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Overview

* Quantification using mass spectrometry
* Basic terms from analytical chemistry

e Quantitative behavior of mass spectrometers

* Experimental quantification strategies
* Absolute and relative quantification
e Label-free vs. labeled techniques
* Selected experimental techniques
* |sobaric tags
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Analytical Chemistry

e “Analytical chemistry is the study of the separation,
identification, and quantification of the chemical
components of natural and artificial materials.”

 “Quantification [...] is the act of counting and measuring
that maps human sense observations and experiences
into members of some set of numbers.”

* Quantitative Mass Spectrometry :=

use of a mass spectrometer to turn amounts of analytes
into numbers

[accessed 12.11.2011, 10:40 CET]
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Some Terms

* Analyte — the stuff we want to analyze (proteins,
peptides, metabolites)

* Matrix — the components of the sample that are not
analytes

* The matrix can significantly impact the way the whole
analysis is performed

e Example

* Proteomics analysis from urine

* Urine contains
* Proteins and peptides — the analytes
* Water

e Metabolites = matrix
* Urea
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Matrix Effects in LC-MS

 Components of the matrix are being separated
just like the analytes

 Parts of the matrix can be ionized as well and
then also show up as signals in the MS

* A priori it is unknown, which part of the signal
stems from matrix or analytes
* Matrix can interfere with the analysis by

 Competing with analytes for ionization -> reduce the
number of analyte molecules ionized

e Adsorb, precipitate or even react with the analyte
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Quantifying Analytes

Analytes have to be in solution for proteomics and
metabolomics

We thus deal with concentrations: amounts per volume
of sample V

Molar concentration

c.=n./V [SI unit: mol/m3]
Mass concentration

p,.=m;/V [SI unit: kg/m?3]
Translating molar concentrations into mass

concentrations can be done via the molecular weight M,
of the analyte

p;=¢ M,

/
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Precision and Accuracy

Probability
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poor precision poor accuracy
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e Accuracy: closeness to the true value (mostly influenced by
systematic error) — repetition of the experiment will not improve

the result

* Precision: repeatability of the measurement (mostly influenced by
random error) — repetition of the experiment will yield a value

closer to the true value

* An ideal experiment combines high accuracy with high precision
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Measurement Errors
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e Each measurement is associated with an error

* There are two basic types of error:

 Random error: defines the variance of repeated measurements (e.g., due to
high noise level) — this is always present in every measurement

e Systematic error (bias): shifts the mean of repeated experiments (e.g., due
to an incorrect calibration)
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Calibration Curve
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 Measurement of the detector response for various (known) concentrations
allows the construction of a calibration curve

* Most detector responses are chosen in a way that the response changes linearly
with the concentration

* Once the calibration curve has been measured, it allows the determination of

the concentration of an unknown sample
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Response
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 LOD: |level of detection — at what concentration can we decide that the analyte is present
* LOQ: level of guantification — at what concentration can we accurately quantify it
e LOL: limit of linearity — saturation effects start here

e Linear range (dynamic range): the concentration range where we get a response that is
linear in the concentration
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Detection Limit

LOD LoQ

* Limit of detection (detection limit) -- LOD: the lowest analyte concentration that
can be distinguished from the absence of the analyte (blank) within a stated
confidence limit (generally 99% confidence)

* Limit of quantification — LOQ: the concentration at which we can distinguish
two values with reasonable confidence

* Both depend on the noise level, the matrix, the instrument, the sensitivity for a
specific analyte, etc.

[accessed 15.11.2011, 14:00 CET
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LOD/LOQ

“Suppose you are at an airport with lots of noise from jets taking off. If the person
next to you speaks softly, you will probably not hear them. Their voice is less than
the LOD. If they speak a bit louder, you may hear them but it is not possible to be
certain of what they are saying and there is still a good chance you may not hear
them. Their voice is >LOD but <LOQ. If they speak even louder, then you can
understand them and take action on what they are saying and there is little chance
you will not hear them. Their voice is then >LOD and >LOQ. Likewise, their voice may
stay at the same loudness, but the noise from jets may be reduced allowing their
voice to become >LOD. Detection limits are dependent on both the signal intensity
(voice) and the noise (jet noise).”

