gives distribution of approximation ratios achieved with l = 30 labeled training
examples and u = 500, u = 200, u = 100, u = 50, u = 25 unlabeled examples, showing
percentiles of approximation ratios achieved after 1000 repeated trials. The experimental
setup of table 23.1 is repeated, except that a smaller number of unlabeled examples are
used.

percentiles of approximation ratios

l = 30 25 50 75 95 100

TRI (u = 500) 1.00 1.07 1.19 1.48 2.21

TRI (u = 200) 1.00 1.08 1.19 1.45 2.18

TRI (u = 100) 1.00 1.08 1.19 1.45 2.49

TRI (u = 50) 1.01 1.08 1.19 1.65 7.26

TRI (u = 25) 1.01 1.10 1.27 2.74 64.6

ADJ (u = 500) 1.06 1.14 1.26 1.51 1.99

ADJ (u = 200) 1.06 1.14 1.25 1.51 2.10

ADJ (u = 100) 1.07 1.16 1.31 1.67 2.21

ADJ (u = 50) 1.07 1.17 1.29 1.58 3.19

ADJ (u = 25) 1.09 1.22 1.40 1.85 8.68

case studies, the focus now changes to a further improvement in the basic method.

23.4 Regularization

One difficulty when doing model selection is that the generalization behavior

depends on the specific decomposition of the base hypothesis class into subclasses.

That is, different decompositions of H can lead to different outcomes. To avoid this

issue, the previous ideas need to be extended to a more general training criterion

that uses unlabeled data to decide how to penalize individual hypotheses in thepenalizing

individual

hypotheses

global space H . The main contribution of this section is a simple, generic training

objective that can be applied to a wide variety of supervised learning problems.

As before, assume a sizable collection of unlabeled data that can now be used to

globally penalize complex hypotheses. Specifically, an alternative training criterion

can be formulated that measures the behavior of individual hypotheses on both

the labeled and unlabeled data. The intuition behind this criterion is simple—

instead of minimizing empirical training error alone, also seek hypotheses that

behave similarly both on and off the labeled training data. This objective arises

from the observation that a hypothesis which fits the training data well but behaves

erratically off the labeled training set is not likely to generalize to unseen examples.

To detect such behavior one can measure the distances of a hypothesis from a fixedorigin hypothesis

simple “origin” function φ on both data sets. If a hypothesis is behaving erratically

23.4 Regularization 437

off the labeled training set, then it is likely that these two distances will disagree.

This effect is demonstrated in figure 23.5 for two large-degree polynomials that

both fit the labeled training data well but differ dramatically in their true error

and their differences between distances, both on and off the training set, to the

origin function. Trivial origin functions are used throughout this section—such as

the zero function, φ = 0, or the constant function at the mean of the y labels, φ = ȳ.

In practice, these work quite well.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

h

φ

g

d̂(h, PY|X) = 0.004

d(h, PY|X) = 193.1

d̂(g, PY|X) = 0.101

d(g, PY|X) = 0.543

d̂(φ, h) = 1.014

d̃(φ, h) = 192.4

d̂(g, φ) = 1.010

d̃(g, φ) = 0.928

Figure 23.5 Two nineteenth-degree polynomials h and g that fit 20 given training
points. Here h approximately minimizes d̂(h, PY|X), whereas g optimizes an alternative
training criterion defined in (23.10). This plot demonstrates how the labeled training
data estimate d̂(g,PY|X) for the smoother polynomial g is much closer to its true distance
d(g,PY|X). However, for both functions the proximity of the estimated errors d̂(·, PY|X) to
the true errors d(·, PY|X) appears to be reflected on the relative proximity of the estimated
distances d̂(·, φ) to the unlabeled distances d̃(·, φ) to the simple constant origin function
φ.

To formulate a concrete training objective first requires the following tentative

measures:

empirical training error plus an additive penalty

d̂(h, PY|X) + d̃(φ, h) − d̂(φ, h) (23.9)

empirical error times a multiplicative penalty

d̂(h, PY|X) × d̃(φ, h)

d̂(φ, h)
(23.10)

In each case, the behavior of a candidate hypothesis h is compared to the fixed

origin φ. Thus, both cases will minimize empirical training error d̂(h, PY|X) plus (or

times) a penalty that measures the discrepancy between the distance to the origin

on the labeled training data and the distance to the origin on unlabeled data.

438 Metric-Based Approaches for Semi- Supervised Regression and Classification

The regularization effect of these criteria is illustrated in figure 23.5. Somewhat

surprisingly, the multiplicative objective (Eq. 23.10) generally performs much better

than the additive objective (Eq. 23.9), as it more harshly penalizes discrepancies

between on and off training set behavior. Consequently, this is the form adopted

from now on.

Although these training criteria might appear ad hoc, they are not entirely

unprincipled. One useful property they have is that if the origin function φ happens

to be equal to the target conditional PY|X , then minimizing Eq. 23.9 or Eq. 23.10

becomes equivalent to minimizing the true prediction error d(h, PY|X). However, it

turns out that these training objectives have the inherent drawback that they subtly

bias the final hypotheses toward the origin function φ. That is, both Eq. 23.9 and

Eq. 23.10 allow minima that have “artificially” large origin distances on the labeled

data, d̂(φ, h), and simultaneously small distances on unlabeled data, d̃(φ, h). This

is illustrated in figure 23.5 for a hypothesis function g that minimizes Eq. 23.10

but is clearly attracted to the origin, φ, at the right end of the domain (off of the

labeled training data).

Nevertheless, there is an intuitive way to counter this difficulty. To avoid the bias

toward φ, one can use symmetric forms of the previous criteria that also penalizesymmetric

penalty hypotheses that are unnaturally close to the origin off of the labeled data. That is,

one could consider a symmetric form of the additive penalty (Eq. 23.9)

d̂(h, PY|X) +
∣∣∣d̃(φ, h) − d̂(φ, h)

∣∣∣ , (23.11)

as well as a symmetrized form of the multiplicative penalty (Eq. 23.10),

d̂(h, PY|X) × max

(
d̃(φ, h)

d̂(φ, h)
,
d̂(φ, h)

d̃(φ, h)

)
. (23.12)

These penalties work in both directions: hypotheses that are much further from

the origin on the training data than off are penalized, but so are hypotheses that

are significantly closer to the origin on the training data than off. The rationale

behind this symmetric criterion is that both types of erratic behavior indicate that

the observed training error is likely to be an unrepresentative reflection of the true

error of the hypothesis. The value of this intuition is demonstrated in figure 23.6,

where the hypothesis f that minimizes the new symmetric criterion (Eq. 23.12) is

not drawn toward the origin inappropriately, and thereby achieves a smaller true

prediction error than the hypothesis g that minimizes Eq. 23.10. More technical

justifications for this criterion are offered in (Schuurmans and Southey, 2002).

The final outcome is a new regularization procedure that uses the training

objective from Eq. 23.12 to penalize hypotheses based on the given training data

and the unlabeled data. In effect, the resulting procedure uses the unlabeled

data to automatically set the level of regularization for a given problem. This

procedure has an additional advantage—since the penalization factor in Eq. 23.12data-dependent

regularization also depends on the specific labeled training set under consideration, the resulting

procedure regularizes in a data-dependent fashion. That is, the procedure adapts

23.4 Regularization 439

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

φ

g

f

d̂(g, PY|X) = 0.101

d(g, PY|X) = 0.543

d̂(f,PY|X) = 0.098

d(f,PY|X) = 0.488

d̂(g, φ) = 1.010

d̃(g, φ) = 0.928

d̂(f, φ) = 1.011

d̃(f, φ) = 1.023

Figure 23.6 A comparison of the asymmetric and symmetrized training objectives. Here
g is the nineteenth-degree polynomial which minimizes the original asymmetric criterion
(23.10) on 20 data points, whereas f minimizes the symmetrized criterion (23.12). This
plot shows how g is inappropriately drawn toward the origin φ near the right end of the
interval, whereas f behaves neutrally with respect to φ.

the penalization to a particular set of observed data. This raises the possibility

of outperforming any regularization scheme that keeps a fixed penalization level

across different training samples drawn from the same problem. In fact, such an

improvement can be achieved in realistic hypothesis classes on real data sets—as

shown in the next section.

One drawback with the minimization objective in Eq. 23.12 is that it is not convex

and therefore local minima likely exist. Typically one has to devise reasonablenonconvex

optimization initialization and restart procedures to effectively minimize such an objective. Here

we simply started the optimizer from the best-fit polynomial of each degree, or in

the case of radial basis function (RBF) regularization (below), we started from a

single initialization point. Once initialized, a standard optimization routine (Matlab

5.3 “fminunc”) was used to determine coefficients that minimized Eqs. 23.11 and

23.12. Although the nondifferentiability of Equation 23.12 creates difficulty for the

optimizer, it does not prevent reasonable results from being achieved. Therefore,

we did not find it necessary to smooth the objective with a softmax, although this

is a reasonable idea. Another potential problem could arise if h gets close to the

origin φ. However, since simple origins were chosen that were never near PY|X , h was

not drawn near φ in these experiments and thus the resultant numerical instability

did not arise.

23.4.1 Example: Polynomial Regression

The first supervised learning task considered is the polynomial regression problem

from section 23.3.2. The regularizer introduced above (Eq. 23.12) turns out to

perform very well in such problems. In this case, our training objective can be

440 Metric-Based Approaches for Semi- Supervised Regression and Classification

expressed as choosing a hypothesis to minimize

l∑

i=1

(h(xi)−yi)
2/l × max

⎛
⎜⎜⎜⎜⎜⎝

n∑

j=l+1

(h(xj) − φ(xj))
2/u

l∑

i=1

(h(xi) − φ(xi))
2/l

,

l∑

i=1

(h(xi) − φ(xi))
2/l

n∑

j=l+1

(h(xj) − φ(xj))
2/u

⎞
⎟⎟⎟⎟⎟⎠

,

where {〈xi,yi〉}l
i=1 is the set of labeled training data, {〈xj〉}n

j=l+1 is the set of

unlabeled examples, and φ is a fixed origin function (usually set to the constant

function at the mean of the y labels). Note again that this training objective seeks

hypotheses that fit the labeled training data well while simultaneously behaving

similarly on labeled and unlabeled data.

To test the basic effectiveness of this approach, the experiments of section 23.3.2

were repeated. The first class of methods compared against were the same model

selection methods considered before: tenfold cross-validation CVT, structural risk

minimization SRM (Cherkassky et al., 1997), RIC (Foster and George, 1994);

SMS (Shibata, 1981), GCV (Craven and Wahba, 1979), BIC (Schwarz, 1978), AIC

(Akaike, 1974), CP (Mallows, 1973), FPE (Akaike, 1970), and the metric-based

model selection strategy, ADJ, introduced in section 23.3.3. However, since none of

the classical model selection methods performed competitively in these experiments,

they are not reported here (see Schuurmans and Southey (2002) for more complete

results). Instead, for comparison, results are reported for the optimal model selector,

OPT*, which makes an oracle choice of the best available hypothesis in any given

model selection sequence based on the test data. In these experiments, the model

selection methods considered polynomials of degree 0 to l − 2.5

Table 23.7 Fitting f(x) = step(x ≥ 0.5) with PX = U(0, 1) and σ = 0.05. Absolute
test errors (true distances) achieved. Results of 1000 repeated trials. This repeats the
conditions of table 23.1.

mean median stdev

ADA (23.12) φ = mean y 0.391 0.366 0.113

asymmetric (23.10) 0.403 0.378 0.111

REG λ = 1.0 0.483 0.468 0.048

REG* 0.371 0.355 0.049

model sel OPT* 0.387 0.374 0.076

ADJ 0.458 0.466 0.112

5. Note that the degree is restricted to be less than l− 1 to prevent the maximum degree
polynomials from achieving zero training error which, as discussed in section 23.3, destroys
the regularization effect of the multiplicative penalty.

23.4 Regularization 441

Table 23.8 Fitting f(x)=sin(1/x) with PX =U(0, 1) and σ=0.05. Absolute test errors
(true distances) achieved. Results of 1000 repeated trials. This repeats the conditions of
table 23.2.

mean median stdev

ADA (23.12) φ = mean y 0.444 0.425 0.085

asymmetric (23.10) 0.466 0.439 0.102

REG λ = 1.0 0.484 0.473 0.040

REG* 0.429 0.424 0.041

model sel OPT* 0.433 0.427 0.049

ADJ 0.712 0.504 0.752

Table 23.9 Fitting f(x)=sin2(2πx) with PX =U(0, 1) and σ=0.05. Absolute test errors
(true distances) achieved. Results of 1000 repeated trials. This repeats the conditions of
table 23.3.

mean median stdev

ADA (23.12) φ = mean y 0.107 0.081 0.066

asymmetric (23.10) 0.111 0.087 0.060

REG λ = 5.0 0.353 0.341 0.040

REG* 0.140 0.092 0.099

model sel OPT* 0.122 0.085 0.086

ADJ 0.188 0.114 0.150

The second class of methods compared against were regularization methods that

consider polynomials of maximum degree l− 2 but penalize individual polynomials

based on the size of their coefficients or their smoothness properties. The specific

methods considered were a standard form of “ridge” penalization (or weight de-

cay) which places a penalty λ
∑

k a2
k on polynomial coefficients ak (Cherkassky

and Mulier, 1998), and Bayesian maximum a posteriori inference with zero-mean

Gaussian priors on polynomial coefficients ak with diagonal covariance matrix λI

(MacKay, 1992). Both of these methods require a regularization parameter λ to be

set by hand. These methods are referred to as REG and MAP respectively.

To test the ability of the new regularization technique to automatically set

the regularization level, a range of (fourteen) regularization parameters λ were

tried for the fixed regularization methods REG and MAP, showing the single

best value of λ obtained on the test data. For comparison purposes, the results

of the oracle regularizer, REG*, is also reported. This oracle selects the best

λ value for each training set based on examining the test data (MAP* gives

similar results here (Schuurmans and Southey, 2002)). The experiments were

conducted by repeating the conditions of section 23.3.2. Specifically, table 23.7

repeats table 23.1 (fitting a step function), table 23.8 repeats table 23.2 (fitting

442 Metric-Based Approaches for Semi- Supervised Regression and Classification

Table 23.10 Fitting a fifth-degree polynomial with PX =U(0, 1) and σ=0.05. Absolute
test errors (true distances) achieved. Results of 1000 repeated trials. This repeats the
conditions of table 23.4.

mean median stdev

ADA (23.12) φ = mean y 0.077 0.060 0.090

asymmetric (23.10) 0.110 0.074 0.088

REG λ = 10−1 0.454 0.337 0.508

REG* 0.147 0.082 0.121

model sel OPT* 0.071 0.060 0.071

ADJ 0.116 0.062 0.188

sin(1/x)), table 23.9 repeats table 23.3 (fitting sin2(2πx)), and table 23.10 repeats

table 23.4 (fitting a fifth-degree polynomial). The regularization criterion based on

minimizing Eq. 23.12 is listed as ADA in our figures (for “adaptive” regularization).

Additionally, the asymmetric version of ADA (23.10) was tested to verify the

benefits of the symmetrized criterion (23.12).

The results are positive. The new adaptive regularization scheme ADA performed

the best among all procedures in these experiments. Tables 23.7 through 23.10

show that it outperformed the fixed regularization strategy REG for the best fixed

choice of regularization parameter (λ), even though the optimal choice varies across

problems. This demonstrates that ADA is able to effectively tune its penalization

behavior to the problem at hand. Moreover, since it outperforms even the best

choice of λ for each data set, ADA also demonstrates the ability to adapt its

penalization behavior to a specific training set, not just a given problem. In fact,

ADA is competitive with the oracle regularizer REG* in these experiments, and

even sometimes outperformed the oracle model selection strategy OPT*. The results

also show that the asymmetric version of ADA based on (23.10) is inferior to the

symmetrized version in these experiments, confirming our prior expectations.

23.4.2 Example: Radial Basis Function Regression

To test the approach on a more realistic task, the problem of regularizing radial

basis function (RBF) networks for regression was considered. RBF networks are

a natural generalization of interpolation and spline-fitting techniques. Given a set

of prototype centers c1, ..., ck, an RBF representation of a prediction function h is

given by

h(x) =

k∑

i=1

wi g

(‖x − ci‖
σ

)
, (23.13)

where ‖x−ci‖ is the Euclidean distance between x and center ci and g is a response

function with width parameter σ. In this experiment a standard local Gaussian basis

23.4 Regularization 443

function, g(z) = e−z2/σ2

, was used.

Fitting with RBF networks is straightforward. The simplest approach is to place

a prototype center on each training example and then determine the weight vector,RBF networks

w, that allows the network to fit the training labels. The best-fit weight vector can

be obtained by solving for w in
⎡
⎢⎢⎢⎣

g
(

‖x1−x1‖
σ

)
· · · g

(
‖x1−xl‖

σ

)

...
...

g
(

‖xl−xl‖
σ

)
· · · g

(
‖xl−xl‖

σ

)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

w1

...

wl

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y1

...

yl

⎤
⎥⎥⎦ .

The solution is guaranteed to exist and be unique for distinct training points and

most natural basis functions, including the Gaussian basis used here (Bishop, 1995).

Although exactly fitting data with RBF networks is natural, it has the prob-

lem of generally overfitting the training data in the process of replicating the yregularized RBF

networks labels. Many approaches therefore exist for regularizing RBF networks. However,

these techniques are often hard to apply because they involve setting various free

parameters or controlling complex methods for choosing prototype centers, etc.

(Cherkassky and Mulier, 1998; Bishop, 1995). The simplest regularization approach

is to add a ridge penalty to the weight vector, and minimize

l∑

i=1

(h(xi) − yi)
2 + λ

l∑

i=1

w2
i , (23.14)

where h is given as in Eq. 23.13 (Cherkassky and Mulier, 1998). An alternative

approach is to add a nonparametric penalty on curvature (Poggio and Girosi, 1990),

but the resulting procedure is similar. To apply these methods in practice one

has to make an intelligent choice of the width parameter σ and the regularization

parameter λ. Unfortunately, these choices interact and it is often hard to set them

by hand without visualization and experimentation with the data set.

This section investigates how effectively the ADA regularizer is able to auto-

matically select the width parameter σ and regularization parameter λ in an RBF

network on real regression problems. Here the basic idea is to use unlabeled data to

make these choices automatically and adaptively. ADA (Eq. 23.12) is compared to a

large number of ridge regularization procedures, each corresponding to the penalty

in Equation 23.14 with different fixed choices of σ and λ—thirty-five in total. To

apply ADA in this case a standard optimizer was run over the parameter space

(σ, λ) while explicitly solving for the w vector that minimized Eq. 23.14 for each

choice of σ and λ (this involved solving a linear system (Cherkassky and Mulier,

1998; Bishop, 1995)). Thus, given σ, λ, and w Eq. 23.12 could be calculated and

the result supplied to the optimizer as the objective to be minimized.

A number of regression problems from the StatLib and UCI machine learning

444 Metric-Based Approaches for Semi- Supervised Regression and Classification

Table 23.11 RBF results showing mean test errors (distances) on the AAUP data set
(1074 instances on 12 independent attributes). Results are averaged over 100 splits of the
data set.

ADA (23.12) 0.0197± 0.004 | REG* 0.0329± 0.009

REG λ=0.0 0.1 0.25 0.5 1.0

σ= 0.0005 0.0363 0.0447 0.0482 0.0515 0.0554

0.001 0.0353 0.0435 0.0475 0.0512 0.0554

0.0025 0.0350 0.0425 0.0473 0.0514 0.0555

0.005 0.0359 0.0423 0.0475 0.0516 0.0554

0.0075 0.0368 0.0424 0.0478 0.0517 0.0553

Table 23.12 RBF results showing mean test errors (distances) on the ABALONE data
set (1000 instances on 8 independent attributes). Results are averaged over 100 splits of
the data set.

