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Goals of this course - |

Soft skills
* L earn how to evaluate a research paper
* L earn what makes a paper good
* Learn how to get your paper published
* Learn how to give a scientific talk

* Learn to be critical / evaluate



Goals of this course -

Hard skills
* Get an overview of the RNA bioinformatics field

* Learn how basic concepts / algorithms/ statistical methods are
applied and extended in this field

* Learn how to ask the right biological question and choose the
right computational methods ,to solve it



Course Design

* Today -> overview on the topics, assignment of papers
* Student presentations
* Each student will choose a paper and will give a presentation

* One presentation per term (40-50 minutes + 15 minutes
guestions)

* Discussion: questions, critical assessmnet. One scientific
guestion per person + 1 good comment and 1 comment on
what can be improved



Presentation Guidelines

Compression with minimal loss of information

Understand the context & data used
Identify the important question/motivation

Focus on the method

-l

Summarize shortly the main findings
* Forget about unimportant details

5. Evaluate and think about possible future directions



Advices / Help

* Read your paper twice before saying ,I don‘t understand it’

* Read the supplementary material

* Do not try to understand every detail but the general idea has to be clear
* Main objective: lively interesting talk that promotes discussion

* Come anytime to me with questions (write me 3-4 days before)
marsico@molgen.mpg.de

Tel: +49 30 8413 1843
where: MPI for Molecular Genetics, Ihnestrasse 63-73, Room 1.3.07

* send me your presentation one week before your talk

* Get feedback and give feedback (also to me ©)



What happens if | miss a session?

* Write a small report about the topic you have missed (2 pages — latex)

* Abstract, Introduciton, Material & Methods, Results & Discussion
* Re-phrase it in your own words
* By the 31th of March

* What happens if I miss two sessions?
* Write two of such reports..



The schedule

Day Talk Topic
October 14 Annalisa Intgci)glilrj];:(t)i;)r:;ch;na
October 21
October 28

November 04
November 11
—November-18 AnfrahsatKéin

November 25
December 02 backup
December 09 backup
December 16 backup

January 06 (‘16) backup




High-throughput genomics

RNA
DNA Synthesis and control, Splicing,
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Focus of the RNA Bioinformatics group

/ Machine
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What is an RNA?

: RNA J5"

base

DNA Ve,

3:

Secondary structure: set of base pairs which can be mapped into a plane



The RNA revolution

* Not only intermediates between DNA and proteins, but informational molecules
(enzymes)

* The first primitive form of life? (Woese CR 1967)
* Ability to function as molecular machines (e.g. tRNA, RNAs in splicesosome complex)

* Ability to to function as regulators of gene expression (miRNA, sSRNAs, piIRNAs,
lincRNA, eRNAs, ceRNAs..)

* Different sizes and functions (e.g. miRNAs 22nt, lincRNAs > 200nt)

* 1.5 % of the human genome codes for protein, the rest is ,junk’

* Since ten years junk has become really important -> transcribed in ncRNAs
* More than 80% of human disease loci are within non-coding regions

* Alot of tools developed to identify ncRNA genes

* E.g. Rfam — database which collect RNA families and their potential functions



The Eukaryotic Genome as an RNA machine

The ‘RNA world’
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Non-coding RNAs: hot stuff

Nobel Prize in Physiology

/ or Medicine 2006
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Structured RNAs examples

Structured RNAs: examples
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Research in RNA Bionformatics and

Perspectives

* |Initially focus on folding of single RNA molecules, but further improvements:

. Nussinov algorithm

. Zuker algorithm and partition function

. Fold many sequence togehter -> exploiting comparative information

. More complex models for finding RNA motifs (Covariance models, Rfam database)

* Searching for ncRNAs

* miRNA identification and role in gene-regulatory networks

* IncRNA (~13000 in the human genome) new challenge: poorly annotated, poorly
conserved, strucures unkown

* Focus RNA-RNA interactions and RNA-protein interactions
. MIRNA target prediction
. INcCRNA target prediction (indirect methods)
. RNA Binding Proteins (RBPS)



Non-coding RNASs in gene regulatory

networks
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Non-coding RNA-mediated networks In

bacterial infections
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Statistical modeling of mIRNA transcriptional

regulation
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Research in RNA Bionformatics and