[accessed 12.11.2011, 10:20 CET
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Quantitative Mass Spectrometry
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* lonization: number of ionized analyte molecules proportional to
the total amount present

 MS detector: proportional to the number of ions (the ion current)

* (Caveats:
e Saturation: there is an upper limit to the response
* Noise: does the signal really come from the analyte?
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Quantitative LC-MS

of the sample is injected

* Total amount of analyte eluting from the column is the same
amount as the amount injected (normally, on
the column)

* Analyte spreads out, elutes over a certain timespan from the
column: maximum
(peak broadening)

* Only a fraction of the analyte really enters the MS (skimmer!)

between analytes
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Quantitative LC-MS

 MSsignal intensity for peptide i at time t is proportional to
eluting off the column.

I;(t) = fi - ci(2)

c,”°* of analyte eluting and thus to the amount in the
sample. Hence we want to integrate over time.

I;(t) = fi- | ci(t)

t t

e The

Authors: Nahnsen, Kohlbacher, Reinert
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Quantitative LC-MS

* Elution profiles are (roughly) Gaussians. Hence we can model the
the elution as a product of the total concentration spread by a

retention time model
tot
c;(t) =qglrt;.o;.t)c;
* Strategy Z() g( O ) ¢

* Integrate over the MS signal (intensity /.(t)) caused by the analyte i over the
total elution time of an analyte (centered around rt; peak width defined by

standard deviation of the Gaussian)
* Response factor f; is unknown

Ii(t) = fi-¢;” - [ g(rti, 04, 1)
t t

Iz(t) fz ¥ C§Ot - 1
t
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Detection, Identification, Quantification

>
>

e Proteomics

* More peptides/proteins are
usually identified than quantified

* |dentification: MS/MS,
guantification usually by MS ->
independent processes

Proteins
in sample

Number of proteins

Proteins
identified

Proteins
quantified

d Many thingS Can be Seen Proteinconcentration:
Q = of
.(dete.c‘.ced) but canrlc.)t be 8 & S
identified or quantified
 Metabolomics
* |dentification here is particularly
difficult LOI: “Level of identification”

* We can identify only a fraction of
what we can quantify

Bantscheff et al., Anal Bioanal Chem (2005), 389, 1017-1031.
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Quantitative Data — MS Spectra

* Different ionized species in the same MS spectrum result
in different peaks

* Example
e Each peptide leads to a distinct set of peaks (isotope patterns!)

* |ntensity of each peak is proportional to the concentration at
the time of elution
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Quantitative Data — MS Spectra

in the same
spectrum because they have different response
factors!

* Exception: peptides/metabolites that differ only by a stable
isotope label will have identical response factors — their intensities
can be compared | This is the basis for
isotopic labels.
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Quantitative Data — MS? Spectra

* Fragment spectra can be used for quantification as well

* Under identical fragmentation conditions, the fragment ion intensity is
proportional to the parent ion concentration/intensity

* Key methods: MRM, iTRAQ
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Chromatograms

* Except for quantification techniques where a direct comparison is
made within the same spectrum (iTRAQ, SILAC), elution profiles
have to be considered

* Accurate quantification requires accurate

* Since the peak area remains the same, this means the
qguantification will be independent of changes in the peak shape
and width

* Elution profiles are often assumed to be Gaussian, but in reality
they can deviate significantly (tailing/heading leads to asymmetric
peak shapes — in the model of theoretical plates, this corresponds
to incomplete equilibration)

* For details, see Learning Unit 2A
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Quantification Strategies

Quantitative Proteomics

Relative Quantification Absolute Quantification

AQUA SISCAPA

Labeled Label-Free
In yivo In Yitro ggﬁﬁgﬁ; MRM  Feature-Based
14N /15N SILAC iTRAQ TMT 160 /180

After: Lau et al., Proteomics, 2007, 7, 2787



Labeling Techniques

* Many labeling techniques exploit stable isotope labeling

* Different isotopes of the same element behave chemically basically
identically (often used: /2H, 12/13C, 14/15N 16/18(Q))

* Their masses differ, however, so the MS can distinguish them

* Introducing a label in one sample and a different (or no label) in
another, mixing allows a relative quantification between two (or
more) samples

 Both samples are treated identically, systematic errors affect them in the
same way

* (Can be easily annotated manually (e.g., look for pairs of peaks)

* Labels can be expensive, difficult, unreliable to introduce

e Labeling in vivo is not always possible, not all techniques support in vitro
labeling



Labeling Techniques

* Peptides are modified chemically after extraction

* Labelis usually attached covalently at specific functional groups
(N-terminus, specific side chains, ...)
* Does not involve a perturbation of the in vivo system

* Labeling occurs late (during sample preparation) and thus does not account
for variance introduced in the early steps

» Stable isotope labels are integrated by ‘feeding’ the organism with labeled
metabolites (amino acids, nitrogen sources, glucose, ...)