ADA (23.12) 0.034± 0.0046 | REG* 0.049 ± 0.0063

REG λ=0.0 0.1 0.25 0.5 1.0

σ= 4 0.4402 0.04954 0.04982 0.05008 0.05061

6 0.3765 0.04952 0.04979 0.05007 0.05063

8 0.3671 0.04951 0.04979 0.05007 0.05069

10 0.3474 0.04952 0.04979 0.05007 0.05073

12 0.3253 0.04953 0.04979 0.05008 0.05079

repositories were investigated.6 In the experiments, a given data set was randomly

split into training (1/10), unlabeled (7/10), and test (2/10) sets. Each of the

methods was then run on this split—this process being repeated 100 times for each

data set to obtain results. Tables 23.11 through 23.14 show that ADA regularization

was able to choose width and regularization parameters that achieved effective

generalization performance across a range of data sets. The loss for ADA and

REG* are given at the top of each table and the loss for each fixed parameter

setting is given below. The best such setting is italicized. Furthermore, all settings

that outperform ADA are shown in bold. Therefore, tables showing few bold entries

indicate that ADA is outperforming most fixed regularizers.

On these data sets, ADA performs better than any fixed regularizer on every

problem (except BODYFAT). This shows that the adaptive criterion is not only

effective at choosing good regularization parameters for a given problem but can

choose them adaptively based on the specific sample of training data given, yielding

improvements over fixed regularizers.

6. The URLs are lib.stat.cmu.edu and www.ics.uci.edu/~mlearn/MLRepository.

html.

23.5 Classification 445

Table 23.13 RBF results showing mean test errors (distances) on the BODYFAT data
set (252 instances on 14 independent attributes). Results are averaged over 100 splits of
the data set.

ADA (23.12) 0.131± 0.0171 | REG* 0.125 ± 0.0151

REG λ=0.0 0.1 0.25 0.5 1.0

σ= 0.1 0.1658 0.1299 0.1325 0.1341 0.1354

0.5 0.1749 0.1294 0.1321 0.1337 0.1352

1 0.1792 0.1294 0.1321 0.1336 0.1353

2 0.1837 0.1296 0.1322 0.1337 0.1356

4 0.1883 0.1299 0.1323 0.1339 0.1362

Table 23.14 RBF results showing mean test errors (distances) on the BOSTON-C data
set (506 instances on 12 independent attributes). Results are averaged over 100 splits of
the data set.

ADA (23.12) 0.150± 0.0212 | REG* 0.151 ± 0.0197

REG λ=0.0 0.1 0.25 0.5 1.0

σ= 0.075 0.1619 0.15785 0.1614 0.1645 0.1679

0.1 0.1624 0.15779 0.1614 0.1645 0.1679

0.15 0.1633 0.15776 0.1615 0.1646 0.1680

0.2 0.1642 0.15777 0.1615 0.1647 0.1682

0.25 0.1649 0.15780 0.1616 0.1648 0.1683

23.5 Classification

The regularization approach developed in this chapter can also be applied to

classification problems. For classification, the label set Y is usually a small dis-

crete set and prediction error is typically measured by the misclassification loss,

err(ŷ, y) = 1(ŷ �=y). With this loss function, distances are measured by the disagree-

ment probability d(f, g) = PX(f(x)
= g(x)) (Ben-David et al., 1995). Using this

metric, the generic regularization objective from Eq. 23.12 can be directly applied to

classification problems. As it turns out, a direct application of our approach to this

case gives poor results (Schuurmans and Southey, 2002). An intuitive explanation

for this weakness is that classification functions are essentially histogram-like (i.e.,

piecewise constant), and this tends to limit the ability of unlabeled data to detect

erratic behavior off the labeled training sample. A recent generalization analysis

by Kääriäinen and Langford (Kääriäinen, 2005; Kääriäinen and Langford, 2005)

suggests that effective model selection strategies might be achieved by using tight

generalization bounds derived from unlabeled data as a complexity penalizer. This

idea has yet to be investigated in detail, however. Rather than pursue modified tech-

niques for classification here, we instead consider a straightforward regression-based

446 Metric-Based Approaches for Semi- Supervised Regression and Classification

approach for the remainder of this chapter.

A natural alternative to misclassification loss exists for the subset of classification

methods that return a distribution over class labels instead of a single class label.

With these methods, Kullback-Leibler (KL) divergence (Cover and Thomas, 1991)

can be used instead of distance metrics to compare hypothesis functions with the

origin function φ.7 With such a distance, penalized training objectives8 can be

derived similar to Eqs. 23.11 and 23.12, the terms of which are

d̃(φ‖h) =
1

u

n∑

i=l+1

φ(xi) log
φ(xi)

h(xi)
+ (1 − φ(xi)) log

1 − φ(xi)

1 − h(xi)
, (23.15)

d̂(φ‖h) =
1

l

l∑

i=1

φ(xi) log
φ(xi)

h(xi)
+ (1 − φ(xi)) log

1 − φ(xi)

1 − h(xi)
, (23.16)

d̂(PY|X‖h) =
1

l

l∑

i=1

−yi log h(xi) − (1 − yi) log(1 − h(xi)). (23.17)

Experiments were run on three classifiers that return class-membership probabil-

ities. The ADA penalization strategy was tested on logistic regression (LR) (Hastie

et al., 2001), kernel logistic regression (KLR) (Hastie and Tibshirani, 1990), and a

neural network (NN) (Hastie et al., 2001). Experiments were run on the two data

sets used throughout this book and on a set of UCI data sets. The LR prediction

function h is

h(x) =
1

1 + e−wT x
. (23.18)

The prediction functions for KLR and neural networks are closely related in

the experiments presented here. KLR simply kernalizes Eq. 23.18. For the neural

network used here, the activation function in the first layer is tanh(), and the output

layer uses the logistic function in Eq. 23.18. The ADA-penalized objectives for all

three are therefore very similar.

In all cases, gradient descent was used to optimize the ADA objective. We

compare against regularized versions of LR, using the penalty term λwT w, 0 ≤
λ. All experiments were repeated ten times, and the average log-loss test error

reported. Ten labeled training points and 100 unlabeled points were used during

training, and the remaining points were used for testing.

The results for LR on most of the book data sets (cf. chapter 21) are shown in

table 23.15 for a variety of λ settings. (A binary version of COIL, called COIL0,1,

was used; SecStr and Text were omitted due to excessive size and dimensionality,

7. Note that KL divergence is not a proper distance metric but it is frequently used in
such contexts.
8. For the sake of simplicity, only binary classification is considered.

23.5 Classification 447

respectively.) The results show that ADA-penalized LR is competitive on Digit1,

and beats the best fixed regularizer on the other sets. Results on six UCI data sets

(AUSTRALIAN, CRX, DIABETES, FLARE, GERMAN, and PIMA) are shown in

table 23.16. Again, results are competitive, coming close to the best fixed regularizer

in most cases and surpassing it on two data sets.

Table 23.15 Logistic regression (LR) results for six book data sets showing mean testing
error (log-loss) for ADA and regularized LR with various settings of λ.

Digit1 USPS COIL0,1 BCI g241c g241d

ADA 0.653 0.379 0.687 0.325 0.042 0.188

λ = 0 0.570 1.006 18.89 2.788 0.982 1.042

0.1 0.502 0.621 4.765 1.607 0.692 0.734

0.5 0.537 0.524 4.142 1.254 0.667 0.696

1.0 0.568 0.494 3.878 1.120 0.660 0.684

2.0 0.606 0.472 3.617 1.001 0.655 0.675

5.0 0.655 0.459 3.278 0.874 0.653 0.667

10.0 0.682 0.460 3.026 0.804 0.654 0.664

Table 23.16 Logistic regression (LR) results for six UCI data sets showing mean testing
error for ADA and regularized LR with various settings of λ.

AUST. CRX DIAB. FLARE GERM. PIMA

ADA 0.697 0.716 0.703 0.541 0.697 0.683

λ = 0 1.240 1.176 1.282 1.741 0.710 1.442

0.1 0.927 0.797 0.785 0.833 0.715 0.881

0.5 0.814 0.707 0.733 0.618 0.715 0.773

1.0 0.773 0.689 0.716 0.572 0.713 0.739

2.0 0.742 0.679 0.703 0.546 0.710 0.715

5.0 0.715 0.676 0.694 0.533 0.703 0.697

10.0 0.704 0.678 0.691 0.531 0.697 0.692

Similar experiments were run on kernel logistic regression using a Gaussian

kernel and a variety of settings for the standard deviation, σ. Results are shown

448 Metric-Based Approaches for Semi- Supervised Regression and Classification

in table 23.17 for the book data sets 9 and in table 23.18 for the UCI data. Like

the earlier regression results, the best fixed parameter setting is italicized and all

settings that outperform ADA are shown in bold.

On the book data, the results are excellent, beating the oracle regularizer on all

but Digit1 and coming very close even there. On the UCI data, the results are

more mixed but still quite positive. While the oracle is not surpassed on any data

set, ADA is still better than many fixed regularizers.

Table 23.17 Kernel logistic regression (KLR) results for six book data sets showing
mean testing error for ADA and regularized KLR with various settings of λ and σ.

Digit1 ADA 0.518

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.691 0.572 0.569 0.701

0.1 0.693 0.692 0.636 0.690 0.723

0.5 0.693 0.693 0.667 0.716 0.725

1.0 0.693 0.693 0.677 0.718 0.724

2.0 0.693 0.693 0.684 0.717 0.721

5.0 0.693 0.693 0.689 0.712 0.715

10.0 0.693 0.693 0.691 0.706 0.709

USPS ADA 0.456

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.693 0.691 0.478 0.480

0.1 0.693 0.693 0.692 0.444 0.477

0.5 0.693 0.693 0.693 0.481 0.498

1.0 0.693 0.693 0.693 0.503 0.504

2.0 0.693 0.693 0.693 0.531 0.511

5.0 0.693 0.693 0.693 0.578 0.526

10.0 0.693 0.693 0.693 0.615 0.549

COIL0,1 ADA 0.685

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.693 0.693 0.693 0.693

0.1 0.693 0.693 0.693 0.693 0.693

0.5 0.693 0.693 0.693 0.693 0.693

1.0 0.693 0.693 0.693 0.693 0.693

2.0 0.693 0.693 0.693 0.693 0.693

5.0 0.693 0.693 0.693 0.693 0.693

10.0 0.693 0.693 0.693 0.693 0.693

BCI ADA 0.580

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.693 0.693 0.811 1.045

0.1 0.693 0.693 0.693 0.710 0.769

0.5 0.693 0.693 0.693 0.697 0.731

1.0 0.693 0.693 0.693 0.695 0.721

2.0 0.693 0.693 0.693 0.694 0.713

5.0 0.693 0.693 0.693 0.693 0.704

10.0 0.693 0.693 0.693 0.693 0.698

g241c ADA 0.513

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.693 0.693 0.693 0.754

0.1 0.693 0.693 0.693 0.693 0.701

0.5 0.693 0.693 0.693 0.693 0.695

1.0 0.693 0.693 0.693 0.693 0.694

2.0 0.693 0.693 0.693 0.693 0.693

5.0 0.693 0.693 0.693 0.693 0.693

10.0 0.693 0.693 0.693 0.693 0.693

g241d ADA 0.514

σ = 0.1 0.5 1 5 10

λ = 0 0.693 0.693 0.693 0.693 0.736

0.1 0.693 0.693 0.693 0.693 0.697

0.5 0.693 0.693 0.693 0.693 0.693

1.0 0.693 0.693 0.693 0.693 0.693

2.0 0.693 0.693 0.693 0.693 0.693

5.0 0.693 0.693 0.693 0.693 0.693

10.0 0.693 0.693 0.693 0.693 0.693

Finally, we present results on three unregularized neural networks, with three,

five, and ten hidden units respectively. Results for the book data are shown in

table 23.19 and for the UCI data in table 23.20. The results against unregularized

9. We presume the similar scores achieved by so many of the fixed regularizes on the book
data are due to some regularity in those data.

23.6 Conclusion 449

Table 23.18 Kernel logistic regression (KLR) results for six UCI data sets showing
mean testing error for ADA and regularized KLR with various settings of λ and σ.

AUSTRALIAN ADA 0.685

σ = 0.1 0.5 1 5 10

λ = 0 0.851 0.772 0.748 0.708 0.710

0.1 0.670 0.681 0.682 0.705 0.705

0.5 0.653 0.671 0.682 0.703 0.705

1.0 0.654 0.671 0.683 0.702 0.704

2.0 0.658 0.673 0.685 0.701 0.703

5.0 0.667 0.674 0.685 0.697 0.699

10.0 0.675 0.677 0.685 0.694 0.696

CRX ADA 1.111

σ = 0.1 0.5 1 5 10

λ = 0 1.141 1.153 1.033 0.946 0.851

0.1 0.770 0.826 0.826 0.830 0.787

0.5 0.703 0.760 0.779 0.798 0.779

1.0 0.689 0.739 0.762 0.784 0.772

2.0 0.681 0.721 0.744 0.767 0.762

5.0 0.679 0.700 0.720 0.742 0.742

10.0 0.682 0.690 0.704 0.723 0.725

DIABETES ADA 0.666

σ = 0.1 0.5 1 5 10

λ = 0 0.683 0.897 0.933 0.744 0.694

0.1 0.683 0.638 0.692 0.685 0.686

0.5 0.688 0.619 0.658 0.680 0.687

1.0 0.690 0.623 0.649 0.678 0.685

2.0 0.691 0.633 0.645 0.675 0.681

5.0 0.692 0.652 0.645 0.669 0.674

10.0 0.693 0.666 0.652 0.666 0.670

FLARE ADA 0.540

σ = 0.1 0.5 1 5 10

λ = 0 0.700 0.660 0.652 0.646 0.473

0.1 0.656 0.636 0.558 0.465 0.474

0.5 0.667 0.656 0.592 0.468 0.481

1.0 0.675 0.667 0.616 0.474 0.483

2.0 0.682 0.677 0.639 0.482 0.485

5.0 0.688 0.686 0.664 0.500 0.494

10.0 0.690 0.689 0.676 0.526 0.511

GERMAN ADA 0.804

σ = 0.1 0.5 1 5 10

λ = 0 0.968 1.480 1.574 0.888 0.720

0.1 0.717 0.814 0.845 0.680 0.640

0.5 0.683 0.699 0.716 0.640 0.633

1.0 0.682 0.678 0.683 0.632 0.633

2.0 0.684 0.669 0.664 0.628 0.633

5.0 0.688 0.670 0.657 0.628 0.634

10.0 0.690 0.676 0.661 0.632 0.636

PIMA ADA 0.680

σ = 0.1 0.5 1 5 10

λ = 0 0.678 0.906 0.818 0.714 0.684

0.1 0.679 0.646 0.679 0.683 0.682

0.5 0.686 0.636 0.670 0.680 0.681

1.0 0.688 0.641 0.666 0.679 0.679

2.0 0.690 0.648 0.663 0.677 0.678

5.0 0.692 0.661 0.661 0.673 0.674

10.0 0.693 0.672 0.664 0.671 0.671

neural networks are striking, dramatically reducing the tendency to overfit, even

as the model complexity increases (performance on the PIMA data set with ten

hidden nodes is the only notable anomaly to be found).

Overall, these results show considerable promise for the use of ADA with prob-

abilistic classifiers, but there are clearly improvements still to be made. Adapting

the technique to work with discrete classifiers also remains a key challenge.

23.6 Conclusion

A new approach to the classical complexity-control problem has been introduced

that is based on the intrinsic geometry of the function-learning task. This geometry

is exploited in such a way as to be able to incorporate information from both labeled

and unlabeled data in a semi-supervised learning task. Unlike the majority of such

450 Metric-Based Approaches for Semi- Supervised Regression and Classification

Table 23.19 Neural network (NN) results for the book data sets (except set 6) showing
mean testing error for ADA and unregularized NN with 3, 5, and 10 hidden nodes.

hidden=3 Digit1 USPS COIL0,1 BCI g241c g241d

ADA 0.756 0.579 11.282 1.162 2.120 1.108

unreg NN 84.567 51.020 22.769 154.388 122.308 160.653

hidden=5 Digit1 USPS COIL0,1 BCI g241c g241d

ADA 0.829 1.422 2.998 1.324 30.349 3.108

unreg NN 77.577 47.166 41.629 165.090 151.790 139.809

hidden=10 Digit1 USPS COIL0,1 BCI g241c g241d

ADA 1.828 9.985 2.070 0.993 4.742 1.253

unreg NN 83.693 61.913 24.233 118.572 124.658 142.555

Table 23.20 Neural network (NN) results for six UCI data sets showing mean testing
error for ADA and unregularized NN with 3, 5, and 10 hidden nodes.

hidden=3 AUST. CRX DIAB. FLARE GERM. PIMA

ADA 0.90 0.78 2.45 0.64 0.64 0.93

unreg NN 34.40 79.53 13.95 40.73 0.64 8.87

hidden=5 AUST. CRX DIAB. FLARE GERM. PIMA

ADA 1.53 1.19 1.71 0.53 0.82 0.89

unreg NN 41.13 88.43 46.47 62.41 0.73 58.43

hidden=10 AUST. CRX DIAB. FLARE GERM. PIMA

ADA 1.09 1.33 2.10 0.72 1.03 11.64

unreg NN 110.13 48.96 30.23 80.88 13.89 55.94

techniques, this approach requires no assumptions about the relationship between

labeled and unlabeled data other than the key assumption that they are drawn

from the same probability distribution.

These new techniques seem to outperform standard approaches in a wide range

of regression problems and either outperform or are competitive with standard ap-

proaches in a range of classification problems, with only one comparatively weak

instance (ADA-regularized KLR). The primary source of this advantage is that

the proposed metric-based strategies are able to detect dangerous situations and

avoid making catastrophic overfitting errors while still being responsive enough

to adopt reasonably complex models when this is supported by the data. This

is accomplished by attending to the real distances between hypotheses. Stan-

dard complexity-penalization strategies completely ignore this information. Holdout

methods implicitly take some of this information into account, but do so indirectly

and less effectively than the metric-based strategies introduced here. Although there

23.6 Conclusion 451

is “no free lunch” in general (Schaffer, 1994) and a universal improvement cannot be

claimed for every complexity-control problem (Schaffer, 1993), one should be able

to exploit additional information about the task (i.e., knowledge of PX) to obtain

significant improvements across a wide range of problem types and conditions. The

empirical results support this view. Furthermore, ADJ remains very competitive

with newer model-selection techniques (Bengio and Chapados, 2003). Additionally,

ADJ has been independently extended along three lines (Chapelle et al., 2002): (i)

producing excellent results on time-series data, (ii) using estimated densities in lieu

of unlabeled data, and (iii) hybridizing ADJ with cross-validation.

An important direction for future research is to develop theoretical support for

these strategies—in particular, a stronger theoretical justification of the regulariza-

tion methods proposed in section 23.4, an improved analysis of the model selection

methods proposed in section 23.3, and investigation of how to apply the technique

in section 23.5 to a more general set of classifiers . It remains open as to whether

the proposed methods TRI, ADJ, and ADA are in fact the best possible ways to ex-

ploit the hypothesis distances provided by PX. A clear direction for future research

is the investigation of alternative strategies that could potentially be more effective

in this regard. For example, it remains for future work to extend the multiplicative

ADJ and ADA methods to cope with zero training errors. Additionally, more ex-

ploration of the effects of alternative origin functions (perhaps even ensembles of

origin functions) is necessary. Finally, it would be interesting to adapt the approach

to model combination methods, extending the ideas of Krogh and Vedelsby (1995)

to other combination strategies, including boosting (Freund and Schapire, 1997)

and bagging (Breiman, 1996).

Acknowledgments

Research was supported by the Alberta Ingenuity Centre for Machine Learning,

NSERC, MITACS, and the Canada Research Chair programme.