Perspectives

* |Initially focus on folding of single RNA molecules, but further improvements:

. Nussinov algorithm

. Zuker algorithm and partition function

. Fold many sequence togehter -> exploiting comparative information

. More complex models for finding RNA motifs (Covariance models, Rfam database)

* Searching for ncRNAs

* miRNA identification and role in gene-regulatory networks

* IncRNA (~13000 in the human genome) new challenge: poorly annotated, poorly
conserved, strucures unkown

* Focus RNA-RNA interactions and RNA-protein interactions
. MIRNA target prediction
. INcCRNA target prediction (indirect methods)
. RNA Binding Proteins (RBPS)



Evolution of long-non coding RNAs and implication for#z

their functional classification (largely unknown so far!

Abstract Full text links

- | Full Text
RNA. 2015 May;21(5):801-12. doi: 10.1261/rna.046342.114. Epub 2015 Mar 23. E L

Comparison of splice sites reveals that long noncoding RNAs are
evolutionarily well conserved.

Nitsche A', Rose D?, Fasold M, Reiche K*, Stadler PF°.

The evolution of IncRNA repertoires and expression
patterns in tetrapods

Anamaria Necsulea, Magali Soumillon, Maria Warnefors, Angélica Liechti, Tasman Daish, Ulrich
Zeller, Julie C. Baker, Frank Gritzner & Henrik Kaessmann

Nature 505, 635-640 (30 January 2014) doi:10.1038/nature12943
Received 31 December 2012 Accepted 05 December 2013 Published online 19 January 2014



Research in RNA Bionformatics and

Perspectives

* |Initially focus on folding of single RNA molecules, but further improvements:

. Nussinov algorithm

. Zuker algorithm and partition function

. Fold many sequence togehter -> exploiting comparative information

. More complex models for finding RNA motifs (Covariance models, Rfam database)

* Searching for ncRNAs

* miRNA identification and role in gene-regulatory networks

* IncRNA (~13000 in the human genome) new challenge: poorly annotated, poorly
conserved, strucures unkown

* Focus RNA-RNA interactions and RNA-protein interactions
. MIRNA target prediction
. INcCRNA target prediction (indirect methods)
. RNA Binding Proteins (RBPS)



Research in RNA Bionformatics and

Perspectives

* Approximation: prediction of RNA secondary structure
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Models and databases to represent RNA
structure and sequence consensus

RNA Biol. 2013 Jul 1; 10(7): 1170-1179. PMCID: PMC3849165
Published online 2013 May 20. doi: 10.4161/ma.25038

Computational identification of functional RNA homologs in metagenomic data

Eric P. Nawrocki’ an{ Sean R. Eddy

Janelia Farm Research Campus; Ashbumn, VA USA
*
Correspondence to: Eric P. Nawrocki, Email: nawrockie@janelia.hhmi.org

Received 2013 Feb 14; Revised 2013 May 13; Accepted 2013 May 14.
Copyright © 2013 Landes Bioscience

This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed,
reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

This article has been cited by other articles in PMC.

Abstract Go to:

A key step toward understanding a metagenomics data set is the identification of functional sequence elements
within it, such as protein coding genes and structural RNAs. Relative to protein coding genes, structural RNAs
are more difficult to identify because of their reduced alphabet size, lack of open reading frames, and short length.
a software package that implementsl“covariance models™ (CMs) lor RNA homology search, which
harness both sequence and structural conserva omologs. Thanks to the added
statistical signal inherent in the secondary structure conservation of many RNA families, Infernal is more

powerful than sequence-only based methods such as BLAST and profile HMMs. Together with the Rfam
database of CMs, Infernal is a useful tool for identifying RNAs in metagenomics data sets.




