Current technologies

- Detecting TF binding: ChIP + sequencing
- ChIP-seq for TFs, Histone modifications
- Mustersuche
- DNA Methylierung
 - meDIP
 - Bisulfitsequenzierung
- 3D Struktur
- DNA accessibility
- Chromatin segmentation

DNA-Protein interaction

NFAT-AP1-DNA complex [Harrison, Nature 1998]

Chromatin IP (ChIP chip)

Dynamic view: Specific measurements for a cell type

The figure illustrates nucleosome models and major posttranslational modifications which play essential roles in gene expression regulation and disease processes

Picture from: http://chemistry.gsu.edu/faculty/Zheng/research.html

Table S2A

Annotation of Regulatory Factors used in this analysis

	Alternate		1		(I	Cell Line							
	Factor	Major			Census	GM		H1-	HeLa	Hep	ľ í	Total	More detailed annotation for
Factor	Name	Class	TF family	TF Domains	category	12878	K562	hESC	-\$3	G2	Other	Lines	non-TFSS
ATF3	-	TFSS	bZIP		а	Х	Х	Х		Х		4	
BATF	-	TFSS	bZIP		а	Х						1	
BCL11A	-	TFSS	ZNF	ZNF-C2H2	b	Х		Х				2	
BCL3	-	TFSS	Unknown		-	Х	X	X				3	
BCLAF1	-	TFSS	Unknown		0	Х	X					2	
BDP1	-	general	Homeodomain		х		X		Х			2	Pol III associated
BHLHE40	-	TFSS	HLH		а					Х		1	
BRCA1	-	TFSS	Unknown		÷	Х			Х			2	TF and DNA repair
BRF1	-	general			÷		Х		Х			2	Pol III associated
BRF2	-	general			÷		Х		Х			2	Pol III associated
CCNT2	-	general			÷.		Х					1	cyclin kinase
CEBPB	-	TFSS	bZIP		а		Х		Х	Х		3	
CHD2	-	chromatin	Homeodomain		х	Х	X			Х		3	chromatin remodeling helicase
CTBP2	-	TFSS	Unknown		-			X				1	-
CTCF	-	TFSS	ZNF	ZNF-C2H2	а	Х	X	X	Х	Х	46	51	
CTCFL	-	TFSS	ZNF	ZNF-C2H2	а		X				0	1	
E2F1	RBAP-1	TFSS	wHTH	TDP wHTH	а				Х		0	1	
E2F4	-	TFSS	WHTH	Proversion Dial 20	hao.	0/0	h×-	D11	D≯			2	
E2F6	-	TFSS	WHTH	NOR THE DIUL Z	JUO,	9(3	Pk.	$\nabla \mathbf{I}$	₽ <i>k</i> .			2	
EBF1	-	TFSS	IPT/TIG		а	X	· ·					1	
EGR1	ZIF268	TFSS	ZNF	ZNF-C2H2	а	Х	X	X				3	
ELF1	-	TFSS	ETS	ETS wHTH	а	Х	X			Х		3	
ELK4	-	TFSS	ETS	ETS wHTH	а				Х		1	2	
EP300	p300	general			Ξ.	Х	X	X	Х	Х	2	7	enhancer-related coactivator
ESR1	-	TFSS	NR		а					Х		1	
ESRRA	ERRA	TFSS	NR		а						2	2	
ETS1	-	TFSS	ETS	ETS wHTH	а	Х	X					2	
FAM48A	SPT20	chromatin				Х			Х			2	chromatin remodeling complex
FOS	-	TFSS	bZIP		а	Х	X		Х		1	4	
FOSL1	FRA1	TFSS	bZIP		а		X					1	
FOSL2	FRA2	TFSS	bZIP		а					Х		1	
FOXA1	-	TFSS	Forkhead	Forkhead wHTH	а					Х	2	3	
FOXA2		TFSS	Forkhead	Forkhead wHTH	а					Х		1	
GABPA		TFSS	ETS	ETS wHTH	а	Х	X	Х	Х	Х		5	
GATA1		TFSS	ZNF	ZNF-GATA	а		X				1	2	
GATA2	-	TFSS	ZNF	ZNF-GATA	а		Х				2	3	
GATA3	-	TFSS	ZNF	ZNF-GATA	а						1	1	
GTF2B	-	general			-		Х					1	general Pol II-associated factor
GTF2F1	-	general	wHTH		х		Х		Х			2	general Pol II-associated factor
HDAC2	RPD3	chromatin			Ξ.		X	X		Х		3	histone deacetylase
HMGN3	-	chromatin					X					1	chromatin structure factor
HNF4A	NR2A1	TFSS	NR		а					Х		1	
HNF4G	-	TFSS	NR		а					Х		1	
HSF1	-	TFSS	wHTH	Heat shock wHTH	а					Х		1	
IRF1	-	TFSS	wHTH	IRF wHTH	а		X					1	
IRF3	-	TFSS	WHTH	IRF wHTH	а	Х			Х	Х	ι.	3	l.