24 Transductive Inference and

Semi-Supervised Learning

Vladimir Vapnik vapnik@att.net

This chapter discusses the difference between transductive inference and semi-

supervised learning. It argues that transductive inference captures the intrinsic

properties of the mechanism for extracting additional information from the unla-

beled data. It also shows an important role of transduction for creating noninductive

models of inference.1

24.1 Problem Settings

Let us start with the formal problem setting for transductive inference and semi-

supervised learning.

Transductive Inference: General Setting Given a set of ℓ training pairs,

(y1, x1), ...(yℓ, xℓ), xi ∈ R
d, yi ∈ {−1, 1}, (24.1)

and a sequence of k test vectors,

xℓ+1, ..., xℓ+k, (24.2)

find among an admissible set of binary vectors,

{Y = (yℓ+1, ..., yℓ+k)},

1. These remarks were inspired by the discussion, What is the Difference between Trans-
ductive Inference and Semi-Supervised Learning?, that took place during a workshop close
to Tübingen, Germany (May 24, 2005).

454 Transductive Inference and Semi-Supervised Learning

the one that classifies the test vectors with the smallest number of errors. Here we

consider

x1, ..., xℓ+k (24.3)

to be random i.i.d. vectors drawn according to the same (unknown) distribution

P (x). The classifications y of the vectors x are defined by some (unknown) condi-

tional probability function P (y|x).

Below we will call the vectors (24.3) from the training and test sets the working

set of vectors.

Transductive Inference: Particular Setting In this setting the set of admis-

sible vectors is defined by the admissible set of indicator functions f(x, α), α ∈ Λ.

In other words, every admissible vector of classification Y∗ is defined as follows:

Y∗ = (f(x1, α∗), ..., f(xk, α∗)) .

Semi-Supervised Learning Given a set of training data (24.1) and a set of

test data (24.2), find among the set of indicator functions f(x, α), α ∈ Λ, the one

that minimizes the risk functional

R(α) =

∫
|y − f(x, α)|dP (x, y). (24.4)

Therefore, in transductive inference the goal is to classify the given u test vectors

of interest while in semi-supervised learning the goal is to find the function that

minimizes the functional (24.4) (the expectation of the error).

Semi-supervised learning can be seen as being related to a particular setting of

transductive learning. Indeed, if one chooses the function to classify the given test

data (24.2) well, why not also use it to classify new unseen data? This looks like a

reasonable idea.

However from a conceptual point of view, transductive inference contains im-

portant elements of a new philosophy of inference and this is the subject of these

remarks.

The transductive mode of inference was introduced in the mid-1970s. It attempts

to estimate the values of an unknown function f(x, α0) at particular points of

interest. On the other hand, inductive inference attempts to estimate the unknown

function over its entire domain of definition (Vapnik, 2006). In the late 1970s the

advantage of transductive inference over inductive inference was shown on real life

problems (Vapnik and Sterin, 1977).

The problem of semi-supervised learning was introduced in the mid-1990s (cf. sec-

tion 1.1.3) and became popular in the early 2000s (Zhou et al., 2004).

24.2 Problem of Generalization in Inductive and Transductive Inference 455

24.2 Problem of Generalization in Inductive and Transductive Inference

The mechanism that provides the transductive mode of inference with an advantage

over the inductive mode in classification of the given points of interest has been

understood since the very first theorems of Vapnik-Chervonenkis (VC) theory were

proved.

Suppose that our goal is to find the function that minimizes the functional (24.4).

Since the probability measure in (24.4) is unknown we minimize the empirical risk

functional

Remp(α) =

ℓ∑

i=1

|yi − f(xi, α)| (24.5)

instead of the risk functional (24.4).

It was shown in (Vapnik and Chervonenkis, 1991), that the necessary and

sufficient conditions for consistency (as ℓ increases) of the obtained approximations

is the existence of the uniform convergence of frequencies (defined by (24.5)) to

their probabilities (defined by (24.4)) over a given set of functions f(x, α), α ∈ Λ:

P

{
sup

α
|R(α) − Remp(α)| ≥ ε

}
−→ 0, ∀ε > 0. (24.6)

In 1968 the necessary and sufficient conditions for uniform convergence (24.6)

were discovered (Vapnik and Chervonenkis, 1968, 1971). They are based on the so-

called capacity factors. These factors will play an important role in our discussion.

We now introduce them.

24.2.1 The VC Entropy, Growth Function, and VC Dimension

Given a set of indicator functions f(x, α), α ∈ Λ and set of ℓ i.i.d. input vectors

x1, ..., xℓ, (24.7)

consider the value ∆Λ(x1, ..., xℓ) that defines the number of different classifications

of the set of vectors (24.7) using indicator functions from the set f(x, α), α ∈ Λ.

This is the number of equivalence classes2 of functions on which the set of vectors

(24.7) factorizes the set of functions f(x, α), α ∈ Λ. The number of equivalence

classes has the trivial bound

∆Λ(x1, ..., xℓ) ≤ 2ℓ. (24.8)

Using the value ∆Λ(x1, ..., xℓ) we define the following three capacity concepts.

2. A subset of functions that classify vectors (24.7) in the same way belong to the same
equivalence class (with respect to (24.7)).

456 Transductive Inference and Semi-Supervised Learning

1. The expectation of the number of equivalence classes,

∆Λ
P (ℓ) = Ex1,...,xℓ

∆(x1, ..., xℓ), (24.9)

where the expectation is taken over i.i.d. data (24.7) drawn according to the

distribution P (x).

The function

HΛ
P (ℓ) = ln ∆Λ

P (ℓ) (24.10)

forms the first capacity concept. It is called the (annealed) VC entropy.3

The VC entropy depends on three factors:

(a) the set of functions f(x, α), α ∈ Λ,

(b) the number of vectors ℓ, and

(c) the probability measure P (x).

The condition

lim
ℓ−→∞

HΛ
P (ℓ)

ℓ
= 0 (24.11)

forms the necessary and sufficient condition for uniform convergence (24.6) for the

fixed probability measure P (x).

2. The second capacity concept is called the growth function. It is defined as

GΛ(ℓ) = max
x1,...,xℓ

∆Λ(xi, ..., xℓ). (24.12)

The value of the growth function depends on two factors:

a. the set of functions f(x, α), α ∈ Λ, and

b. the number of observations ℓ.

The condition

lim
ℓ−→∞

lnGΛ(ℓ)

ℓ
= 0 (24.13)

forms the necessary and sufficient condition for uniform convergence that is inde-

pendent of the probability measure (for all probability measures).

3. The third capacity concept is called the VC dimension.4

We say that a set of functions f(x, α), α ∈ Λ has VC dimension h if the largest

number ℓ for which the equality

GΛ(ℓ) = 2ℓ (24.14)

holds true is equal to h. If this equality is true for any ℓ we say that the VC

3. The abbreviation for Vapnik-Chervonenkis entropy.
4. The abbreviation for Vapnik-Chervonenkis dimension.

24.3 Structure of the VC Bounds and Transductive Inference 457

dimension equals infinity. In other words

h = max
ℓ

{ℓ : GΛ(ℓ) = 2ℓ}. (24.15)

The VC dimension depends only on one factor: (a) the set of functions. VC

dimension characterizes the diversity of this set of functions.

A finite VC dimension is the necessary and sufficient condition for uniform conver-

gence which is independent of the probability measure.

In 1968 we proved the important bound (Vapnik and Chervonenkis, 1968)

lnGΛ(ℓ) ≤ h

(
ln

ℓ

h
+ 1

)
. (24.16)

This bound allows one to upper-bound the growth function with a standard function

that depends on one parameter, the VC dimension.

We have therefore obtained the following relationship:

HΛ
P (ℓ) ≤ lnGΛ(ℓ) ≤ h

(
ln

ℓ

h
+ 1

)
. (24.17)

24.3 Structure of the VC Bounds and Transductive Inference

One of the key results of VC theory is the following bound:

P

{
sup

α
|R(α) − Remp(α)| ≥ ε

}
≤ exp{HΛ

P (2ℓ) − ε2ℓ}. (24.18)

One can rewrite this expression in the following form: with probability 1 − η

simultaneously for all α the inequality

R(α) ≤ Remp(α) +

√
HΛ

P (2ℓ) − ln η

ℓ
(24.19)

holds true. Note that this inequality depends on the distribution function P (x).

Since this inequality is true simultaneously for all functions of the admissible set,

the function that minimizes the right-hand side of (24.19) provides the guaranteed

minimum for the expected loss (24.4).

Taking into account (24.17) one can upper-bound (24.19) using the second

capacity concept, the growth function:

R(α) ≤ Remp(α) +

√
lnGΛ(2ℓ) − ln η

ℓ
. (24.20)

This bound is true for any distribution function (i.e. for the worst distribution

function). However it is less accurate (for a specific case P (x)) than (24.19).

One can also upper-bound (24.19) and (24.20) using the third capacity concept,

458 Transductive Inference and Semi-Supervised Learning

the VC dimension

R(α) ≤ Remp(α) +

√
h(ln 2ℓ

h + 1) − ln η

ℓ
. (24.21)

The good news about this bound is that it depends on just one parameter h and

not on some integer function GΛ(ℓ). However (24.21) is less accurate than (24.20)

which is less accurate than (24.19).

Transductive inference was inspired by the idea of finding better solutions using

the more accurate bound (24.19) instead of the bounds (24.20) and (24.21) used in

inductive inference.

24.4 The Symmetrization Lemma and Transductive Inference

Bounds (24.18) and (24.19) were obtained using the so-called symmetrization

lemma.

Lemma. The following inequality holds true:

P

{
sup

α
|R(α) − Remp(α)| ≥ ε

}
≤ 2P

{
sup

α

∣∣∣R(1)
emp(α) − R(2)

emp(α)
∣∣∣ >

ε

2

}
, (24.22)

where

R(1)
emp(α) =

1

ℓ

ℓ∑

i=1

|yi − f(xi, α)| (24.23)

and

R(2)
emp(α) =

1

ℓ

2ℓ∑

i=ℓ+1

|yi − f(xi, α)| (24.24)

are the empirical risk functionals constructed using two different samples.

The bound (24.18) was obtained as an upper-bound of the right-hand side of

(24.22).

Therefore, from the symmetrization lemma it follows that to obtain a bound for

inductive inference we first obtained a bound for transductive inference (for the

right-hand side of (24.22)) and then upper-bounded that.

It should be noted that since the bound (24.18) was introduced in 1968, a

lot of efforts were made to improve it. However in all attempts the key element

remained the symmetrization lemma. That is, in all proofs of the bounds for

uniform convergence the first (and most difficult) step was to obtain the bound

for transductive inference. The trivial upper bound of this bound gives the desired

result.

This means that transductive inference is a fundamental step in machine learning

theory.

To get the bound (24.18) let us bound the right-hand side of (24.22). Two

24.5 Bounds for Transductive Inference 459

fundamental ideas were used to obtain this bound:

1. The following two models are equivalent: (a) one chooses two i.i.d. sets:5

x1, ..., xℓ, and xℓ+1, ..., x2ℓ;

(b) one chooses an i.i.d. set of size 2ℓ and then randomly splits it into two subsets

of size ℓ.

2. Using model (b) one can rewrite the right-hand side of (24.22) as follows:

P
{
supα

∣∣∣R(1)
emp(α) − R

(2)
emp(α)

∣∣∣ > ε
2

}
=

E{x1,...,x2ℓ}P
{

supα |R(1)
emp(α) − R

(2)
emp(α)| > ε

2 | {x1, ..., x2ℓ}
}

.
(24.25)

To obtain the bound we first bound the conditional probability,

P
{
supα |R(1)

emp(α) − R
(2)
emp(α)| > ε

2 | {x1, ..., x2ℓ}
}
≤

∆Λ(x1, ..., x2ℓ) exp
{
−ε2ℓ

}
,

(24.26)

and then take the expectation over working sets of size 2ℓ. As a result, we obtain

E{x1,...,x2ℓ}P
{

supα

∣∣∣R(1)
emp(α) − R

(2)
emp(α)

∣∣∣ > ε
2

}
≤

E∆Λ
P (2ℓ) exp

{
−ε2ℓ

}
= exp

{
HΛ

P (2ℓ) − ε2ℓ
}

.
(24.27)

This bound depends on the probability measure P (x) (it contains the term HΛ
P (2ℓ)).

To obtain a bound which is independent of the probability measure we upper-bound

HΛ
P (2ℓ) by GΛ(2ℓ) (see (24.17)). Since GΛ(2ℓ) is independent of the probability

measure we obtain the bound

P

{
sup

α
|R(α) − Remp(α)| ≥ ε

}
≤ GΛ(2ℓ) exp

{
−ε2ℓ

}
(24.28)

on uniform convergence that is independent of the probability measure.

Therefore, from the symmetrization lemma and (24.17) we obtained the bound

(24.28). Note, however, that in order to obtain this bound we twice used a rough

estimate: the first time when we used the symmetrization lemma, and the second

time when we used the function GΛ(2ℓ) instead of the function HΛ
P (2ℓ).

24.5 Bounds for Transductive Inference

The inequality (24.26) is the key element for obtaining a VC bound for transductive

inference.

Indeed, this inequality is equivalent to the following one: with probability 1− η

5. For simplicity of the formulas we choose two sets of equal size.

460 Transductive Inference and Semi-Supervised Learning

simultaneously for all functions f(x, α), α ∈ Λ, the inequality

1

ℓ

2ℓ∑

i=ℓ+1

|yi − f(x, α)| ≤
ℓ∑

i=1

|yi − f(x, α)| +
√

ln ∆Λ(x1, ..., x2ℓ) − ln η

ℓ
(24.29)

holds true, where probability is defined with respect to splitting the set {x1, ..., x2ℓ}
into two subsets:

1. one that is used in the training set x1, ..., xℓ and

2. one that forms the test set xℓ+1, ..., x2ℓ.

Note that this concept of probability is different from the one defined for inductive

inference and which requires the i.i.d. distribution of the elements x1, ..., x2ℓ. The

concepts of probability will be equivalent if an element of the working set is

i.i.d. according to some unknown fixed probability distribution function. If it is not,

then all formal claims are still correct but the concept of probability is changing.

In this sense we discuss in section 24.11.1 the idea of adaptation in transductive

inference.

But even in the i.i.d. case the bound for transduction is more accurate than

(24.20) and (24.21) used in inductive inference. However, the main advantage

of transduction over induction appears when one implements the structural risk

minimization principle.

24.6 The Structural Risk Minimization Principle for Induction and Transduction

In the 1970s the structural risk minimization (SRM) principle was introduced.

Its goal was to find the function that minimizes the right-hand side of inequality

(24.19). In order to achieve this goal the following scheme was considered.

Prior to the appearance of the training set, the set of admissible functions is

organized as a structure. The nested subsets of functions (called the elements of

the structure) are specified:

S1 ⊂ S2 ⊂ ... ⊂ SB ⊂ S = {f : f(x, α), α ∈ Λ}, (24.30)

where subset Sk has a fixed capacity (say VC dimension h = k).

The minimization of the right-hand side of inequality (24.29) can then be per-

formed over two terms of the inequality. One first chooses the element of the struc-

ture (controlling the second term through the value of hk) and then the function

in the chosen element of the structure (controlling the first term).

It was shown that the SRM principle is strongly uniformly consistent (Devroye

et al., 1996), (Vapnik, 1998). This means that when the sample size ℓ increases,

the error of the function selected by the SRM principle converges toward the best

possible error. However in order to find a good solution using a finite (limited)

number of training examples one has to construct a (smart) structure which

reflects prior knowledge about the problem of interest. In creating such a structure

transductive inference offers some additional opportunities with respect to inductive

24.6 The Structural Risk Minimization Principle for Induction and Transduction 461

inference.

The SRM principle for transductive inference can be introduced as follows

(Vapnik, 2006): Prior to splitting the given working set x1, ..., x2ℓ into the two

subsets that define the elements of the training and test sets, one constructs the

structure on the finite number N = ∆Λ(x1, ..., x2ℓ) of equivalence classes F1, ..., FN

that are the result of factorization of the given set of functions over the given 2ℓ

vectors.6

Let such a structure be

S∗
1 ⊂ S∗

2 ⊂, ...,⊂ S∗
B ⊂ S∗ = {F1, ..., FN}, (24.31)

where the subset S∗
k contains Nk equivalence classes of functions from f(x, α), α ∈

Λ.

The opportunity to construct a “smart” structure on the elements of the equiv-

alence classes is a key advantage of SRM for transductive inference over SRM for

inductive inference.

The new development in SRM for transductive inference comes from the con-

sideration of the different “sizes” of the equivalence classes. The idea of creating a

smart structure on the set of equivalence classes due to their size remains the hierar-

chical Bayesian approach. In this approach one can distinguish two (several) levels

of hierarchy: Suppose that we are given a priori information P (α) on the set of ad-

missible functions (before the set of vectors x1, ..., x2ℓ appear). After these vectors

appear one can calculate prior information for equivalence classes μ(F1), ..., μ(FN)

as an integral

μ(Fk) =

∫

Fk

dP (α).

Using this prior information one can construct a “smart” structure where the first

element contains N1 equivalence classes with the largest values μ(Fi), i = 1, ..., N ,

the second element contains N2 equivalence classes with the largest value μ(Fi),

and so on.

Note that for transductive inference the construction of such a structure for a

given working set is a prior process since we do not use both the split of our x

vectors into the training and test subsets, and information about the classification

of the training data.7

6. The functions that take the same values on the working set of vectors x1, ..., x2ℓ form
one equivalence class (with respect to the working set).
7. One can unify transductive and inductive inference as follows: In both cases one is
given a set of functions defined on some space. One uses the training examples from this
space to define the values of the function of interest for the whole space of definition of the
function. The difference is that in transductive inference the space of interest is discrete
(defined on the working set (24.3)) while in inductive inference it is R

d. One can conduct
a nontrivial analysis of the discrete space but not the space R

d. This defines the key factor
of the advantage of transductive inference.

462 Transductive Inference and Semi-Supervised Learning

For any element Sk of the structure, simultaneously for all equivalence classes

belonging to this element, with probability 1−η the following inequality holds true:

1

ℓ

2ℓ∑

i=ℓ+1

|yi − Fr(xi)| ≤
1

ℓ

ℓ∑

i=1

|yi − Fr(xi)|+
√

lnNk − ln η

ℓ
, Fr ∈ Sk. (24.32)

The probability is defined with respect to a random split of the set of vectors (24.3)

into two subsets: training and test vectors.8

Therefore, to minimize the number of errors on the test vectors (the left-hand

side of (24.32)) we have to choose the element of the structure Sk (it defines the

value of the second term in the right-hand side of (24.32)) and the equivalence class

belonging to this element (it defines the value of the first term in the right-hand

side of (24.32)).

24.7 Combinatorics in Transductive Inference

When constructing structures on the set of equivalence classes in discrete space one

can play combinatorial tricks. This is impossible when constructing a structure on

the set of functions defined in the whole space.

Suppose we are given a working set of size 2ℓ which forms our discrete space. Sup-

pose in this space we have N equivalence classes F1, ..., FN of functions f(x, α), α ∈
Λ.

Consider 2ℓ new problems described by 2ℓ discrete spaces: S1,, S2ℓ, where the

discrete space Sr is defined by working vectors (24.3) from which we removed the

vector xr. For each of these spaces we can construct a set of equivalence classes

and a corresponding structure on this set. For each of these classes with probability

1 − η the inequality (24.32) holds true and therefore simultaneously for all 2ℓ + 1

problems the inequality (24.32) is true with probability 1 − (2ℓ + 1)η. Therefore

with probability 1 − η simultaneously for all 2ℓ + 1 problems the inequality

R1(F
s
i) ≤ Rs

2(F
s
i) +

√
lnNs

k − ln η + ln(2ℓ + 1)

ℓ − 1
, Fr ∈ Sk (24.33)

holds true, where the term ln(2ℓ + 1) is due to our combinatorial games with one

element of the working set. One can find an analogous bound for a combinatorial

game with k elements of the working set.

Combinatorial games allow one to introduce a very deep geometric concept of

equivalence classes (see (Vapnik, 2006, 1998) for details).