Models and databases to represent RNA

structure and sequence consensus

Nucleic Acids Research

Nucleic Acids Res. 2015 Jan 28; 43(Database issue): D130-D137. PMCID: PMC4383904
Published online 2014 Nov 11. doi: 10.1093/nar/gku1063

Rfam 12.0: updates to the RNA families database

Eric P. Nawrocki,1't Sarah W. Burge—:*,z"r Alex Bateman,2 Jennifer Daub,2 Ruth Y. Eberhardt,2 Sean R. Eddy,1 Evan W. Floden,2
Paul P. Gardner,3 Thomas A. Jc»nes,1 John Tate,2 and Robert D. Finn'2"

THHMI Janelia Farm Research Campus, Ashburn, VA, USA
2European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
3Biom0|ecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand

'To whom correspondence should be addressed. Tel: +44 1223 492 679; Fax: +44 1223 494 468; Email: rdf@ebi.ac.uk

Received 2014 Sep 24; Revised 2014 Oct 10; Accepted 2014 Oct 15.



Sequence-structure alignment and folding f@?

non-coding RNA - clusterino

Bioinformatics
bioinformatics.oxfordjournals.org

Bioinformatics (2014) 30 (12): i274-i282. doi: 10.1093/bioinformatics/btu270

BlockClust: efficient clustering and classificatic
of non-coding RNAs from short read RNA-seq
profiles

1 1 1w 1 5
Pavankumar Videm , Dominic Rose ,2' Fabrizio Costa * and Rolf Backofen 245
+ Author Affiliations

) *To whom correspondence should be addressed.

Summary: Non-coding RNAs (ncRNAs) play a vital role in many cellular
processes such as RNA splicing, translation, gene regulation. However the
vast majority of ncRNAs still have no functional annotation. One prominent
approach for putative function assignment is clustering of transcripts
according to sequence and secondary structure. However sequence
information is changed by post-transcriptional modifications, and
secondary structure is only a proxy for the true 3D conformation of the
RNA polymer. A different type of information that does not suffer from
these issues and that can be used for the detection of RNA classes, is the
pattern of processing and its traces in small RNA-seq reads data. Here we
introduce ElockClust, an efficient approach to detect transcripts with
similar processing patterns. We propose a novel way to encode expression
“profiles in compact discrete structures, which can then be processed using
fast graph-kernel techniques. We perform both unsupervised clustering
and develop family specific discriminative models; finally we show how the

Bioinformatics
bioinformatics.oxfordjournals.org

Bioinformatics (2012) 28 (12): i224-i232. doi: 10.1093/bioinformatics/bts224

GraphClust: alignment-free structural clustering
of local RNA secondary structures

t t iy
Steffen Heyne , Fabrizio Costa , Dominic Rose and Rolf Backofen]-
+ Author Affiliations

.J * To whom correspondence should be addressed.

Abstract

Motivation: Clustering according to sequence-structure similarity has now
become a generally accepted scheme for ncRNA annotation. Its application
to complete genomic sequences as well as whole transcriptomes is
therefore desirable but hindered by extremely high computational costs.

Results: We present a novel linear-time, alignment-free method for
comparing and clustering RNAs according to sequence and structure. The
"approach scales to datasets of hundreds of thousands of sequences. The
quality of the retrieved clusters has been benchmarked against known
ncRNA datasets and is comparable to state-of-the-art sequence-structure
methods although achieving speedups of several orders of magnitude. A
selection of applications aiming at the detection of novel structural
ncRNAs are presented. Exemplarily, we predicted local structural elements
specific to lincRNAs likely functionally associating involved transcripts to

vital processes of the human nervous system. In total, we predicted 349
local structural RNA elements.




Research in RNA Bionformatics and

Perspectives

* |Initially focus on folding of single RNA molecules, but further improvements:

. Nussinov algorithm

. Zuker algorithm and partition function

. Fold many sequence togehter -> exploiting comparative information

. More complex models for finding RNA motifs (Covariance models, Rfam database)

* Searching for ncRNAs

* miRNA identification and role in gene-regulatory networks

* IncRNA (~13000 in the human genome) new challenge: poorly annotated, poorly
conserved, strucures unkown

* Focus RNA-RNA interactions and RNA-protein interactions
. MIRNA target prediction
. INncRNA target prediction (indirect methods)
. RNA Binding Proteins (RBPS)



Prediction of RNA Binding Protein (RBP) sites

genome-wide

* Proteins are involved in RNA processing, e.g. Splicing
» When RNAs work in gene regulation they do it through protein-binding