Analysis

- Read mapping
- Peak detection
- Significance of peaks?
- Differential peaks?

... controls

Auerbach et al. (2009)

... strand dependent bimodality

Wilbanks et al. (2010)

Detecting peaks

Scan the genomic DNA and look for enriched regions using a *window approach*.

Strand-specific patterns emerge and are used to locate the peaks

(1) extend the reads to the estimated fragment length, see two bottom panels at right.

(2) shift reads towards the middle of the two peaks; d/2

Analysis

- Read mapping
- Peak detection
- Significance of peaks?
- Differential peaks?

With the current genome coverage of most ChIP-Seq experiments, tag distribution along the genome could be modeled by a Poisson distribution [7]. The advantage of this model is that one parameter, λ_{BG} , can capture both the mean and the variance of the distribution. After MACS shifts every tag by d/2, it slides 2d windows across the genome to find candidate peaks with a significant tag enrichment (Poisson distribution p-value based on λ_{BG} , default 10-5). Overlapping enriched peaks are merged, and each tag position is extended d bases from its center. The location with the highest fragment pileup, hereafter referred to as the summit, is predicted as the precise binding location.

From: Zhang et al, **Model-based Analysis of ChIP-Seq (MACS)**, Genome Biol. 2008; 9(9): R137.

DNA methylation

- In CpG dinucleotides the Cytosine may be methylated
- Mapping methylated cytosines using an antibody: MeDIP
- Bisulfite sequencing: Treatment of DNA with bisulfite converts cytosine residues to uracil, but leaves 5-methylcytosine residues unaffected -> sequence -> compare to true sequence -> determine methylated positions

Accessible DNA segments

- DNAasel hypersensitivity: mapping open regions in chromatin, contain many TFBSs, pinpoint enhancers
- Was performed in more than 100 cell-lines
 -> distinguish cell-line specific open regions

3D chromosome structure

 Methods to determine which genomic regions are spatially close to which other region: Chromosome Conformation Capture, (ChIA-PET)

Chromatin Segmentation

- Unsupervised pattern discovery in human chromatin structure through genomic segmentation, by <u>Michael M Hoffman</u>, <u>William Stafford Noble</u>
- Nature Methods 9, 473–476 (2012)
- We trained Segway, a dynamic Bayesian network method, simultaneously on chromatin data from multiple experiments, including positions of histone modifications, transcription-factor binding and open chromatin, all derived from a human chronic myeloid leukemia cell line. In an unsupervised fashion, we identified patterns associated with transcription start sites, gene ends, enhancers, transcriptional regulator CTCF-binding regions and repressed regions. Software and genome browser tracks are at http://noble.gs.washington.edu/proj/segway/.

ChromHMM: Chromatin state discovery and characterization

ChromHMM is software for learning and characterizing chromatin states. ChromHMM can integrate multiple chromatin datasets such as ChIP-seq data of various histone modifications to discover de novo the major re-occuring combinatorial and spatial patterns of marks. ChromHMM is based on a multivariate Hidden Markov Model that explicitly models the presence or absence of each chromatin mark. The resulting model can then be used to systematically annotate a genome in one or more cell types. By automatically computing state enrichments for large-scale functional and annotation datasets ChromHMM facilitates the biological characterization of each state. ChromHMM also produces files with genome-wide www.nature.com/encode