8. One can obtain a better bound (see (Vapnik, 1998)).

24.8 Measures of the Size of Equivalence Classes 463

Figure 24.1 The large-margin hyperplane obtained using only the training set does not
belong to the largest equivalence class defined on the working set.

24.8 Measures of the Size of Equivalence Classes

We have not yet discussed how to measure the size of equivalence classes. In this

section we will discuss two possibilities. We could either

1. use a measure that reflects the VC dimension concept for the set of linear (in a

feature space) indicator functions: the value of a margin for the equivalence class,

or

2. measure the size of equivalence classes using the most refined capacity concept:

the VC entropy.

Using the size of the margin for equivalence class. With the appearance

of support vector machines (SVMs) the important problem became the following:

given a working set of vectors (24.3) construct a structure on the equivalence classes

of linear functions.

Let us measure the size μ(Fi) of an equivalence class Fi by the value of the

corresponding margin.9 Any equivalence class separates working vectors (24.3) into

two classes. Let us find among the functions belonging to the equivalence class one

that has the largest distance (margin) to the closest vector of the set (24.3). We

use this distance as the measure μ(Fi) for the size of the equivalence class Fi. This

measure and how it differs from the SVM are illustrated in figure 24.1.

Using this concept of the size of an equivalence class the SVM transductive

algorithms were suggested Vapnik (2006).

9. There is a direct connection between the value of the margin and the VC dimension
defined on the set of equivalence classes (see (Vapnik, 1998, chapter 8)).

464 Transductive Inference and Semi-Supervised Learning

The recommendation of SRM for transductive inference would be:

To classify test vectors (24.2) choose the equivalence class (defined on the working

set (24.3)) that classifies the training data well and has the largest value of the

(soft) margin.

This idea is widely used in constructing transductive SVM algorithms (see

chapter 6).

The universum concept: To construct a measure on the size of the equivalence

class based on the most refined capacity concept, the VC entropy, the following

idea was introduced in (Vapnik, 1998). Suppose that for a given working set of data

(24.3) we construct additionally a new set of data,

x∗
1, ..., x

∗
u, x∗ ∈ R

d, (24.34)

called the universum. Using the working set (24.3) we will create a set of equivalence

classes of functions, and using the universum (24.34) we will evaluate the size of

the equivalence classes.

The universum plays the role of prior information in Bayesian inference. It

describes our knowledge of the problem we are solving. There exist, however,

important differences between prior information in Bayesian inference and prior

information given by the universum. In Bayesian inference, prior information is

information about the relationship of the functions in the set of admissible functions

to the desired one. The universum is information about a relationship between the

working set and a set of possible problems. For example, for the digit recognition

problem it can be some vectors whose images resemble a digit. It defines a style of

digits for the recognition task.

Using the value of the VC entropy defined on the universum. Consider

now the set of equivalence classes defined by the working set (24.3). Let us measure

the size μ(Fk) of the equivalence class Fr by the value ln ∆Fr (x∗
1, ..., x

∗
v). This

defines the logarithm of the number of different separations of the vectors from

the universum (24.34) by the functions belonging to this equivalence class. This

measure defines the diversity of the functions from the equivalence class. The size

of the equivalence classes decreases with the index in the structure.

The recommendation of SRM for transductive inference would be:

To classify test vectors (24.2) choose the equivalence class (defined on the working

set (24.3)) that classifies the training data (24.1) well and has the largest value of

the VC entropy (the largest diversity) on the universum (24.34).

Using the number of contradictions on the universum. Unfortunately it

is not easy to estimate the values of the VC entropy of equivalence classes on the

universum. Therefore we simplify this measure. Let us consider the vector x∗
i as one

that contradicts equivalence class Fr if in class Fr there are functions that classify

this vector as belonging to the first category as well as functions that classify x∗
i as

belonging to the second category.

24.9 Algorithms for Inductive and Transductive SVMs 465

Figure 24.2 The largest number of contradictions on the universum defines the largest
equivalence class.

Let us calculate the size μ(Fr) of an equivalence class Fr by the number tr of

contradictions that the universum has on this class (cf. figure 24.2).

The recommendation of SRM for such a structure would be:

To classify test vectors (24.2) choose the equivalence class (defined on the working

set (24.3)) that classifies the training data (24.1) well and has the largest number

of contradictions on the universum (24.34).

The idea of maximizing the number of contradictions on the universum can have

the following interpretation: “When classifying the test vectors, be very specific,

try to avoid extra generalizations.” From a technical point of view, the number

of contradictions takes into account the anisotropy of the image space, especially

when input vectors are nonlinearly mapped into feature space.

24.9 Algorithms for Inductive and Transductive SVMs

One can translate the discussions of inductive and transductive methods of inference

into the following SVM algorithms. In SVM algorithms one first maps input vectors

x into vectors z of Hilbert space Z obtaining the images of the training data and

test data:

(y1, z1), ..., (yℓ, zℓ), (24.35)

zℓ+1, ..., zℓ+k, (24.36)

and then constructs the optimal separating hyperplane in the feature (Hilbert)

space.

466 Transductive Inference and Semi-Supervised Learning

24.9.1 SVMs for Inductive Inference

Given the images (24.35) of the training data (24.1) construct the large-margin

linear decision rule (Vapnik, 1995):

I(x) = θ[(w, z) + b],

where the vector w and threshold b are the solution of the following convex quadratic

optimization problem: Minimize the functional

R(w) = (w, w) + C1

ℓ∑

i=1

θ(ξi), C1 ≥ 0 (24.37)

subject to the constraints

yi[(zi, w) + b] ≥ 1 − ξi, ξi ≥ 0, i = 1, ..., ℓ (24.38)

(defined by the images of the training data (24.35)) where we have denoted

θ(ξi) =

{
1, if ξi > 0

0, if ξi = 0
.

24.9.2 SVMs for Inductive Inference Using the Universum

Given the images (24.35) of the training data (24.1), images (24.36) of the test data

(24.2), and the images

z∗1 , ..., z∗u (24.39)

of universum (24.34), construct the linear decision rule

I(x) = θ[(w, z) + b],

where the vector w and threshold b are the solution of the following convex quadratic

optimization problem: Minimize the functional

R(w) = (w, w) + C1

ℓ∑

i=1

θ(ξi) + C2

u∑

s=1

θ(ξ∗s), C1, C2 ≥ 0 (24.40)

subject to the constraints

yi((zi, w) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, ..., ℓ (24.41)

(defined by the images of the training data (24.35)) and the constraints

|(z∗s , w) + b| ≤ a + ξ∗s , ξ∗s ≥ 0, s = 1, ..., u, a ≥ 0 (24.42)

defined by the images (24.39) of the universum (24.34).

24.9 Algorithms for Inductive and Transductive SVMs 467

24.9.3 SVM for Large-Margin Transductive Inference

Given the images (24.35) of the training data (24.1) and the images (24.36) of

the test data (24.2) construct the large-margin linear decision rule for transductive

inference,

I(x) = θ[(w, z) + b],

where the vector w and threshold b are the solution of the following optimization

problem: Minimize the functional

R(w) = (w, w) + C1

ℓ∑

i=1

θ(ξi) + C2

ℓ+k∑

j=ℓ+1

θ(ξj), C1, C2 ≥ 0 (24.43)

subject to the constraints

yi((zi, w) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, ..., ℓ (24.44)

(defined by the images (24.35) of the training data (24.1)) and the constraints

y∗
j ((zj , w) + b) ≥ 1 − ξj , ξj ≥ 0, j = ℓ + 1, ..., ℓ + k (24.45)

(defined by the images (24.36) of the test data (24.2)) and its desired classifictions

y∗
ℓ+1, ..., y

∗
ℓ+k.

One more constraint. To avoid unbalanced solution, Capelle and Zien, following

ideas of Thorsten Joachims, suggested the following constraint (Chapelle and Zien,

2005)):

1

u

ℓ+k∑

j=ℓ+1

((w, zj) + b) ≈ 1

ℓ

ℓ∑

i=1

yi. (24.46)

This constraint requires that the test data have about the same proportion of

vectors from the two classes as was observed for the training data.

24.9.4 SVM for Transductive Inference Based on Contradictions on the

Universum

Given the images (24.35) of the training data (24.1), the images (24.36) of the test

data (24.2), and the images (24.39) of the universum (24.34), construct the linear

decision rule

I(x) = θ[(w, z) + b],

468 Transductive Inference and Semi-Supervised Learning

where the vector w and threshold b are the solution of the following optimization

problem: Minimize the functional

R(w) = (w, w)+C1

ℓ∑

i=1

θ(ξi)+C2

ℓ+k∑

j=ℓ+1

θ(ξj)+C3

u∑

s=1

θ(ξ∗s), C1, C2, C3 ≥ 0 (24.47)

subject to the constraints

yi((zi, w) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, ..., ℓ (24.48)

(defined by the images of the training data (24.35)), the constraints

y∗
j ((zj , w) + b) ≥ 1 − ξj , ξj ≥ 0, j = ℓ + 1, ..., ℓ + k (24.49)

(defined by the images of the test data (24.36)) and its desired classification, and

the constraints

|(z∗s , w) + b| ≤ a + ξ∗s , ξ∗s ≥ 0, s = 1, ..., v, a ≥ 0 (24.50)

(defined by the images (24.39) of the universum (24.34)).

24.9.5 Standard Implementation of the SVM Algorithms

To simplify the optimization problems of the described algorithms the step function

θ(ξ) was replaced by the linear function ξ in the objective functionals (24.37),

(24.40), (24.43), and (24.47). Therefore the following algorithms were obtained

(Vapnik, 1995, 1998):

Large-margin inductive SVM:

Minimize the functional

R(w) = (w, w) + C1

ℓ∑

i=1

ξi, C1 ≥ 0 (24.51)

subject to the constraints (24.38).

Large-margin inductive SVM with the universum

Minimize the functional

R(w) = (w, w) + C1

ℓ∑

i=1

ξi, +C2

u∑

s=1

ξ∗s , C1 ≥ 0 (24.52)

subject to the constraints (24.41) and (24.42).

Large-margin transductive SVM:

Minimize the functional

R(w) = (w, w) + C1

ℓ∑

i=1

ξi + C2

ℓ+u∑

j=ℓ+1

ξj , C1, C2 ≥ 0 (24.53)

24.9 Algorithms for Inductive and Transductive SVMs 469

Table 24.1 Test errors of SVMs trained without and with universum.

of train. examples. 250 500 1,000 2,000 3,000

Test Err. SVM (%) 2.83 1.92 1.37 0.99 0.83

Test Err. SVM+U1 (%) 2.43 1.58 1.11 0.75 0.63

Test Err. SVM+U2 (%) 1.51 1.12 0.89 0.68 0.60

Test Err. SVM+U3 (%) 1.33 0.89 0.72 0.60 0.58

subject to the constraints (24.44) and (24.45). One can also use hint (24.46).

Maximal contradictions on the universum transductive SVM:

Minimize the functional

R(w) = (w, w) + C1

ℓ∑

i=1

ξi + C2

ℓ+k∑

j=ℓ+1

ξj + C3

u∑

s=1

ξ∗s , C1, C2, C3 ≥ 0 (24.54)

subject to the constraints (24.48), (24.49), (24.50). One can also use hint (24.46).

24.9.6 Experiments with the Universum

In the summer of 2005, R. Collobert and J. Weston conducted the first experiments

on training SVMs with a universum. They demonstrated that

a. SVMs plus a universum can significantly improve performance even in the

inductive mode (C2 = 0 in inequality (24.54));

b. for small training sets it is very important how the universum is constructed.

For large sets it is less important.

Using the NIST database they discriminated digit 8 from digit 5 using a conven-

tional SVM and an SVM trained with three different universum environments.

Table 24.1 shows for different sizes of training data the performance of conven-

tional SVMs and the performance of SVMs trained using universums U1, U2, U3. In

all cases the parameter a = .01, and the parameters C1, C2 and the parameter of

Gaussian kernel were tuned using the tenfold cross-validation technique.

For these experiments three different universums (each containing 5000 examples)

were constructed as follows:

U1 Select random digits from the other classes (0,1,2,3,4,6,7,9).

U2 Creates an artificial image by first selecting a random 5 and a random 8,

(from pool of 3,000 non-test examples) and then for each pixel of the artificial

image choosing with probability 1/2 the corresponding pixel from the image 5 or

from the image 8.

U3 Creates an artificial image by first selecting a random 5 and a random 8,

(from pool of 3,000 non-test examples) and then constructing the mean of these

two digits.

470 Transductive Inference and Semi-Supervised Learning

24.10 Semi-Supervised Learning

Analyzing the problem of semi-supervised learning as the minimization of the

functional (24.4) using training data (24.1) and unlabeled data (24.2), one has

to create a clear statistical model that allows one to show where (from the formal

point of view) one can expect to get an advantage using unlabeled data.

From the theoretical point of view such a statistical model for semi-supervised

learning would be more sophisticated than the one described for transductive infer-

ence, since it would require additional reasoning in the style of the symmetrization

lemma.

Also, from the point of view of possible mechanisms for generalization it looks

restricted: Density is defined in input space. It does not depend on the mapping from

the input space to the feature space. As we mentioned earlier, a nonlinear mapping

can create a large anisotropy in feature space. Using the universum one can take

into account this anisotropy, evaluating the size of equivalence classes and using

it for classification. If the results obtained in the digit recognition experiments are

more or less general, transductive inference can have a more interesting structure

than just taking into account density properties.

Therefore it might be a good idea to consider the semi-supervised model as a

particular transductive model described at the beginning of this chapter. As such,

one first chooses the best equivalence class to perform transductive inference and

then chooses from this equivalence class some function which one uses to classify

new data that do not belong to the working set.

Such a position allows one to concentrate on the core problem of extracting

additional information from the unlabeled data in order to classify them.

24.11 Conclusion: Transductive Inference and the New Problems of Inference

There are two reasons to consider the transductive mode of inference as we have

described it above. The first reason is that it is an extremely useful tool for practical

applications (see Weston et al. (2003b) and chapter 6).

24.11.1 Adaptation to the Test Data

Transductive inference also contains elements of adaptation to new data which we

did not discuss since it is not easy to formalize. Back in the 1970s in the very first

article devoted to the application of transductive inference (Vapnik and Sterin,

1977), we used data from one medical clinic to classify patients from another clinic.

Transduction significantly improved performance.

Another example would be zip code recognition where transductive inference

suggests simultaneously recognizing all digits of a zip code in contrast to recognizing

every digit separately as in inductive inference. It is easy to imagine a situation

24.12 Beyond Transduction: Selective Inference 471

where given the training data and an unknown zip code the recognition of any

fixed digit of a zip code depends on recognition of the rest of the digits of the

zip code. That is, the rule is constructed for the specific zip code. For another zip

code one constructs another rule (which might reflect the adaptation to different

handwriting). One can find many such examples.

24.12 Beyond Transduction: Selective Inference

The second reason for considering transductive inference is that it forms the

simplest model of noninductive inference. These inferences are based on the same

general model as inductive inference: the SRM principle. The theory of transduction

describes (in the framework of the SRM principle) the mechanisms that provide the

advantage of transductive inference over inductive inference.

There also exist models of inferences that go beyond transduction. In particular,

selective inference:

Given ℓ training examples,

(xi, y1), ..., (xℓ, yℓ), (24.55)

and u candidate vectors,

xℓ+1, ...xℓ+u, (24.56)

select among the u candidates the k vectors with the highest probability of

belonging to the first class. Examples of selective inference include:

Discovery of bioactive drugs: Given a training set (24.55) of bioactive and non-

bioactive drugs, select from the u candidates (24.56) the k representatives with the

highest probability of belonging to the bioactive group.

National security: Given training set (24.55) of terrorists and nonterrorists, select

from the u candidates (24.56) the k representatives with the highest probability of

belonging to the terrorist group.

Note that selective inference requires a less demanding solution than transductive

inference: it does not require classification of the most difficult (border) cases.

Selective inference is the basis for solving high-dimensional decision-making

problems. To analyze the selective inference problem one can use the same SRM

principle but with a different concept of equivalence classes.

472 Transductive Inference and Semi-Supervised Learning

24.12.1 Transductive Inference and the Imperative for Inference in a

Complex World

Lastly, the philosophy of transductive inference reflects the general imperative

for inference in a complex (high-dimensional) world (Vapnik, 1995), which in

fact defines an advantage of the predictive learning models (machine learning

techniques) with respect to the generative learning models (classical statistics

techniques) (cf. section 1.2.4):

Solving a problem of interest, do not solve a more general (and therefore worse-

posed) problem as an intermediate step. Try to get the answer that you really need

but not a more general one.

Do not estimate a density if you need to estimate a function.

(Do not use classical generative models; use ML predictive models.)

Do not estimate a function if you need to estimate values at given points.

(Try to perform transduction, not induction.)

Do not estimate predictive values if your goal is to act well.

(A good strategy of action can rely just on good selective inference.)

25 A Discussion of Semi-Supervised Learning

and Transduction

The following is a fictitious discussion inspired by real discussions between the

editors of this book and a number of people, including Vladimir Vapnik. It involves

three researchers; for simplicity, we will call them A, B, and C, without implying

any one-to-one mapping to real persons. The topic of the discussion is: What is the

Difference between Semi-Supervised and Transductive Learning?

A: Let me start by saying that to me, the topic of our discussion seems strange.

Rather than asking for the difference, we should ask what SSL1 and transduction

have in common, if anything. SSL is about how to use information contained in

unlabeled data which we have in addition to the labeled training set. Transduction,

on the other hand, claims that it is powerful because it is solving a simpler task

than inductive learning.

B: Exactly. In inductive learning, one learns a function that makes predictions on

the whole space. Transduction asks for less — it only concerns itself with predicting

the values of the function at the test points of interest. This is an easier problem,

since an inductive solution implies a transductive one — by evaluating the function

at the given test points — but not vice versa.

A: But couldn’t you easily build an inductive algorithm from a transductive one

by carrying out the following procedure? For all possible test inputs x: add x as a

single unlabeled point to the labeled training set, and use the transductive algorithm

to predict the corresponding output. This gives you a mapping from x to y, in other

words, a function, just like any inductive algorithm. So a transductive solution

implies an inductive one, and thus transduction is no easier than induction.

1. We use the shorthand SSL for semi-supervised learning.

474 A Discussion of Semi-Supervised Learning and Transduction

B: As soon as we have more than one unlabeled point, this argument fails.

Nevertheless, in order to retain the distinction between induction and transduction,

we may want to exclude the situation. Whatever it is called, even the case of one

unlabeled point is interesting: it could be viewed as induction with a function class

which is not given explicitly.

Transduction works because the test set can give you a nontrivial factorization

of the function class. Let us call two functions equivalent if they cannot be

distinguished based on any of the given training or test examples. It is then sufficient

to use only one representative of each equivalence class, and forget about all other

functions. Our function class is effectively finite, and we can directly write down a

generalization error bound.

By the way, the size of the equivalence classes is important for generalization: I

believe that functions from large classes generalize better. Think of the notion of a

margin: if you have a large margin of separation between two classes of data, then

there are usually many different functions that fit into this margin, and correctly

separate the data (and thus are equivalent on the data).

C: This seems an interesting point. You said that one point is not enough for

transduction — how about for SSL? Would one unlabeled point be of any use?

A: Every unlabeled point gives me information on P (x). Whether the point is

useful or not will of course depend on whether my distribution is benign. For

example, if the distribution satisfies the semi-supervised smoothness assumption,2

then even a single point gives me information. For instance, it affects my estimate

of the local density of the points, and thus it affects where I will try to enforce

smoothness. As a consequence, it affects my prediction of how the class label should

behave as a function of the input.

B: For transduction to work, it is not necessary to make smoothness assumptions.

C: But surely, the factorization of the function class which you talked about before

will also depend on P (x)?

B: Yes.

C: I think it should be possible to construct cases where large equivalence classes

generalize worse than small ones. So I would claim that transduction, the way you

view it, will not always work, but only if the data are benign in some sense...