IncRNA =

Indirect RNA-protein—DNA associations

KW Vance & C. Ponting, Trends in Genetics 2014 M.T. Lam et al., Nature 2013, F. Lai et al, Nature 2013



Prediction of RNA Binding Protein (RBP) sites

genome-wide

(Source: Nature Reviews Genetics 13, 77-83)
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Investigation of RNA function through binding with

RNA Binding Proteins - CLIP-seq and hiCLIP-seq dat

Nucleic Acids Research
nar.oxfordjournals.org

Nucl. Acids Res. (January 2015) 43 (1): 95-103. doi: 10.1093/nar/gkul 288
First published online: December 10, 2014

Leveraging cross-link modification events in
CLIP-seq for motif discovery

Emad Bahrami-Samani'. Luiz O.F. Penaivaz, Andrew D. '.imitl'lI and Philip ). Urenlv'
+ Author Affiliations

-1 "To whom correspondence should be addressed. Tel: +1 213 740 2416; Fax: +1 213 740
8631; Email: uren@usc.edu

Received May 8, 2014.
Revision received November 4, 2014,
Accepted November 25, 2014.

Abstract

High-throughput protein-RNA interaction data generated by CLIP-seq has
provided an unprecedented depth of access to the activities of
RNA-binding proteins (RBPs), the key players in co- and
post-transcriptional regulation of gene expression. Motif discovery forms
part of the necessary follow-up data analysis for CLIP-seq, both to refine
the exact locations of RBP binding sites, and to characterize them. The
specific properties of RBP binding sites, and the CLIP-seq methods,
provide additional information not usually present in the classic motif
discovery problem: the binding site structure, and cross-linking induced
events in reads. We show that CLIP-seq data contains clear secondary
structure signals, as well as technology- and RBP-specific cross-link
signals. We introduce Zagros, a motif discovery algorithm specifically
designed to leverage this information and explore its impact on the quality
of recovered motifs. Our results indicate that using both secondary
structure and cross-link modifications can greatly improve motif discovery
on CLIP-seq data. Further, the motifs we recover provide insight into the
balance between sequence- and structure-specificity struck by RBP
binding.

This article is part of a special issue on RBPome.

Sottuare _
PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis

Beibei Chen* , Jonghyun Vunl, Min Soo Kim“*z, Joshua T Mendell*~ and Yang Xiet?”

* Corresponding author: Yang Xie yang.xie@utsouthwestern.edu
1 Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Suite NC8.512 6000 Harry
Hines Blvd, Dallas, TX 75390, USA

2 Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Suite Nc8.512
6000 Harry Hines Blvd, Dallas, TX 75390, USA

3 Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX
75390, USA

Abstract Formula display: ¥ MathJar

CLIP-seq is widely used to study genome-wide interactions between RNA-binding proteins and RNAs. However, there are few
tools available to analyze CLIP-seq data, thus creating a bottleneck to the implementation of this methodology. Here, we
present PIPE-CLIP, a Galaxy framework-based comprehensive online pipeline for reliable analysis of data generated by three
types of CLIP-seq protocol: HITS-CLIP, PAR-CLIP and iCLIP. PIPE-CLIP provides both data processing and statistical analysis
to determine candidate cross-linking regions, which are comparable to those regions identified from the original studies or
using existing computational tools. PIPE-CLIP is available at http://pipeclip.qbrc.org/ webcite |.

A statistical method for peak calling
based on a generalized linear model



Investigation of RNA function through binding with

RNA Binding Proteins - CLIP-seq and hiCLIP-seq dat
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hiCLIP reveals the in vivo atlas of mMRNA secondary
structures recognized by Staufen 1

Yoichiro Sugimoto, Alessandra Vigilante, Elodie Darbo, Alexandra Zirra, Cristina Militti, Andrea
D’Ambrogio, Nicholas M. Luscombe & Jernej Ule

Nature 519, 491-494 (26 March 2015)  doi:10.1038/nature 14280
Received 06 September 2014 Accepted 02 February 2015 Published online 18 March 2015

1

The structure of messenger RNA is important for post-transcriptional regulation, mainly because it affects

structures interacting with RNA-binding proteins (RBPs). Using this technique to investigate RNA structurg
bound by Staufen 1 (STAU1) in human cells, we uncover a dominance of intra-molecular RNA duplexes, 3

A recent siuay measured three sets of non—specuhc RNA EacEgrounas

BackCLIP: a tool to identify common background
presence in PAR-CLIP datasets

.1 2 2 4
P.H Reyes-Herrera + , C.A Speck-Hernandez , C.A. Sierra and S. Herrerag-
+ Author Affiliations
.1 *To whom correspondence should be addressed. Reyes-Herrera P.H, E-mail:
phreyes@gmail.com

Received February 17, 2015.
Revision received June 28, 2015.
Accepted July 19, 2015.