2. See chapter 1.

A Discussion of Semi-Supervised Learning and Transduction 475

A: ... and I would argue that one notion that captures whether the data are benign

is the semi-supervised smoothness assumption. This also makes the connection with

the margin, since large-margin separation is low-density separation.

B: Maybe yes, maybe no.

C: And what happens toward the other extreme of an infinite number of points?

A: Usually, learning becomes easier if we have more points. With transduction,

the more test points we have, the closer we get to inductive learning, because we

will have to predict outputs for a set of points that eventually covers the whole

domain. According to B, transduction would then become harder, since induction

is harder. But that’s absurd — how can one make a problem harder by adding more

information?

C: Interesting point... However, I am tempted to defend B, albeit with an ar-

gument he may not like: In the limit of infinitely many test points, transduction

should converge toward something like “induction plus knowledge of P (x).” This

could well be statistically easier than standard supervised inductive learning, pro-

vided P (x) contains useful information for our task. Which brings us again to the

role of the smoothness assumption.

A: This seems to show that transduction relies on the same kind of assumptions

as SSL. And, for increasing amounts of unlabeled points, SSL also converges to

induction plus knowledge of P (x). So where is the difference? In the limit of

infinitely many unlabeled points, transduction cannot be easier than inductive SSL.

B: In the real world, we do not have infinitely many data points. Anyway, my

point of view is more fundamental. It is based on what is behind the VC bounds for

induction. To prove these bounds, one uses the symmetrization lemma — we upper-

bound the difference between the error on the training set and the expected error

by the error on the training sample and the error on a second sample — the ghost

sample. This is exact transduction; it is a statement about the error on a given set

of points. But the VC bounds for induction then have to take an expectation with

respect to the unknown points, or even a supremum over the choice of the points.

This is much worse than what one can do knowing the points.3

A: But a better bound does not necessarily imply a better algorithm..

B: True, but bounds guide us to design new algorithms. Transduction is a step

on the way, which lies at the heart of induction. It looks deeper than induction.

3. See chapter 24 and (Vapnik, 2006).

476 A Discussion of Semi-Supervised Learning and Transduction

C: But doesn’t this contradict the no-free-lunch theorem?

B: There might exist distributions for which transduction can give worse results

than induction.

A: If I try to sum up the arguments of B, there are two different reasons why

transduction can be useful. The first one is that the bounds for transduction are

tighter than the bounds for induction, and the second one is that measuring the size

of the equivalence classes is an opportunity to change the ordering in the structure

of our class of functions. This second reason seems closely related to the motivations

in SSL.

C: Maybe we should look at a more concrete issue: Is the “transductive SVM” an

example of a transductive algorithm?

A: No. It is semi-supervised and inductive. It uses unlabeled data, and it provides

a function defined everywhere. Would you agree, B?

B: Maybe it is semi-supervised. My point is that transduction is orthogonal from

SSL. SSL stresses new technical ideas while transduction stresses new philosophical

ideas related to noninductive inference. I am convinced that in ten years the concept

of noninductive inference will be much more popular than inductive inference.

A: I surely agree that the two notions are orthogonal, but for different reasons.

To make my point clear let me consider two sets. One of them is a set of unlabeled

data which we have for training. I don’t care about the predictions on this set, I

only care about how to use the information this set provides about P (x). So I need

to assume that this set actually comes from P (x), or at least from a distribution

that is related to P (x) in some way. The other set is the actual test set. I do not care

where it comes from; it could be anything. In my view, a transductive algorithm

is one whose solution depends on the test points that I am given. The opposite of

a transductive algorithm is an inductive one. A semi-supervised algorithm, on the

other hand, is one that depends on the unlabeled set (as opposed to a supervised

algorithm). It does not care which test points are used in the end to evaluate its

performance.

B: This does not make sense to me. The test points need to be meaningful.

Transduction is intrinsically simpler than induction: it does not make predictions

for arbitrary test points.

A Discussion of Semi-Supervised Learning and Transduction 477

A: Coming back to the idea of avoiding to solve a more complicated problem

than necessary, what about local learning?4 The idea behind it is that, given a test

point, one should focus on the training points which are in a neighborhood of this

test point, construct a local decision rule, and predict the label of the test point

according to this ad hoc rule. Isn’t it almost the same idea as in transduction?

B: Indeed, the philosophy is similar, since in both cases one solves a simpler

problem. However, local learning is still inductive because there exists an implicit

decision function, even though it is never explicitely constructed. The concept of

local learning is actually almost the same as transduction with one test point which

we were talking about earlier.

C: This local learning idea might also be present in TSVM. Indeed, I can see an

advantage in using as unlabeled points the test points rather than an arbitrary set

of unlabeled points: by doing so, the algorithm concentrates in the regions of the

space where it is important to be accurate, as in local learning.5

A: The way I view them, transductive algorithms can also be designed for

computational reasons. Take, for instance, the Bayesian committee machine.6 The

solution returned by this algorithm is an expansion on a set of basis functions.

But for computational efficiency, only basis functions centered at the test points

are considered. So the solution will depend on the test set and the algorithm is

transductive according to my definition...

C: ... but not according to the definition of B, since for this algorithm the test

points can be arbitrary.

A: If we cannot agree on a definition of transduction, maybe we can at least agree

on some examples of transductive algorithms?

C: Graph-based algorithms7 can be interpreted as both semi-supervised and

transductive. They are transductive because there is no straightforward way of

making a prediction on a test point which is not drawn from P (x). Indeed,

including that point in the graph could be harmful, since it may provide misleading

information about P (x). In transduction, the test points have to be from P (x), or

at least some distribution related to P (x).

4. See (Bottou and Vapnik, 1992).
5. Some experimental evidence for this claim is presented in (Collobert et al., 2006).
6. See (Tresp, 2000).
7. See part III of the book.

478 A Discussion of Semi-Supervised Learning and Transduction

A: And this shows why transductive methods are always semi-supervised: they

use information contained in the test points. Otherwise there would be no reason

not to consider arbitrary test points.

B: I have a typical example of transductive learning. Consider zip code recogni-

tion: since all the digits have been written by the same person, one can gain by

trying to recognize all the digits simultaneously instead of one by one.

C: This is an interesting example. But it seems different from the standard i.i.d.

framework: in this case, if viewed as drawn from the distribution of all possible

digits, the test points are dependent, because they have been written by the same

person.

B: Indeed, and it is probably in this kind of situtation where transduction is most

useful: when the test points have some special structure.

A: I do not think we have resolved the question we were asking. Read chapter 25

of Chapelle et al. (2006) and the references therein, and you will understand what

I mean.

References

B. Abboud, F. Davoine, and M. Dang. Expressive face recognition and synthesis. In Computer
Vision and Pattern Recognition Workshop, volume 5, page 54, 2003.

N. Abe, J. Takeuchi, and M. Warmuth. Polynomial learnability of stochastic rules with respect to
the KL-divergence and quadratic distance. IEICE Transactions on Information and Systems,
E84-D(3):299–316, March 2001.

Y. S. Abu-Mostafa. Machines that learn from hints. Scientific American, 272(4):64–69, 1995.

A. K. Agrawala. Learning with a probabilistic teacher. IEEE Transactions on Information Theory,
16:373–379, 1970.

A. Agresti. Categorical Data Analysis. Wiley, Hoboken, NJ, 2002.

H. Akaike. Statistical predictor information. Annals of the Institute of Statistical Mathematics,
22:203–271, 1970.

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, 19:716–723, 1974.

B. Alberts, D. Bray, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Essential Cell
Biology: An Introduction to the Molecular Biology of the Cell. New York, Garland Science
Publishing, 1998.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A basic local alignment
search tool. Journal of Molecular Biology, 215:403–410, 1990.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.
Nucleic Acids Research, 25:3389–3402, 1997.

Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learning for structured
variables. In Advances in Neural Information Processing Systems, volume 18, 2005.

M. R. Amini and P. Gallinari. Semi-supervised logistic regression. In Fifteenth European
Conference on Artificial Intelligence, pages 390–394, 2002.

J. A. Anderson. Multivariate logistic compounds. Biometrika, 66:17–26, 1979.

M. Anjos. New Convex Relaxations for the Maximum Cut and VLSI Layout Problems. Phd
thesis, Waterloo University, Waterloo, Canada, 2001.

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO
algorithm. In Proceedings of the Twenty-first International Conference on Machine Learning,
New York, 2004. ACM Press.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press, New York,
1999.

M.-F. Balcan and A. Blum. A PAC-style model for learning from labeled and unlabeled data. In
Conference on Computational Learning Theory, pages 111–126, 2005.

M.-F. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards bridging theory and
practice. In Advances in Neural Information Processing Systems, 2004.

S. Baluja. Probabilistic modeling for face orientation discrimination: Learning from labeled and
unlabeled examples. In Advances in Neural Information Processing Systems 11, pages 854–860,
1999.

A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra. Clustering on the unit hypersphere using von
Mises-Fisher distributions. Journal of Machine Learning Research, 6:1345–1382, 2005a.

A. Banerjee, S. Merugu, I. Dhilon, and J. Ghosh. Clustering with Bregman divergences. Journal
of Machine Learning Research, 6:1705–1749, Oct 2005b.

480 REFERENCES

N. Bansal, A. L. Blum, and S. Chawla. Correlation clustering. In The 43rd Annual IEEE
Symposium on Foundations of Computer Science, pages 238–247, 2002.

A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance functions using equiv-
alence relations. In Proceedings of the International Conference on Machine Learning, pages
11–18, Washington, DC, 2003.

P. Bartlett and S. Mendelson. Rademacher and Gaussian complexities risk bounds and structural
results. Journal of Machine Learning Research, 3:463–482, 2002.

S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervised clustering by seeding. In Proceedings
of the International Conference on Machine Learning, pages 19–26, 2002.

S. Basu, A. Banerjee, and R. J. Mooney. Active semi-supervision for pairwise constrained
clustering. In Proceedings of the SIAM International Conference on Data Mining, 2004a.

S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering.
In Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery
and data mining, pages 59–68, Seattle, WA, 2004b.

E. B. Baum. Polynomial time algorithms for learning neural nets. In Proceedings of the Third
Annual Workshop on Computational Learning Theory, pages 258 – 272, 1990.

S. Becker and G. E. Hinton. A self-organizing neural network that discovers surfaces in random-dot
stereograms. Nature, 355:161–163, 1992.

M. Belkin. Problems of Learning on Manifolds. PhD thesis, Department of Mathematics,
University of Chicago, 2003.

M. Belkin, I. Matveeva, and P. Niyogi. Regression and regularization on large graphs. In
Proceedings of the Seventeenth Annual Conference on Learning Theory, 2004a.

M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised learning on large
graphs. In Proceedings of the Seventeenth Annual Conference on Computational Learning
Theory, pages 624–638, Banff, Canada, 2004b.

M. Belkin and P. Niyogi. Semi-supervised learning on manifolds. In Advances in Neural
Information Processing Systems, 2002.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representa-
tion. Neural Computation, 15(6):1373–1396, 2003a.

M. Belkin and P. Niyogi. Using manifold structure for partially labeled classification. In S. Becker,
S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15,
Cambridge, MA, 2003b. MIT Press.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for
learning from examples. Technical Report TR-2004-06, University of Chicago, 2004c.

M. Belkin, P. Niyogi, and V. Sindhwani. On manifold regularization. In R. G. Cowell and
Z. Ghahramani, editors, Proceedings of the Tenth International Workshop on Artificial Intel-
ligence and Statistics, pages 17–24. Society for Artificial Intelligence and Statistics, 2005.

R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton,
NJ, 1961.

S. Ben-David, A. Itai, and E. Kushilevitz. Learning by distances. Information and Computation,
117(2):240–250, 1995.

A. Ben-Hur and D. Brutlag. Remote homology detection: A motif based approach. In Proceedings
of the Seventh International Conference on Intelligent Systems for Molecular Biology, 2003.

G. M. Benedek and A. Itai. Learnability with respect to a fixed distribution. Theoretical Computer
Science, 86:377–389, 1991.

Y. Bengio and N. Chapados. Extensions to metric based model selection. Journal of Machine
Learning Research, 3:1209–1227, 2003.

Y. Bengio, O. Delalleau, and N. Le Roux. The curse of dimensionality for local kernel machines.
Technical Report 1258, Département d’informatique et recherche opérationnelle, Université de
Montréal, 2005.

Y. Bengio, O. Delalleau, and N. Le Roux. The curse of highly variable functions for local kernel
machines. In Advances in Neural Information Processing Systems 18. MIT Press, Cambridge,
MA, 2006a.

Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent, and M. Ouimet. Learning
eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16(10):2197–

REFERENCES 481

2219, 2004a.

Y. Bengio, H. Larochelle, and P. Vincent. Non-local manifold Parzen windows. In Advances in
Neural Information Processing Systems 18. MIT Press, Cambridge, MA, 2006b.

Y. Bengio and M. Monperrus. Non-local manifold tangent learning. In L.K. Saul, Y. Weiss, and
L. Bottou, editors, Advances in Neural Information Processing Systems 17, Cambridge, MA,
2005. MIT Press.

Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. Le Roux, and M. Ouimet. Out-of-sample
extensions for lle, isomap, MDS, eigenmaps, and spectral clustering. In S. Thrun, L. Saul,
and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press,
Cambridge, MA, 2004b.

K. P. Bennett and A. Demiriz. Semi-supervised support vector machines. In M. S. Kearns, S. A.
Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems, volume 11,
pages 368–374, Cambridge, MA, 1999. MIT Press.

K. P. Bennett, A. Demiriz, and R. Maclin. Exploiting unlabeled data in ensemble methods. In
Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and
data mining, 2002.

J. O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York, 2nd
edition, 1985.

R. H. Berk. Limiting behavior of posterior distributions when the model is incorrect. Annals of
Mathematical Statistics, pages 51–58, 1966.

M. Bernstein, V. de Silva, J. C. Langford, and J. B. Tenenbaum. Graph approximations to
geodesics on embedded manifolds. Technical report, Stanford University, Stanford, December
2000.

J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society,
Series B (Methodological), 48(3):259–302, 1986.

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. Sumitted for
publication, 2004.

M. Bilenko and S. Basu. A comparison of inference techniques for semi-supervised clustering
with hidden Markov random fields. In Proceedings of the ICML-2004 Workshop on Statistical
Relational Learning and its Connections to Other Fields, Banff, Canada, 2004.

M. Bilenko, S. Basu, and R. J. Mooney. Integrating constraints and metric learning in semi-
supervised clustering. In Proceedings of the International Conference on Machine Learning,
pages 81–88, Banff, Canada, 2004.

M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string similarity
measures. In Proceedings of the ninth ACM SIGKDD international conference on knowledge
discovery and data mining, pages 39–48, Washington, DC, 2003.

C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

R. E. Blahut. Computation of channel capacity and rate distortion functions. In IEEE Transac-
tions on Information Theory, volume 18, pages 460–473, July 1972.

A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In
Proceedings of the Eighteenth International Conference on Machine Learning, pages 19–26,
2001.

A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial-time algorithm for learning noisy
linear threshold functions. Algorithmica, 22:35–52, 1998.

A. Blum and R. Kannan. Learning an intersection of k halfspaces over a uniform distribution.
Journal of Computer and Systems Sciences, 54(2):371–380, 1997.

A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-supervised learning using randomized
mincuts. In International Conference on Machine Learning, 2004.

A. Blum and J. C. Langford. PAC-MDL bounds. In Conference on Computational Learning
Theory, 2003.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Proceedings
of the Eleventh Annual Conference on Computational Learning Theory, pages 92–100, 1998.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik
Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

R. Board and L. Pitt. Semi-supervised learning. Machine Learning, 4(1):41–65, 1989.

482 REFERENCES

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A traininig algorithm for optimal margin classifiers.
In D. Haussler, editor, Proceedings of the Fifth Annual ACM Workshop on Computational
Learning Theory, pages 144–152, 1992.

L. Bottou and V. Vapnik. Local learning algorithms. Neural Computation, 4(6):888–900, 1992.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: a survey of some recent
advances. ESAIM: Probability and Statistics, 9:323–375, November 2005.

S. Boucheron, G. Lugosi, and P. Massart. A sharp concentration inequality with applications.
Random Structures and Algorithms, 16:277–292, 2000.

O. Bousquet, O. Chapelle, and M. Hein. Measure based regularization. In Advances in Neural
Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

O. Bousquet and D. Herrmann. On the complexity of learning the kernel matrix. In Advances in
Neural Information Processing Systems, volume 14, 2002.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge
UK, 2004.

M. Brand. Structure learning in conditional probability models via an entropic prior and parameter
extinction. Neural Computation, 11(5):1155–1182, 1999.

M. Brand. Nonlinear dimensionality reduction by kernel eigenmaps. In International Joint
Conference on Artificial Intelligence, 2003.

M. Brand. From subspaces to submanifolds. In Proceedings of the British Machine Vision
Conference, London, 2004.

L. Breiman. Bagging predictors. Machine Learning, 24:123–40, 1996.

S. E. Brenner, P. Koehl, and M. Levitt. The ASTRAL compendium for sequence and structure
analysis. Nucleic Acids Research, 28:254–256, 2000.

R. Bruce. Semi-supervised learning using prior probabilities and EM. In IJCAI-01 Workshop on
Text Learning: Beyond Supervision, August 2001.

W. L. Buntine. Operations for learning with graphical models. Journal of Artificial Intelligence
Research, 2:159–225, 1994.

C. J. C. Burges. Geometric methods for feature extraction and dimensional reduction. In L. Rokach
and O. Maimon, editors, Data Mining and Knowledge Discovery Handbook: A Complete Guide
for Practitioners and Researchers. Kluwer, Dordrecht, the Netherlands, 2005.

V. Castelli. The Relative Value of Labeled and Unlabeled Samples in Pattern Recognition. PhD
thesis, Stanford University, Stanford, CA, December 1994.

V. Castelli and T. M. Cover. On the exponential value of labeled samples. Pattern Recognition
Letters, 16:105–111, 1995.

V. Castelli and T. M. Cover. The relative value of labeled and unlabeled samples in pattern
recognition with an unknown mixing parameter. IEEE Transactions on Information Theory,
42(6):2102–2117, November 1996.

G. Celeux and G. Govaert. A classification EM algorithm for clustering and two stochastic versions.
Computational Statistics & Data Analysis, 14(3):315–332, 1992.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. The MIT Press, 2006.

O. Chapelle and V. Vapnik. Model selection for support vector machines. In Advances in Neural
Information Processing Systems, volume 12, 2000.

O. Chapelle, V. Vapnik, and Y. Bengio. Model selection for small sample regression. Machine
Learning, 48(1-3):9–23, 2002.

O. Chapelle, V. Vapnik, and J. Weston. Transductive inference for estimating values of functions.
In Advances in Neural Information Processing Systems, 1999.

O. Chapelle, J. Weston, L. Bottou, and V. Vapnik. Vicinal risk minimization. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems
13, pages 416–422, Cambridge, MA, 2001. MIT Press.

O. Chapelle, J. Weston, and B. Schölkopf. Cluster kernels for semi-supervised learning. In
S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing
Systems 15, pages 585–592, Cambridge, MA, 2003. MIT Press.

O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In Tenth
International Workshop on Artificial Intelligence and Statistics, pages 57–64, 2005.

REFERENCES 483

J. Cheng, D. Bell, and W. Liu. Learning belief networks from data: An information theory based
approach. In International Conference on Information and Knowledge Management, pages
325–331, 1997.

V. Cherkassky and F. Mulier. Learning from Data: Concepts, Theory, and Methods. Wiley, New
York, 1998.

V. Cherkassky, F. Mulier, and V. Vapnik. Comparison of VC-method with classical methods for
model selection. In Proceedings World Congress on Neural Networks, pages 957–962, 1997.

F. R. K. Chung. Spectral Graph Theory. Number 92 in Regional Conference Series in Mathematics.
American Mathematical Society, Providence, RI, 1997.

I. Cohen, F. Cozman, N. Sebe, M. C. Cirelo, and T. Huang. Semisupervised learning of classifiers:
Theory, algorithms, and their application to human-computer interaction. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26(12):1553–1568, 2004.

I. Cohen, N. Sebe, F. G. Cozman, M. C. Cirelo, and T. S. Huang. Learning Bayesian network
classifiers for facial expression recognition using both labeled and unlabeled data. In IEEE
Conference on Computer Vision and Pattern Recognition, 2003.

D. Cohn, R. Caruana, and A. McCallum. Semi-supervised clustering with user feedback. Technical
Report TR2003-1892, Cornell University, Ithaca, NY, 2003.

R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucke.
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion
maps. Proceedings of the National Academy of Sciences, 102:7426–7431, 2005.

M. Collins and Y. Singer. Unsupervised models for named entity classification. In Proceedings
of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora, pages 189–196, 1999.

R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large-scale transductive SVMs. Journal of
Machine Learning Research, 2006. In press. http://www.kyb.tuebingen.mpg.de/bs/people/
fabee/transduction.html.

D. B. Cooper and J. H. Freeman. On the asymptotic improvement in the outcome of supervised
learning provided by additional nonsupervised learning. IEEE Transactions on Computers,
C-19(11):1055–1063, November 1970.

A. Corduneanu and T. Jaakkola. Continuation methods for mixing heterogeneous sources. In
Proceedings of the Eighteenth Annual Conference on Uncertainty in Artificial Intelligence,
2002.

A. Corduneanu and T. Jaakkola. On information regularization. In Proceedings of the Nineteenth
conference on Uncertainty in Artificial Intelligence, 2003.

A. Corduneanu and T. Jaakkola. Distributed information regularization on graphs. In Advances
in Neural Information Processing Systems 17, 2004.

C. Cortes, P. Haffner, and M. Mohri. Rational kernels. Neural Information Processing Systems
15, 2002.

C. Cortes and V. N. Vapnik. Support–vector networks. Machine Learning Journal, 20:273–297,
1995.

T. Cover and J. Thomas. Elements of Information Theory. Wiley, New York, 1991.

T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, London, 1994.

F. G. Cozman and I. Cohen. Unlabeled data can degrade classification performance of generative
classifiers. In Proceedings of the Fifteenth International Florida Artificial Intelligence Research
Society Conference, pages 327–331, Pensacola, FL, 2002.

F. G. Cozman, I. Cohen, and M. C. Cirelo. Semi-supervised learning and model search. In
Proceedings of the ICML-2003 Workshop: The Continuun from Labeled to Unlabeled Data in
Machine Learning and Data Mining, pages 111–112, 2003a.

F. G. Cozman, I. Cohen, and M. C. Cirelo. Semi-supervised learning of mixture models. In
International Conference on Machine Learning, pages 99–106, 2003b.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slattery.
Learning to construct knowledge bases from the World Wide Web. Artificial Intelligence, 118
(1–2):69–113, 2000.

P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numerische Mathematik,
31:377–403, 1979.

484 REFERENCES

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge
University Press, Cambridge, UK, 2000.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. In
Advances in Neural Information Processing Systems 14, 2002a.

N. Cristianini, J. Shawe-Taylor, and J. Kandola. Spectral kernel methods for clustering. In
Advances in Neural Information Processing Systems 14, pages 649–655, 2002b.

L. Csató. Gaussian Processes — Iterative Sparse Approximations. PhD thesis, Aston University,
Birmingham, UK, 2002.

J. A. Cuff and G. J. Barton. Evaluation and improvement of multiple sequence methods for
protein secondary structure prediction. Proteins, 34(4):508–519, March 1999.

S. Dasgupta. Performance guarantees for hierarchical clustering. In Conference on Computational
Learning Theory, pages 351–363, 2002.

S. Dasgupta, M. L. Littman, and D. McAllester. PAC generalization bounds for co-training.
In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, Cambridge, MA, 2001. MIT Press.

N. E. Day. Estimating the components of a mixture of normal distributions. Biometrika, 56(3):
463–474, 1969.

T. De Bie and N. Cristianini. Convex methods for transduction. In Advances in Neural
Information Processing Systems 16, pages 73–80, 2004a.

T. De Bie and N. Cristianini. Convex transduction with the normalized cut. Technical Report 04-
128, ESAT-SISTA, K.U.Leuven, Leuven, Belgium, 2004b. URL http://www.esat.kuleuven.
ac.be/~tdebie/papers/TDB-NC_04b.pdf.

T. De Bie and N. Cristianini. Kernel methods for exploratory data analysis: A demonstration on
text data. In Proceedings of the International Workshop on Statistical Pattern Recognition,
pages 16–29, 2004c.

T. De Bie, N. Cristianini, and R. Rosipal. Eigenproblems in pattern recognition. In E. Bayro-
Corrochano, editor, Handbook of Computational Geometry for Pattern Recognition, Computer
Vision, Neurocomputing and Robotics, pages 129–170. Springer-Verlag, Heidelberg, 2005.

T. De Bie, M. Momma, and N. Cristianini. Efficiently learning the metric with side-information.
In Proceedings of the Fourteenth International Conference on Algorithmic Learning Theory,
pages 175–189, 2003.

T. De Bie, J. A. K. Suykens, and B. De Moor. Learning from general label constraints. In Joint
IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition,
pages 671–679, Lisbon, Portugal, 2004. Springer.

V. de Silva and J. B. Tenenbaum. Global versus local methods in nonlinear dimensionality
reduction. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems 15, pages 721–728, Cambridge, MA, 2003. MIT Press.

S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. Journal of the Society for Information Science, 41(6):391–407, 1990.

M. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

O. Dekel, C. D. Manning, and Y. Singer. Log-linear models for label-ranking. In Advances in
Neural Information Processing Systems 16, Cambridge, MA, 2004. MIT Press.

O. Delalleau, Y. Bengio, and N. Le Roux. Efficient non-parametric function induction in semi-
supervised learning. In Artificial Intelligence and Statistics, 2005.

A. Demiriz and K. P. Bennett. Optimization approaches to semi-supervised learning. In
M. C. Ferris, O. L. Mangasarian, and J. S. Pang, editors, Applications and Algorithms of
Complementarity, pages 121–141. Kluwer, Dordrecht, the Netherlands, 2000.

A. Demiriz, K. P. Bennett, and M. J. Embrechts. Semi-supervised clustering using genetic
algorithms. In Proceedings of Artificial Neural Networks in Engineering, pages 809–814, 1999.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

M. Deng, T. Chen, and F. Sun. An integrated probabilistic model for functional prediction
of proteins. In W. Miller, M. Vingron, S. Istrail, P. Pevzner, and M. Waterman, editors,
Proceedings of the Seventh Annual International Conference on Computational Biology, pages
95–103. ACM Press, New York, 2003.

REFERENCES 485

P. Derbeko, R. El-Yaniv, and R. Meir. Error bounds for transductive learning via compression
and clustering. In Advances in Neural Information Processing Systems, pages 1085–1092. MIT
Press, Cambridge, MA, 2003.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition, volume 31
of Applications of Mathematics. Springer-Verlag, New York, 1996.

I. S. Dhillon and Y. Guan. Information theoretic clustering of sparse co-occurrence data. In Third
IEEE International Conference on Data Mining, pages 517–521, 2003.

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering.
Machine Learning, 42:143–175, 2001.

T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning
algorithms. Neural Computation, 10(7):1895–1924, 1998.

B. E. Dom. An information-theoretic external cluster-validity measure. Research Report RJ
10219, IBM, 2001.

P. Domingos and M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one
loss. Machine Learning, 29(2/3):103–130, 1997.

D. L. Donoho and C. E. Grimes. When does Isomap recover the natural parameterization of
families of articulated images? Technical Report 2002-27, Department of Statistics, Stanford
University, Stanford, CA, August 2002.

D. L. Donoho and C. E. Grimes. Hessian eigenmaps: Locally linear embedding techniques for high-
dimensional data. Proceedings of the National Academy of Arts and Sciences, 100:5591–5596,
2003.

P. G. Doyle and J. L. Snell. Random walks and electric networks. Mathematical Association of
America, 1984.

H. Drucker, D. Wu, and V. Vapnik. Support vector machines for spam categorization. IEEE
Transactions on Neural Networks, 10(5):1048–1054, 1999.

S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and
representations for text categorization. In Proceedings of the ACM International Conference
on Information and Knowledge Management, pages 148–155, 1998.

J. Dunagan and S. Vempala. Optimal outlier removal in high-dimensional spaces. In Proceedings
of the Thirty-third ACM Symposium on Theory of Computing, 2001.

B. Efron. The efficiency of logistic regression compared to normal discriminant analysis. Journal
of the American Statistical Association, 70(352):892–898, 1975.

B. Efron. Computers and the theory of statistics: Thinking the unthinkable. SIAM Review, 21:
460–480, 1979.

A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the number
of examples needed for learning. Information and Computation, 82:246–261, 1989.

B. Fischer, V. Roth, and J. M. Buhmann. Clustering with the connectivity kernel. In Advances
in Neural Information Processing Systems 16, 2004.

A. Flaxman, 2003. Personal communication.

D. Foster and E. George. The risk inflation criterion for multiple regression. Annals of Statistics,
22:1947–1975, 1994.

S. C. Fralick. Learning to recognize patterns without a teacher. IEEE Transactions on Information
Theory, 13:57–64, 1967.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

J. H. Friedman. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and
Knowledge Discovery, 1(1):55–77, 1997.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3:209–226, 1977.

J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of
boosting. Annals of Statistics, 28(2):337–407, 2000.

N. Friedman. The Bayesian structural EM algorithm. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence, pages 129–138, 1998.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29:
131–163, 1997.

486 REFERENCES

G. Fung and O. Mangasarian. Semi-supervised support vector machines for unlabeled data
classification. Optimization Methods and Software, 15:29–44, 2001.

C. Galarza, E. Rietman, and V. Vapnik. Applications of model selection techniques to polynomial
approximation. Preprint, 1996.

A. Gammerman, V. Vapnik, and V. Vowk. Learning by transduction. In Conference on
Uncertainty in Artificial Intelligence, pages 148–156, 1998.

S. Ganesalingam. Classification and mixture approaches to clustering via maximum likelihood.
Applied Statistics, 38(3):455–466, 1989.

S. Ganesalingam and G. McLachlan. The efficiency of a linear discriminant function based on
unclassified initial samples. Biometrika, 65:658–662, 1978.

S. Ganesalingam and G. McLachlan. Small sample results for a linear discriminant function
estimated from a mixture of normal populations. Journal of Statistical Computation and
Simulation, 9:151–158, 1979.

A. Garg and D. Roth. Understanding probabilistic classifiers. In Proceedings of the 12th European
Conference on Machine Learning, pages 179–191, 2001.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.
Neural Computation, 4(1):1–58, 1992.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration
of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–742, 1984.

R. Ghani. Combining labeled and unlabeled data for text classification with a large number of
categories. In Proceedings of the IEEE International Conference on Data Mining, 2001.

R. Ghani. Combining labeled and unlabeled data for multiclass text categorization. In Proceedings
of the International Conference on Machine Learning, 2002.

E. Giné and A. Guillou. Rates of strong uniform consistency for multivariate kernel density
estimators. Annales de l’Institut Henri Poincaré (B) Probability and Statistics, 38(6):907–921,
November 2002.

L. Goldstein and K. Messer. Optimal plug-in estimators for nonparametric functional estimation.
Annals of Statistics, 20(3):1306–1328, 1992.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press,
Baltimore, 3rd edition, 1996.

C. Goutte, H. Déjean, E. Gaussier, J.-M. Renders, and N. Cancedda. Combining labelled and
unlabelled data: A case study on Fisher kernels and transductive inference for biological entity
recognition. In Conference on Natural Language Learning, 2002.

T. Graepel, R. Herbrich, and K. Obermayer. Bayesian transduction. In Advances in Neural
Information System Processing, volume 12, 2000.

Y. Grandvalet. Logistic regression for partial labels. In Ninth Information Processing and
Management of Uncertainty in Knowledge-based Systems, pages 1935–1941, 2002.

Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In Advances in
Neural Information Processing Systems, volume 17, 2004.

A. G. Gray and A. W. Moore. N-Body problems in statistical learning. In T. K. Leen, T. G.
Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems 13, pages
521–527, Cambridge, MA, 2001. MIT Press.

M. Gribskov and N. L. Robinson. Use of receiver operating characteristic (ROC) analysis to
evaluate sequence matching. Computers and Chemistry, 20(1):25–33, 1996.

L. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE.
Transactions on Computed Aided Desgin, 11:1074–1085, 1992.

J. Ham, D. D. Lee, S. Mika, and B. Schölkopf. A kernel view of the dimensionality reduction of
manifolds. In Proceedings of the Twenty-first International Conference on Machine Learning,
pages 369–376, Banff, Canada, 2004.

J. M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpublished
manuscript, 1971.

J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating
characteristic (ROC) curve. Radiology, 143:29–36, 1982.

W. Härdle, M. Müller, S. Sperlich, and A. Werwatz. Nonparametric and Semiparametric Models.
Springer-Verlag, Berlin, 2004. URL http://www.xplore-stat.de/ebooks/ebooks.html.

REFERENCES 487

R. Hardt and F. H. Lin. Mappings minimizing the Lp norm of the gradient. Communications on
Pure and Applied Mathematics, 40:556–588, 1987.

H. O. Hartley and J. N. K. Rao. Classification and estimation in analysis of variance problems.
Review of International Statistical Institute, 36:141–147, 1968.

T. Hastie and R. Tibshirani. Generalized Additive Models. Chapman and Hall, New York, 1990.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Series
in Statistics. Springer-Verlag, New York, 2001.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10,
University of California, Santa Cruz, Santa Cruz, CA, July 1999.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks
for inference, collaborative filtering, and data visualization. Journal of Machine Learning
Research, 1:49–75, 2001.

M. Hein, J.-Y. Audibert, and U. von Luxburg. From graphs to manifolds - weak and strong
pointwise consistency of graph Laplacians. In Proceedings of the Eighteenth Conference on
Learning Theory, pages 470–485, 2005.

M. Hein and Y. Audibert. Intrinsic dimensionality estimation of submanifolds in Rd. Proceedings
of the Twenty-second International Conference on Machine Learning, pages 289 – 296, 2005.

J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear Potential Theory of Degenerate Elliptic
Equations. Oxford University Press, Oxford, 1993.

C. Helmberg. Semidefinite programming for combinatorial optimization. Habilitationsschrift ZIB-
Report ZR-00-34, TU Berlin, Konrad-Zuse-Zentrum Berlin, 2000.

H. Hishigaki, K. Nakai, T. Ono, A. Tanigaki, and T. Takagi. Assessment of prediction accuracy
of protein function from protein-protein interaction data. Yeast, 18:523–531, 2001.

D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem. Mathe-
matics of Operations Research, 10(2):180–184, 1985.

T. Hofmann and J. Puzicha. Statistical models for co-occurrence data. Technical Report AI Memo
1625, Artificial Intelligence Laboratory, MIT, Cambridge, MA, February 1998.

R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge, UK,
1985.

D. W. Hosmer. A comparison of iterative maximum likelihood estimates of the parameters of
a mixture of two normal distributions under three different types of sample. Biometrics, 29:
761–770, December 1973.

P. J. Huber. The behavior of maximum likelihood estimates under nonstandard conditions. In
Proceedings of the Fifth Berkeley Symposium in Mathematical Statistics and Probability, pages
221–233. University of California Press, Berkeley, 1967.

E. Ie, J. Weston, W. S. Noble, and C. Leslie. Multi-class protein fold recognition using adaptive
codes. In Proceedings of the International Conference on Machine Learning, 2005.

J. Ihmels, G. Friedlander, S. Bergmann, O. Sarig, Y. Ziv, and N. Barkai. Revealing modular
organization in the yeast transcriptional network. Nature Genetics, 31:370–377, 2002.

T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting remote
protein homologies. Journal of Computational Biology, 7(1-2):95–114, 2000.

T. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In
Advances in Neural Information Processing Systems 11, pages 487–493, Cambridge, MA, 1999.
MIT Press.

T. Jebara, R. Kondor, and A. Howard. Probability product kernels. Journal of Machine Learning,
5:819–844, 2004.

R. Jin and Z. Ghahramani. Learning with multiple labels. In Advances in Neural Information
Processing Systems 15, Cambridge, MA, 2003. MIT Press.

T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization.
In Machine Learning: Proceedings of the Fourteenth International Conference, pages 143–151,
1997. URL ftp://ftp.cs.cmu.edu/afs/cs/user/thorsten/www/icml97.ps.Z.

T. Joachims. Text categorization with support vector machines: Learning with many relevant
features. In Tenth European Conference on Machine Learning, pages 137–142, 1998.

T. Joachims. Transductive inference for text classification using support vector machines. In Pro-
ceedings of the Sixteenth International Conference on Machine Learning, pages 200–209, Bled,

488 REFERENCES

Slovenia, 1999. Morgan Kaufmann. URL http://www-ai.cs.uni-dortmund.de/DOKUMENTE/
joachims_99c.ps.gz.

T. Joachims. Learning to Classify Text Using Support Vector Machines – Methods, Theory, and
Algorithms. Kluwer, Dordrecht, the Netherlands, 2002.

T. Joachims. Transductive learning via spectral graph partitioning. In Proceedings of the
International Conference on Machine Learning, 2003.

I. T. Jolliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.

M. I. Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge, MA, 1999.

M. Kääriäinen. Generalization error bounds using unlabeled data. In Proceedings of the Annual
Conference on Computational Learning Theory, 2005.

M. Kääriäinen and J. Langford. A comparison of tight generalization bounds. In Proceedings of
the International Conference on Machine Learning, 2005.

S. D. Kamvar, D. Klein, and C. D. Manning. Spectral learning. In Proceedings of the International
Joint Conferences on Artificial Intelligence, pages 561–566, 2003.

T. Kanade, J. Cohn, and Y. Tian. Comprehensive database for facial expression analysis. In
Fourth IEEE International Conference on Automatic Face and Gesture Recognition, 2000.

M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M .Hattori. The KEGG resources for
deciphering genome. Nucleic Acids Research, 32:D277–D280, 2004.

N. Kasabov and S. Pang. Transductive support vector machines and applications in bioinformatics
for promoter recognition. Neural Information Processing - Letters and Reviews, 3(2):31–38,
2004.

M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM (JACM),
45(6):983 – 1006, 1998.

M. Kearns, Y. Mansour, and A. Y. Ng. An information-theoretic analysis of hard and soft
assignment methods for clustering. In Uncertainty in Artificial Intelligence, pages 282–293,
1997.

M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory. MIT Press,
Cambridge, MA, 1994.

M. J. Kearns and R. E. Schapire. Efficient distribution-free learning of probabilistic concepts. In
S. J. Hanson, G. A. Drastal, and R. L. Rivest, editors, Computational Learning Theory and
Natural Learning Systems, Volume I: Constraints and Prospect. MIT Press, Cambridge, MA,
1994.

S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale
linear SVMs. Journal of Machine Learning Research, 6:341–361, 2005.

B. Kegl and L. Wang. Boosting on manifolds: Adaptive regularization of base classifiers. In
Advances in Neural Information Processing Systems, volume 17, 2004.

D. Klein, S. D. Kamvar, and C. Manning. From instance-level constraints to space-level con-
straints: Making the most of prior knowledge in data clustering. In Proceedings of the Inter-
national Conference on Machine Learning, pages 307–314, Sydney, Australia, 2002.

J. Kleinberg. Detecting a network failure. In Proceedings of the Forty-first IEEE Symposium on
Foundations of Computer Science, pages 231–239, 2000.

J. Kleinberg, M. Sandler, and A. Slivkins. Network failure detection and graph connectivity.
In Proceedings of the Fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages
76–85, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with pairwise
relationships: Metric labeling and Markov random fields. In Proceedings of the 40th IEEE
Symposium on Foundations of Computer Science, pages 14–23, 1999.