Abstract

Motivation: PAR-CLIP, a CLIP-seq protocol, derives a transcriptome wide
set of binding sites for RNA-binding proteins. Even though the protocol
uses stringent washing to remove experimental noise, some of it remains.

which are present in several PAR-CLIP datasets. However, a tool to identify
the presence of common background in PAR-CLIP datasets is not yet
available.

depletion of duplexes from coding regions of highly translated mRNAs, an unexpected prevalence of
long-range duplexes in 3’ untranslated regions (UTRs), and a decreased incidence of single nucleotide
polymorphisms in duplex-forming regions. We also discover a duplex spanning 858 nucleotides in the 3’
UTR of the X-box binding protein 1 (XBP1) mRNA that regulates its cytoplasmic splicing and stability. Our
study reveals the fundamental role of MRNA secondary structures in gene expression and introduces
hiCLIP as a widely applicable method for discovering new, especially long-range, RNA duplexes.

Results: We used the measured sets of non-specific RNA backgrounds to
build a common background set. Each element from the common
background set has a score that reflects its presence in several PAR-CLIP
datasets. We present a tool that uses this score to identify the amount of
common backgrounds present in a PAR-CLIP dataset, and we provide the
user the option to use or remove it. We used the proposed strategy in 30
PAR-CLIP datasets from 9 proteins. It is possible to identify the presence
of common backgrounds in a dataset and identify differences in datasets
for the same protein. This method is the first step in the process of
completely removing such backgrounds.



* RBPs process RNAs (e.g. Splicing,
editing, stability)

* Help them to carry out their function

* Human genome has ~424 known and
predicted RBPs

* Recognize their targets at sequence
and structural level




HMM + Gibbs optimization

to capture sequence and structure
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Modeling and prediction of RNA-protein Binding Sites

This article is part of a special issue on RBPome.

Method Highly accessed

GraphProt: modeling binding preferences of RNA-binding proteins
Daniel Maticzka, Sita J Langel, Fabrizio Costa’ and Rolf Backofen'*"

* Corresponding author: Rolf Backofen kofen@informatik.uni-
freiburg.de
1 Department of Computer Science, Albert-Ludwigs-Universitat Freiburg, Freiburg im Breisgau, Germany
2 Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universitét Freiburg, Freiburg im Breisgau, Germany

For all author emails, please log on.

Genome Biology 2014, 15:R17 doi:10.1186/gb-2014-15-1-r17

Abstract

We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding
proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding
preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First,
estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels
of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided
by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at
http://www.bioinf.uni-freiburg. ftware/GraphPr webcite |.



Research in RNA Bionformatics and

Perspectives

* |Initially focus on folding of single RNA molecules, but further improvements:

. Nussinov algorithm

. Zuker algorithm and partition function

. Fold many sequence togehter -> exploiting comparative information

. More complex models for finding RNA motifs (Covariance models, Rfam database)

* Searching for ncRNAs

* miRNA identification and role in gene-regulatory networks

* IncRNA (~13000 in the human genome) new challenge: poorly annotated, poorly
conserved, strucures unkown

* Focus RNA-RNA interactions and RNA-protein interactions
. MIRNA target prediction
. INcCRNA target prediction (indirect methods)
. RNA Binding Proteins (RBPS)



Accurate annotation of microRNA genes from

high-throughput data

NATURE COMMUNICATIONS | ARTICLE

microTSS: accurate microRNA transcription start site
identification reveals a significant number of divergent
pri-miRNAs

Georgios Georgakilas, loannis S. Vlachos, Maria D. Paraskevopoulou, Peter Yang, Yuhong Zhang,
Aris N. Economides & Artemis G. Hatzigeorgiou

Nature Communications 5, Article number: 5700 doi:10.1038/ncomms6700

Received 07 May 2014 Accepted 29 October 2014 Published 10 December 2014

Abstract
A large fraction of microRNAs (miRNAs) are derived from intergenic non-coding loci and the identification of

their promoters remains ‘elusive’. Here, we present microTSS,|a machine-learning algorithm that provides

highly accurate, single-nucleotide resolution predictions for intergenic miIRNA transcription start sites
(TSSs). MicroTSS integrates high-resolution RNA-sequencing data with active transcription marks derived
from chromatin immunoprecipitation and DNase-sequencing to enable the characterization of tissue-
specific promoters. MicroTSS is validated with a specifically designed Drosha-null/conditional-null mouse
model, generated using the conditional by inversion (COIN) methodology. Analyses of global run-on
sequencing data revealed numerous pri-miRNAs in human and mouse either originating from divergent
transcription at promoters of active genes or partially overlapping with annotated long non-coding RNAs.
MicroTSS is readily applicable to any cell or tissue samples and constitutes the missing part towards
integrating the regulation of miRNA transcription into the modelling of tissue-specific regulatory networks.



RNA post-transcriptional modifications

Important for RNA functional studies

NATURE COMMUNICATIONS | ARTICLE OPEN

A genome-wide map of hyper-edited RNA reveals
numerous new sites

Hagit T. Porath, Shai Carmi & Erez Y. Levanon

Nature Communications 5, Article number: 4726 doi:10.1038/ncomms5726
Received 28 January 2014 Accepted 16 July 2014 Published 27 August 2014

Abstract

Adenosine-to-inosine editing iI; one of the most frequent post-transcriptional modifications, manifested as

A-to-G mismatches when comparing RNA sequences with their source DNA. Recently, a number of
RNA-seq data sets have been screened for the presence of A-to-G editing, and hundreds of thousands of
editing sites identified. Here we show that existing screens missed the majority of sites by ignoring reads
ith excessive (‘hyper’) editing that do not easily align to the genome. We show that careful alignment and
tﬁmmmpmn];ds infRNA-seq studies IIeveaI numerous new sites, usually many more

than originally discovered, and in precisely those regions that are most heavily edited. Specifically, we

discover 327,096 new editing sites in the heavily studied lllumina Human BodyMap data and more than
double the number of detected sites in several published screens. We also identify thousands of new sites
in mouse, rat, opossum and fly. Our results establish that hyper-editing events account for the majority of
editing sites.



RNA post-transcriptional modifications

Important for RNA functional studies

Using hidden Markov models to investigate G-quadruplex motifs in genomic
sequences

Masato Yano' and Yuki Kato®

* Corresponding author: Yuki Kato y.kato@cira.kyoto-u.ac.jp

1 Graduate School of Information Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma,
Nara 630-0192, Japan

2 Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto
606-8507, Japan

Abstract Formula display: ¥ MathJar

Background

G-quadruplexes are four-stranded structures formed in guanine-rich nucleotide sequences. Several functional roles of DNA
G-quadruplexes have so far been investigated, where their putative functional roles during DNA replication and transcription
have been suggested. A necessary condition foy G-quadruplex formation is the presence of four regions of tandem guanines
called G-runs and three nucleotide subsequences caled 100D at connect G-runs. A simple computational way to detect
potential G-quadruplex regions in a given genomic sequence is pattern matching with regular expression. Although many
putative G-quadruplex motifs can be found in most genomes by the regular expression-based approach, the majority of these
sequences are unlikely to form G-quadruplexes because they are unstable as compared with canonical double helix structures.

parameters of HMMs can be trained by using experimentally verified data. Computational experiments in discriminating
between positive and negative G-quadruplex sequences as well as reducing putative G-quadruplexes in the human genome
were carried out, indicating tha§ HMM-based models can discern bona fide G-quadruplex structures j»ell and one of them has
the possibility of reducing false positive G-quadruplexes predic y existing regular expression-based methods.
Furthermore, our results show that one of our models can be specialized to detect G-quadruplex sequences whose functional
roles are expected to be involved in DNA transcription.