A. R. Klivans, R. O’Donnell, and R. Servedio. Learning intersections and thresholds of halfspaces.
In Proceedings of the Forty-third Symposium on Foundations of Computer Science, pages 177–
186, 2002.

M. Kockelkorn, A. Lüneburg, and T. Scheffer. Using transduction and multi-view learning to
answer emails. In European Conference on Principles and Practice of Knowledge Discovery in
Databases, pages 266–277, 2003.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection.
In Proceedings of International Joint Conference on Artificial Intelligence, 1995.

REFERENCES 489

V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions on
Information Theory, 47(5):1902–1914, 2001.

P. Komarek and A. Moore. Fast robust logistic regression for large sparse datasets with binary
outputs. In Artificial Intelligence and Statistics, 2003.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In
Proceedings of the Nineteenth International Conference on Machine Learning, 2002.

B. Krishnapuram, D. Williams, Y. Xue, A. Hartemink, L. Carin, and M. Figueiredo. On semi-
supervised classification. In Advances in Neural Information Processing Systems, volume 17,
2004.

M. Krogel and T. Scheffer. Multirelational learning, text mining, and semi-supervised learning for
functional genomics. Machine Learning, 57(1/2):61–81, 2004.

A. Krogh, M. Brown, I. Mian, K. Sjolander, and D. Haussler. Hidden Markov models in
computational biology: Applications to protein modeling. Journal of Molecular Biology, 235:
1501–1531, 1994.

A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In
Advances in Neural Information Processing Systems 7, pages 231–238, 1995.

R. Kuang, E. Ie, K. Wang, K. Wang, M. Siddiqi, Y. Freund, and C. Leslie. Profile-based string
kernels for remote homology detection and motif extraction. In Computational Systems Biology
Conference, 2004.

S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University, New Haven,
CT, 2004.

T. N. Lal, M. Schröder, T. Hinterberger, J. Weston, M. Bogdan, N. Birbaumer, and B. Schölkopf.
Support vector channel selection in BCI. IEEE Transactions on Biomedical Engineering, 51
(6):1003–1010, 2004.

L. Lamport. How to write a proof. American Mathematical Monthly, 102(7):600–608, 1993.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. I. Jordan. Learning the kernel
matrix with semidefinite programming. Journal of Machine Learning Research, 5:27–72, 2004a.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A statistical
framework for genomic data fusion. Bioinformatics, 20:2626–2635, 2004b.

G. R. G. Lanckriet, M. Deng, N. Cristianini, M. I. Jordan, and W. S. Noble. Kernel-based data
fusion and its application to protein function prediction in yeast. In Proceedings of the Pacific
Symposium on Biocomputing, 2004c.

T. Lange, M. H. C. Law, A. K. Jain, and J. M. Buhmann. Learning with constrained and unlabeled
data. In Computer Vision and Pattern Recognition, pages 731–738, San Diego, CA, 2005.

S. Lauritzen. Graphical Models. Oxford Statistical Sciences. Clarendon Press, Oxford, 1996.

G. Lebanon. Learning Riemannian metrics. In Proceedings of the Nineteenth Conference on
Uncertainty in Artificial Intelligence, San Fransisco, 2003. Morgan Kaufmann.

I. Lee, S.V. Date, A.T. Adai, and E.M. Marcotte. A probabilistic functional network of yeast
genes. Science, 306 (5701):1555–1558, 2004.

T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph, G. K. Gerber, N. M. Hannett,
C. R. Harbison, C. M. Thompson, I. Simon, et al. Transcriptional regulatory networks in
Saccharomyces cerevisiae. Science, 298:799–804, 2002.

B. Leskes. The value of agreement, a new boosting algorithm. In Conference on Computational
Learning Theory, pages 51 – 56, 2005.

C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernels for SVM protein classi-
fication. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information
Processing Systems, pages 1441–1448, Cambridge, MA, 2003. MIT Press.

C. Leslie and R. Kuang. Fast kernels for inexact string matching. Conference on Computational
Learning Theory, 2003.

A. Levin, P. Viola, and Y. Freund. Unsupervised improvement of visual detectors using co-
training. In Proceedings of the Ninth IEEE International Conference on Computer Vision,
pages 626–633, Nice, France, 2003.

D. D. Lewis. The Reuters-21578 data set. http://www.daviddlewis.com/resources/
testcollections/reuters21578/, 1997.

D. D. Lewis. Naive (Bayes) at forty: The independence assumption in information retrieval. In

490 REFERENCES

Tenth European Conference on Machine Learning, pages 4–15, 1998.

D. D. Lewis and M. Ringuette. A comparison of two learning algorithms for text categorization.
In Third Annual Symposium on Document Analysis and Information Retrieval, pages 81–93,
1994. URL http://www.research.att.com/~lewis/papers/lewis94b.ps.

C. Liao and W. S. Noble. Combining pairwise sequence similarity and support vector machines
for remote protein homology detection. Proceedings Sixth Annual International Conference on
Computational Molecular Biology, 2002.

R. Liere and P. Tadepalli. Active learning with committees for text categorization. In Proceedings
of the Fourteenth National Conference on Artificial Intelligence, pages 591–596, 1997. URL
http://www.cs.orst.edu/~lierer/aaai97.ps.

J. Lin. Divergence measures based on the Shannon entropy. IEEE Transactions on Information
Theory, 37(1):145–151, 1991.

N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, Fourier transform, and learnability.
In Proceedings of the Thirtieth Annual Symposium on Foundations of Computer Science, pages
574–579, Research Triangle Park, NC, October 1989.

R. J. A. Little. Discussion on the paper by Professor Dempster, Professor Laird and Dr. Rubin.
Journal of the Royal Statistical Society, Series B, 39(1):25, 1977.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using
string kernels. Journal of Machine Learning Research, 2:419–444, 2002.

J. Löfberg. YALMIP 3, 2004. http://control.ee.ethz.ch/~joloef/yalmip.msql.

D. MacKay. Bayesian interpolation. Neural Computation, 4:415–447, 1992.

J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, pages
281–297, 1967.

C. Mallows. Some comments on Cp. Technometrics, 15:661–676, 1973.

K. V. Mardia and P. E. Jupp. Directional Statistics. Wiley, Hoboken, NJ, 2nd edition, 2000.

A. McCallum and K. Nigam. A comparison of event models for naive Bayes text classification.
In Learning for Text Categorization: Papers from the AAAI Workshop, pages 41–48. AAAI
Press, 1998a.

A. McCallum and K. Nigam. Employing EM and pool-based active learning for text classification.
In Proceedings of the International Conference on Machine Learning, Madison, WI, 1998b.

A. McCallum, R. Rosenfeld, T. Mitchell, and A. Ng. Improving text classification by shrinkage
in a hierarchy of classes. In Machine Learning: Proceedings of the Fifteenth International
Conference, pages 359–367, 1998.

G. J. McLachlan. Iterative reclassification procedure for constructing an asymptotically optimal
rule of allocation in discriminant analysis. Journal of the American Statistical Association, 70
(350):365–369, 1975.

G. J. McLachlan. Estimating the linear discriminant function from initial samples containing a
small number of unclassified observations. Journal of the American Statistical Association, 72
(358):403–406, 1977.

G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley, Hoboken,
NJ, 1992.

G. J. McLachlan and S. Ganesalingam. Updating a discriminant function on the basis of
unclassified data. Communications in Statistics: Simulation and Computation, 11(6):753–767,
1982.

G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley and Sons,
New York, 1997.

M. Meila. Learning with Mixtures of Trees. PhD thesis, MIT, Cambridge, MA, 1999.

S. Mendelson and P. Philips. Random subclass bounds. In Proceedings of the Sixteenth Annual
Conference on Computational Learning Theory, 2003.

C. J. Merz, D. C. St. Clair, and W. E. Bond. Semi-supervised adaptive resonance theory (smart2).
In International Joint Conference on Neural Networks, volume 3, pages 851–856, 1992.

D. Miller and H. Uyar. A generalized Gaussian mixture classifier with learning based on both
labelled and unlabelled data. In Proceedings of the Conference on Information Science and
Systems, 1996.

REFERENCES 491

D. Miller and H. Uyar. A mixture of experts classifier with learning based on both labelled
and unlabelled data. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural
Information Processing Systems 9, pages 571–577, Cambridge, MA, 1997. MIT Press.

T. P Minka. A Family of Algorithms for Approximate Bayesian Inference. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 2001.

T. Mitchell. Machine Learning. McGraw Hill, New York, 1997.

G. D. Murray and D. M. Titterington. Estimation problems with data from a mixture. Applied
Statistics, 27(3):325–334, 1978.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: A structural classification
of proteins database for the investigation of sequences and structures. Journal of Molecular
Biology, 247:536–540, 1995.

E. A. Nadaraya. On estimating regression. Theory of Probability and Its Applications, 9:141–142,
1964.

E. A. Nadaraya. Nonparametric Estimation of Probability Densities and Regression Curves.
Kluwer, Dordrecht, the Netherlands, 1989.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental, sparse,
and other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355–368,
Cambridge, MA, 1998. MIT Press.

S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library (COIL-100). Technical
Report CUCS-006-96, Columbia University, New York, February 1996.

Y. Nesterov and A. Nemirovsky. Interior-point polynomial methods in convex programming:
Theory and applications. SIAM, 13, 1994.

A. Y. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of logistic
regression and naive Bayes. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems, volume 14, pages 841–848, Cambridge,
MA, 2001. MIT Press.

A. Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing
Systems 14, Cambridge, MA, 2002. MIT Press.

K. Nigam. Using unlabeled data to improve text classification. Technical Report doctoral
dissertation, CMU-CS-01-126, Carnegie Mellon University, Pittsburgh, 2001.

K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. In Ninth
International Conference on Information and Knowledge Management, pages 86–93, 2000.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify text from labeled
and unlabeled documents. In Proceedings of the Fifteenth National Conference on Artificial
Intelligence, pages 792–799, 1998.

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled
documents using EM. Machine Learning, 39(2/3):103–134, 2000.

A. O’Hagan. Some Bayesian numerical analysis. In J. M. Bernardo, J. O. Berger, A. P. Dawid,
and A. F. M. Smith, editors, Bayesian Statistics 4, pages 345–363, Valencia, 1992. Oxford
University Press.

T. O’Neill. Normal discrimination with unclassified observations. Journal of the American
Statistical Association, 73(364):821–826, 1978.

D. Opitz and J. Shavlik. Generating accurate and diverse members of a neural-network ensemble.
In Advances in Neural Information Processing Systems 8, 1996.

M. Ouimet and Y. Bengio. Greedy spectral embedding. In Proceedings of the Tenth International
Workshop on Artificial Intelligence and Statistics, 2005.

A. Papoulis and S. U. Pillai. Probability, Random Variables and Stochastic Processes. McGraw-
Hill, New York, 4th edition, 2001.

J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard, and C. Chothia. Sequence
comparisons using multiple sequences detect twice as many remote homologues as pairwise
methods. Journal of Molecular Biology, 284(4):1201–1210, 1998.

S. Park and B. Zhang. Large scale unstructured document classification using unlabeled data and
syntactic information. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
LNCS vol. 2637, pages 88–99. Springer-Verlag, 2003.

492 REFERENCES

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo,CA, 1988.

F. C. N. Pereira, N. Tishby, and L. Lee. Distributional clustering of English words. In Meeting of
the Association for Computational Linguistics, pages 183–190, Columbus, Ohio, 1993.

D. Pierce and C. Cardie. Limitations of co-training for natural language learning from large
datasets. In Proceedings of the 2001 Conference on Empirical Methods in Natural Language
Processing, pages 1–9, 2001.

J. C. Platt. Fast embedding of sparse similarity graphs. In S. Thrun, L. K. Saul, and B. Schölkopf,
editors, Advances in Neural Information Processing Systems 16, Cambridge, MA, 2004. MIT
Press.

T. Poggio and F. Girosi. Regularization algorithms for learning that are equivalent to multilayer
networks. Science, 247:978–982, 1990.

T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri. B. In Proceedings of the Conference
on Uncertainty in Geometric Computations, pages 22–28, 2001.

M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

J. Ratsaby and S. Venkatesh. Learning from a mixture of labeled and unlabeled examples with
parametric side information. In Proceedings of the Eighth Annual Conference on Computational
Learning Theory, pages 412–417, 1995.

R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the EM algorithm.
SIAM Review, 26(2):195–239, April 1984.

B. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge,
UK, 1996.

J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14:1080–1100, 1986.

J. Rocchio. Relevance feedback in information retrieval. In The SMART Retrieval Sys-
tem:Experiments in Automatic Document Processing, chapter 14, pages 313–323. Prentice Hall,
Englewood Cliffs, NJ, 1971.

K. Rose, E. Gurewitz, and G. Fox. A deterministic annealing approach to clustering. Pattern
Recognition Letters, 11(9):589–594, 1990.

K. Rose, E. Gurewitz, and G. Fox. Vector quantization by deterministic annealing. IEEE
Transactions on Information Theory, 38(4):1249–1257, 1992.

S. Rosenberg. The Laplacian on a Riemannian Manifold. Cambridge University Press, Cambridge,
UK, 1997.

B. Rost and C. Sander. Prediction of protein secondary structure at better than 70% accuracy.
Journal of Molecular Biology, 232(2):584–599, July 1993.

D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273–302, 1996.

S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290:2323–2326, 2000.

Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston, 1996.

H. Saigo, J. Vert, N. Uea, and T. Akutsu. Protein homology detection using string alignment
kernels. Bioinformatics, 20:1682–1689, 2004.

Sajama and A. Orlitsky. Estimating and computing density based distance metrics. In Proceedings
of the Twenty-second International Conference on Machine Learning. Morgan Kaufmann, San
Francisco, 2005.

L. K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learning of low dimensional
manifolds. Journal of Machine Learning Research, 4:119–155, 2003.

C. Saunders, A. Gammerman, and V. Vovk. Transduction with confidence and credibility.
In International Joint Conference on Artificial Intelligence, volume 2, pages 722–726, San
Francisco, 1999. Morgan Kaufmann.

C. Schaffer. Overfitting avoidance as bias. Machine Learning, 10(2):153–178, 1993.

C. Schaffer. A conservation law for generalization performance. In Proceedings of International
Conference on Machine Learning, pages 683–690, 1994.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10:1299–1319, 1998.

REFERENCES 493

D. Schuurmans and F. Southey. Metric-based methods for adaptive model selection and regular-
ization. Special issue on new methods for model selection and model combination. Machine
Learning, 48(1-3):51–84, 2002.

D. Schuurmans, L. Ungar, and D. Foster. Characterizing the generalization performance of model
selection strategies. In Proceedings of International Conference on Machine Learning, pages
340–348, 1997.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

B. Schwikowski, P. Uetz, and S. Fields. A network of protein-protein interactions in yeast. Nature
Biotechnology, 18:1257–1261, 2000.

H. J. Scudder. Probability of error of some adaptive pattern-recognition machines. IEEE
Transactions on Information Theory, 11:363–371, 1965.

M. Seeger. Input-dependent regularization of conditional density models, 2000a. Technical Report,
Institute for ANC, Edinburgh, UK. See www.kyb.tuebingen.mpg.de/bs/people/seeger.

M. Seeger. Learning with labeled and unlabeled data, 2000b. Technical Report, Institute for
ANC, Edinburgh, UK. See www.kyb.tuebingen.mpg.de/bs/people/seeger.

M. Seeger. Covariance kernels from Bayesian generative models. In T. G. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages
905–912, Cambridge, MA, 2002. MIT Press.

E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller, and N. Friedman. Module
networks: Identifying regulatory modules and their condition specific regulators from gene
expression data. Nature Biotechnology, 34(2):166–176, 2003a.

E. Segal, H. Wang, and D. Koller. Discovering molecular pathways from protein interaction and
gene expression data. Bioinformatics, 19:i264–i272, July 2003b.

J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,
Cambridge, UK, 1999.

F. Sha and L. K. Saul. Analysis and extension of spectral methods for nonlinear dimensionality
reduction. In Proceedings of the Twenty-second International Conference on Machine Learning,
Bonn, Germany, 2005.

B. Shahshahani and D. Landgrebe. The effect of unlabeled samples in reducing the small sample
size problem and mitigating the Hughes phenomenon. IEEE Transactions on Geoscience and
Remote Sensing, 32(5):1087–1095, September 1994. URL http://dynamo.ecn.purdue.edu/
~landgreb/GRS94.pdf.

J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk minimization
over data-dependent hierarchies. IEEE Transactions on Information Theory, 44(5):1926–1940,
1998.

J. Shawe-Taylor and N. Cristianini. Kernel methods for Pattern Analysis. Cambridge University
Press, Cambridge, UK, 2004.

N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing Gaussian mixture models with
EM using equivalence constraints. In Advances in Neural Information Processing Systems 16,
pages 465–472, 2004.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

R. Shibata. An optimal selection of regression variables. Biometrika, 68:45–54, 1981.

V. Sindhwani. Kernel machines for semi-supervised learning, 2004. Technical Report, masters
thesis, University of Chicago.

V. Sindhwani, W. Chu, and S. S. Keerthi. Semi-supervised Gaussian processes, 2006. Technical
Report, Yahoo! Research.

V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: From transductive to semi-
supervised learning. In Proceedings of the International Conference on Machine Learning,
2005.

T. Smith and M. Waterman. Identification of common molecular subsequences. Journal of
Molecular Biology, 147:195–197, 1981.

A. Smola and R. Kondor. Kernels and regularization on graphs. In Conference on Learning
Theory, 2003.

P. Sollich. Probabilistic interpretation and Bayesian methods for support vector machines. In

494 REFERENCES

Proceedings of 1999 International Conference on Artificial Neural Networks, pages 91–96,
London, 1999. The Institution of Electrical Engineers.

P. Sollich. Probabilistic methods for support vector machines. In S. A. Solla, T. K. Leen, and
K.-R. Müller, editors, Advances in Neural Information Processing Systems, volume 12, pages
349–355, Cambridge, MA, 2000. MIT Press.

K. Sparck-Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of Documentation, 28(1):11–21, 1972.

P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown,
D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9:
3273–3297, 1998.

D. A. Spielman and S. H. Teng. Nearly-linear time algorithms for graph partitioning, graph
sparsification, and solving linear systems. In Proceedings of the Twenty-sixth annual ACM
Symposium on Theory of Computing, pages 81–90, New York, 2004. ACM Press.

A. Stolcke and S. M. Omohundro. Best-first model merging for hidden Markov model induction.
Technical Report TR-94-003, ICSI, University of California, Berkeley, 1994. URL http:
//www.icsi.berkeley.edu/techreports/1994.html.

C. J. Stone. Optimal rates of convergence for nonparametric estimators. Annals of Statistics, 8
(6):1348–1360, 1980.

A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures on web-page clustering. In
Workshop on Artificial Intelligence for Web Search (AAAI 2000), pages 58–64, 2000.

R. Strichartz. The Way of Analysis. Jones and Bartlett, Sudbury, MA, 1995.

J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Special
issue on interior point methods (cd supplement with software). Optimization Methods and
Software, 11-12(8):625–653, 1999.

J. Sun, S. Boyd, L. Xiao, and P. Diaconis. The fastest mixing Markov process on a graph and a
connection to a maximum variance unfolding problem. SIAM Review, 2006.

M. Szummer and T. Jaakkola. Clustering and efficient use of unlabeled examples. In Advances
in Neural Information Processing Systems 14, Cambridge, MA, 2001.

M. Szummer and T. Jaakkola. Information regularization with partially labeled data. In Advances
in Neural Information Processing Systems, volume 15. MIT Press, 2002a.

M. Szummer and T. Jaakkola. Partially labeled classification with Markov random walks. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing
Systems 14, Cambridge, MA, 2002b. MIT Press.

B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for relational data.
In Proceedings of the Eighteenth Annual Conference on Uncertainty in Artificial Intelligence,
2002.

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. W. H. Winston, Washington,
DC, 1977.

D. M. Titterington. Updating a diagnostic system using unconfirmed cases. Applied Statistics, 25
(3):238–247, 1976.

D. M. Titterington, A. Smith, and U. Makov. Statistical Analysis of Finite Mixture Distributions.
Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1st edition, 1985.

S. Tong and D. Koller. Restricted Bayes optimal classifiers. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence, pages 658–664, 2000.

S. Tong and D. Koller. Support vector machine active learning with applications to text
classification. Journal of Machine Learning Research, 2:45–66, November 2001.

V. Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719–2741, 2000.

K. Tsuda and W. S. Noble. Learning kernels from biological networks by maximizing entropy.
Bioinformatics, 20(Suppl. 1):i326–i333, 2004.

N. Ueda and R. Nakano. Deterministic annealing variant of the EM algorithm. In Advances in
Neural Information Processing Systems 7, pages 545–552, 1995.

P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan,

REFERENCES 495

et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae.
Nature, 403(6770):623–627, 2000.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

T. van Allen and R. Greiner. A model selection criteria for learning belief nets: An empirical
comparison. In International Conference on Machine Learning, pages 1047–1054, 2000.

C. van Rijsbergen. A theoretical basis for the use of co-occurrence data in information retrieval.
Journal of Documentation, 33(2):106–119, June 1977.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95, 1996.

V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.

V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

V. Vapnik. Estimation of Dependences Based on Empirical Data. Springer Series in Statistics.
Springer-Verlag, New York, 2nd edition, 2006.

V. Vapnik and A. Chervonenkis. Uniform convergence of frequencies of occurrence of events to
their probabilities. Doklady Akademii Nauk SSSR, 181:915–918, 1968.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and Its Applications, 16(2):264–280, 1971.

V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition [in Russian]. Nauka, Moscow,
1974.

V. Vapnik and A. Chervonenkis. The necessary and sufficient conditions for consistency in the
empirical risk minimization method. Pattern Recognition and Image Analysis, 1(3):283–305,
1991.

V. Vapnik and A. Sterin. On structural risk minimization or overall risk in a problem of pattern
recognition. Automation and Remote Control, 10(3):1495–1503, 1977.

A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein function prediction
from protein-protein interaction networks. Nature Biotechnology, 21(6):697–700, 2003.

S. Vempala. A random sampling based algorithm for learning the intersection of half-spaces.
In Proceedings of the Thirty-eighth Symposium on Foundations of Computer Science, pages
508–513, 1997.

K. A. Verbeurgt. Learning DNF under the uniform distribution in quasi-polynomial time. In
Conference on Computational Learning Theory, pages 314–326, 1990.

J.-P. Vert and M. Kanehisa. Graph-driven features extraction from microarray data using diffusion
kernels and kernel CCA. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural
Information Processing Systems 15, pages 1425–1432, Cambridge, MA, 2003. MIT Press.

J.-P. Vert and Y. Yamanishi. Supervised graph inference. In Advances in Neural Information
Processing Systems, volume 17, 2004.

P. Vincent and Y. Bengio. Density-sensitive metrics and kernels. In Workshop on Advances in
Machine Learning, Montréal, Québec, Canada, 2003.

S. V. N. Vishwanathan and A. Smola. Fast kernels for string and tree matching. Neural
Information Processing Systems 15, 2002.

U. von Luxburg and O. Bousquet. Distance-based classification with Lipschitz functions. Journal
of Machine Learning Research, 5:669–695, 2004.

U. von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral clustering. In Advances in Neural
Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.

C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Olivier, S. Fields, and P. Bork. Comparative
assessment of large-scale data sets of protein-protein interactions. Nature, 417:399–403, 2002.

V. Vovk, A. Gammerman, and C. Saunders. Machine-learning applications of algorithmic ran-
domness. In Proceedings of the Sixteenth International Conference on Machine Learning, pages
444–453. Morgan Kaufmann, San Francisco, 1999.

K. Wagstaff. Intelligent Clustering with Instance-Level Constraints. PhD thesis, Cornell Univer-
sity, Ithaca, NY, 2002.

K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained K-means clustering with
background knowledge. In Proceedings of the International Conference on Machine Learning,
pages 577–584, 2001.

G. Wahba. Spline Models for Observational Data. Number 59 in CBMS-NSF Regional Conference

496 REFERENCES

Series in Applied Mathematics. SIAM, Philadelphia, 1990.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational
inference. Technical Report 649, Department of Statistics, University of California, Berkeley,
2003.

L. Wang, K. L. Chan, and Z. Zhang. Bootstrapping SVM active learning by incorporating unla-
belled images for image retrieval. In Conference on Computer Vision and Pattern Recognition,
pages 629–634, 2003.

W. Wapnik and A. Tscherwonenkis. Theorie der Zeichenerkennung. Akademie Verlag, Berlin,
1979.

C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. Bartlett, B. Schölkopf, and
C. Schuurmans, editors, Advances in Large Margin Classifiers, Cambridge, MA, 1999. MIT
Press.

G. S. Watson. Smooth regression analysis. Sankhya - The Indian Journal of Statistics, 26:359–372,
1964.

K. Q. Weinberger, B. D. Packer, and L. K. Saul. Nonlinear dimensionality reduction by semidef-
inite programming and kernel matrix factorization. In R. Cowell and Z. Ghahramani, editors,
Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages
381–388, 2005.

K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite
programming. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 988–995, Washington D.C., 2004.

Y. Weiss. Segmentation using eigenvectors: A unifying view. In Proceedings of the International
Conference on Computer Vision, pages 975–982, Kerkyra, Greece, 1999.

J. Weston, C. Leslie, D. Zhou, A. Elisseeff, and W. S. Noble. Cluster kernels for semi-supervised
protein classification. Advances in Neural Information Processing Systems 17, 2003a.

J. Weston, F. Pérez-Cruz, O. Bousquet, O. Chapelle, A. Elisseeff, and B. Schölkopf. Feature selec-
tion and transduction for prediction of molecular bioactivity for drug design. Bioinformatics,
19(6):764–771, 2003b.

H. White. Maximum likelihood estimation of misspecified models. Econometrica, 50(1):1–25,
January 1982.

C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction
and beyond. In M. I. Jordan, editor, Learning in Graphical Models, volume 89 of Series D:
Behavioural and Social Sciences, Dordrecht, the Netherlands, 1998. Kluwer.

C. K. I. Williams. On a connection between kernel PCA and metric multidimensional scaling. In
T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems 13, pages 675–681, Cambridge, MA, 2001. MIT Press.

C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In
T.K. Leen, T.G. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing
Systems 13, pages 682–688, Cambridge, MA, 2001. MIT Press.

E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric learning, with application
to clustering with side-information. In Advances in Neural Information Processing Systems,
volume 15, pages 505–512, Cambridge, MA, 2003. MIT Press.

M. Yamasaki. Ideal boundary limit of discrete Dirichlet functions. Hiroshima Mathematical
Journal, 16(2):353–360, 1986.

Y. Yang and X. Liu. A re-examination of text categorization methods. In Proceedings of the
Twenty-first International ACM SIGIR Conference, pages 42–49, 1999.

Y. Yang and J. O. Pedersen. Feature selection in statistical learning of text categorization. In
Machine Learning: Proceedings of the Fourteenth International Conference, pages 412–420,
1997.

D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In Meeting
of the Association for Computational Linguistics, pages 189–196, 1995.

G. Yona, N. Linial, and M. Linial. Protomap: Automatic classification of protein sequences, a
hierarchy of protein families, and local maps of the protein space. Proteins: Structure, Function,
and Genetics, 37:360–678, 1999.

K. Yu, V. Tresp, and D. Zhou. Semi-supervised induction with basis function. Technical Report
141, Max-Planck Institut, Tübingen, 2004.

REFERENCES 497

A. L. Yuille, P. Stolorz, and J. Utans. Statistical physics, mixtures of distributions, and the EM
algorithm. Neural Computation, 6(2):334–340, 1994.

S. Zelikovitz and H. Hirsh. Improving short-text classification using unlabeled background
knowledge to assess document similarity. In Proceedings of the Seventeenth International
Conference on Machine Learning, 2000.

T. Zhang and F. Oles. A probability analysis on the value of unlabeled data for classification
problems. In International Joint Conference on Machine Learning, pages 1191–1198, 2000.

Y. Zhang, M. Brady, and S. Smith. Hidden Markov random field model and segmentation of brain
MR images. IEEE Transactions on Medical Imaging, 20(1):45–57, 2001.

Z. Zhang and H. Zha. Principal manifolds and nonlinear dimensionality reduction by local tangent
space alignment. SIAM Journal of Scientific Computing, 26(1):313–338, 2004.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with local and global
consistency. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information
Processing Systems 16, pages 321–328. MIT Press, Cambridge, MA, 2004.

D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled data on a directed
graph. In L. De Raedt and S. Wrobel, editors, Proceedings of the Twenty-second International
Conference on Machine Learning, 2005a.

D. Zhou, B. Schölkopf, and T. Hofmann. Semi-supervised learning on directed graphs. In L. K.
Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems
18, pages 1633–1640, Cambridge, MA, 2005b. MIT Press.

X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation.
Technical Report CMU-CALD-02-107, Carnegie Mellon University, Pittsburgh, 2002.

X. Zhu, Z. Ghahramani, and J. Lafferty. Combining active learning and semi-supervised learning
using Gaussian fields and harmonic functions. In ICML-2003 Workshop on the Continuum
from Labeled to Unlabeled Data in Machine Learning, pages 912–912, Washington, DC, 2003a.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and
harmonic functions. In Twentieth International Conference on Machine Learning, pages 912–
912, Washington, DC, 2003b. AAAI Press.

X. Zhu, J. Lafferty, and Z. Ghahramani. Semi-supervised learning: From Gaussian fields to
Gaussian processes. Technical Report CMU-CS-03-175, Carnegie Mellon University, Pittsburgh,
2003c.

Notation and Symbols

Sets of Numbers

N the set of natural numbers, N = {1, 2, . . .}
R the set of reals

[n] compact notation for {1, . . . , n}
x ∈ [a, b] interval a ≤ x ≤ b

x ∈ (a, b] interval a < x ≤ b

x ∈ (a, b) interval a < x < b

|C| cardinality of a set C (for finite sets, the number of elements)

Data

X the input domain

d (used if X is a vector space) dimension of X

M number of classes (for classification)

l, u number of labeled, unlabeled training examples

n total number of examples, n = l + u.

i, j indices, often running over [l] or [n]

xi input patterns xi ∈ X

yi classes yi ∈ [M] (for regression: target values yi ∈ R)

X a sample of input patterns, X = (x1, . . . , xn)

Y a sample of output targets, Y = (y1, . . . , yn)

Xl labeled part of X , Xl = (x1, . . . , xl)

Yl labeled part of Y , Yl = (y1, . . . , yl)

Xu unlabeled part of X , Xu = (xl+1, . . . , xl+u)

Yu unlabeled part of Y , Yu = (yl+1, . . . , yl+u)

500 Notation and Symbols

Kernels

H feature space induced by a kernel

Φ feature map, Φ : X → H

k (positive definite) kernel

K kernel matrix or Gram matrix, Kij = k(xi, xj)

Vectors, Matrices, and Norms

1 vector with all entries equal to one

I identity matrix

A⊤ transposed matrix (or vector)

A−1 inverse matrix (in some cases, pseudoinverse)

tr (A) trace of a matrix

det (A) determinant of a matrix

〈x,x′〉 dot product between x and x′

‖·‖ 2-norm, ‖x‖ :=
√
〈x,x〉

‖·‖p p-norm , ‖x‖p :=
(∑N

i=1 |xi|p
)1/p

, N ∈ N ∪ {∞}
‖·‖∞ ∞-norm , ‖x‖∞ := supN

i=1 |xi|, N ∈ N ∪ {∞}

Functions

ln logarithm to base e

log2 logarithm to base 2

f a function, often from X or [n] to R, R
M or [M]

F a family of functions

Lp(X) function spaces, 1 ≤ p ≤ ∞

Probability

P{·} probability of a logical formula

P(C) probability of a set (event) C

p(x) density evaluated at x ∈ X

E [·] expectation of a random variable

Var [·] variance of a random variable

N(μ, σ2) normal distribution with mean μ and variance σ2

Notation and Symbols 501

Graphs

g graph g = (V, E) with nodes V and edges E

G set of graphs

W weighted adjacency matrix of a graph (Wij
= 0 ⇔ (i, j) ∈ E)

D (diagonal) degree matrix of a graph, Dii =
∑

j Wij

L normalized graph Laplacian, L = I − D−1/2WD−1/2

L unnormalized graph Laplacian, L = D − W

SVM-related

ρf (x, y) margin of function f on the example (x, y), i.e., y · f(x)

ρf margin of f on the training set, i.e., minm
i=1 ρf (xi, yi)

h VC dimension

C regularization parameter in front of the empirical risk term

λ regularization parameter in front of the regularizer

w weight vector

b constant offset (or threshold)

αi Lagrange multiplier or expansion coefficient

βi Lagrange multiplier

α, β vectors of Lagrange multipliers

ξi slack variables

ξ vector of all slack variables

Q Hessian of a quadratic program

Miscellaneous

IA characteristic (or indicator) function on a set A,

i.e., IA(x) = 1 if x ∈ A and 0 otherwise

δij Kronecker δ (δij = 1 if i = j, 0 otherwise)

δx Dirac δ, satisfying
∫

δx(y)f(y)dy = f(x)

O(g(n)) a function f(n) is said to be O(g(n)) if there exist constants C > 0

and n0 ∈ N such that |f(n)| ≤ Cg(n) for all n ≥ n0

o(g(n)) a function f(n) is said to be o(g(n)) if there exist constants c > 0

and n0 ∈ N such that |f(n)| ≥ cg(n) for all n ≥ n0

rhs/lhs shorthand for “right-/left-hand side”

the end of a proof

Contributors

Maria-Florina Balcan

Computer Science Department

Carnegie Mellon University

ninamf@cs.cmu.edu

Arindam Banerjee

Department of Computer Science and Engineering

University of Minnesota

banerjee@cs.umn.edu

Sugato Basu

Department of Computer Sciences

University of Texas at Austin

sugato@cs.utexas.edu

Mikhail Belkin

Department of Computer Science and Engineering

Ohio State University

mbelkin@cse.ohio-state.edu

Yoshua Bengio

Département d’Informatique et Recherche Opérationnelle

Université de Montréal

bengioy@iro.umontreal.ca

Mikhail Bilenko

Department of Computer Sciences

University of Texas at Austin

mbilenko@cs.utexas.edu

Avrim Blum

Computer Science Department

Carnegie Mellon University

avrim@cs.cmu.edu

504 Contributors

Christopher J. C. Burges

Text Mining, Search and Navigation Group

Microsoft Research

Chris.Burges@microsoft.com

Ira Cohen

Enterprise Systems and Software Lab

HP Labs

ira.cohen@hp.com

Adrian Corduneanu

Computer Science and Artificial Intelligence Laboratory

Massachussets Institute of Technology

adrianc@alum.mit.edu

Fabio G. Cozman

Engineering School

University of Sao Paulo

fgcozman@usp.br

Nello Cristianini

Department of Engineering Mathematics

University of Bristol

nello@support-vector.net

Tijl De Bie

OKP Research Group

K.U.Leuven

tijl.debie@gmail.com

Olivier Delalleau

Département d’Informatique et Recherche Opérationnelle

Université de Montréal

delallea@iro.umontreal.ca

Zoubin Ghahramani

Department of Engineering

University of Cambridge

zoubin@eng.cam.ac.uk

Yves Grandvalet

Heudiasyc

Université de Technologie de Compiègne

yves.grandvalet@utc.fr

Contributors 505

Yuhong Guo

Department of Computing Science

University of Alberta

yuhong@cs.ualberta.ca

Jihun Ham

Department of Electrical and Systems Engineering

University of Pennsylvania

jhham@seas.upenn.edu

Eugene Ie

Department of Computer Science and Engineering

University of California at San Diego

tie@cs.ucsd.edu

Tommi Jaakkola

Computer Science and Artificial Intelligence Laboratory

Massachussets Institute of Technology

tommi@csail.mit.edu

Thorsten Joachims

Department of Computer Science

Cornell University

tj@cs.cornell.edu

Michael I. Jordan

Department of Statistics

Department of Electrical Engineering and Computer Science

University of California at Berkeley

jordan@cs.berkeley.edu

Jaz Kandola

Gatsby Computational Neuroscience Unit

University College London

jkandola@gatsby.ucl.ac.uk

John Lafferty

Computer Science Department

Carnegie Mellon University

lafferty@cs.cmu.edu

Neil D. Lawrence

Department of Computer Science

University of Sheffield

neil@dcs.shef.ac.uk

506 Contributors

Nicolas Le Roux

Département d’Informatique et Recherche Opérationnelle

Université de Montréal

nicolas.le.roux@umontreal.ca

Daniel D. Lee

Department of Electrical and Systems Engineering

University of Pennsylvania

ddlee@seas.upenn.edu

Christina Leslie

Center for Computational Learning Systems

Columbia University

cleslie@cs.columbia.edu

Andrew McCallum

Department of Computer Science

University of Massachusetts Amherst

mccallum@cs.umass.edu

Tom Mitchell

Machine Learning Department

Carnegie Mellon University

tom.mitchell@cmu.edu

Raymond Mooney

Department of Computer Sciences

University of Texas at Austin

mooney@cs.utexas.edu

Kamal Nigam

Google

knigam@kamalnigam.com

Partha Niyogi

Department of Computer Science

University of Chicago

niyogi@cs.uchicago.edu

William Stafford Noble

Department of Genome Sciences

University of Washington

noble@gs.washington.edu

Contributors 507

Alon Orlitsky

Department of Electrical and Computer Engineering

University of California at San Diego

alon@ucsd.edu

John C. Platt

Knowledge Tools Group

Microsoft Research

jplatt@microsoft.com

Sajama

Department of Electrical and Computer Engineering

University of California at San Diego

sajama@ucsd.edu

Lawrence K. Saul

Department of Computer and Information Science

University of Pennsylvania

lsaul@cis.upenn.edu

Dale Schuurmans

Department of Computing Science

University of Alberta

dale@cs.ualberta.ca

Bernhard Schölkopf

Department of Empirical Inference

Max Planck Institute for Biological Cybernetics

bernhard.schoelkopf@tuebingen.mpg.de

Matthias Seeger

Department of Empirical Inference

Max Planck Institute for Biological Cybernetics

matthias.seeger@tuebingen.mpg.de

Fei Sha

Department of Computer and Information Science

University of Pennsylvania

feisha@cis.upenn.edu

Hyunjung (Helen) Shin

Department of Empirical Inference

Max Planck Institute for Biological Cybernetics

shin@tuebingen.mpg.de

508 Contributors

Vikas Sindhwani

Department of Computer Science

University of Chicago

vikass@cs.uchicago.edu

Finnegan Southey

Department of Computing Science

University of Alberta

finnwork@lucubratio.org

Koji Tsuda

Department of Empirical Inference

Max Planck Institute for Biological Cybernetics

koji.tsuda@tuebingen.mpg.de

Vladimir Vapnik

NEC Laboratories America

vlad@nec-labs.com

Kilian Q. Weinberger

Department of Computer and Information Science

University of Pennsylvania

kilianw@seas.upenn.edu

Jason Weston

NEC Laboratories America

jasonw@nec-labs.com

Dana Wilkinson

School of Computer Science

University of Waterloo

d3wilkinson@cs.uwaterloo.ca

Dengyong Zhou

NEC Laboratories America

dzhou@nec-labs.com

Xiaojin Zhu

Department of Computer Science

University of Wisconsin-Madison

jerryzhu@cs.wisc.edu

Index

An online index is availabe on the book webpage at

http://www.kyb.tuebingen.mpg.de/ssl-book/