* Full incorporation of the label can take a while

* Requires perturbation of the in vivo system, depending on the size quite
expensive

* Labeling occurs early in the study, results in higher reproducibility



SILAC

* Introduce stable labels by feeding labeled amino acids to the cell culture
* Labels will be integrated into all proteins after a reasonable amount of time

* Mix and compare with an unlabeled sample

* Tryptic digest ensures that each peptide contains at most one lysine!

* Peptides with heavy and light label are otherwise identical and coelute

* Spectra contain isotope patterns for both heavy and light peptides

22Mim/z: 924.476691

2IMsiInt: 964766.31

20M4
19M 1
18M 1
17M 1
16M <
15M 4
14M+

5 13M4
S o12md
S 11md
£ 10M+
9M 1
aM 4
7™+
6M 4
5M 4
am 4
3M4
2Mm4
1M+

light

|

heavy

SILAC pair with charge
2 and approximately a
1:1 ratio (unperturbed)

921 922 923 924 a25 926 927 928 929



SILAC
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SILAC
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SILAC
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Ong, Mann, Nat Prot 1 (2007), 2650-2660.



SILAC
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Spike-In SILAC
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Spike-In SILAC
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Mouse tissues
non-labeled



SILAC Mouse

ressure ]
4 Lo 6 lysine

A unlabeled mouse ‘Oi labeled mouse

PNy N i o ®
—>
+ Lys -6

week 1 | | week 2 I week 3 | |

e 100 ° 100 * 100 ° 12
LVQEVTDFAK T

—
o
o

Intensity
o
)
Y
SILAC ratio
»

S 11 O e T O A Pt LN

o m/z " m/z m/z m/z
100 100 ° 100 ® 12

o

2 3 4 weeks

[ Serumalbumin | M

=
o
o

AVLFTYDQYQEK

Adiponectin
Intensity
o
)
o
SILAC ratio
(o2}

l Ow=====- - . Ot mini'n o imi'ma > |*|
. | Lo L0 _
1 L0 | ] 01

m/z m/z m/z m/z

o
o
L

3 4 weeks

Kriiger et al., Cell (2008), 134:353-364.



Isobaric Labeling
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Isobaric Labeling

 |dea

* Label the different samples with labels of the same mass
(isobaric)

* Design the label in a way that they fragment differently upon
collision-induced dissociation

* MS? spectra will then contain reporter ions

e Quantification and identification are then both based on
tandem spectra only

 Key method: iTRAQ - isobaric tags for relative and
absolute quantification

* Based on covalent modification of N-terminus of peptides

* Labeling performed after digestion (also applicable to clinical
samples)

 Kits available for 4 or 8 distinct labels (‘quadroplex’, ‘octoplex’)



ITRAQ
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ITRAQ
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Quantitative Data — LC-MS Maps

* Spectra are acquired with rates up to dozens per second
e Stacking the spectra yields maps
* Resolution:

* Up to millions of points per spectrum

* Tens of thousands of spectra per LC run
 Huge 2D datasets of up to hundreds of GB per sample
 MS intensity follows the chromatographic concentration
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LC-MS Data (Map)
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Label-Free Quantification (LFQ)

* Label-free quantification is probably the most
natural way of quantifying

* No labeling required, removing further sources of
error, no restriction on sample generation, cheap

* Data on different samples acquired in different
measurements — higher reproducibility needed

 Manual analysis difficult

e Scales very well with the number of samples, basically
no limit, no difference in the analysis between 2 or
100 samples



LFQ — Analysis Strategy

1. Find features in all maps




LFQ — Analysis Strategy

1. Find features in all maps

2. Align maps




LFQ — Analysis Strategy

1. Find features in all maps |

2. Align maps

3. Link corresponding features




LFQ — Analysis Strategy
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LFQ — Analysis Strategy

Find features in all maps
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Feature-Based Alignment

* LC-MS maps can contain millions of peaks

* Retention time of peptides and metabolites can shift between

experiments

* In label-free quantification, maps thus need to be aligned in order
to identify corresponding features

* Alignment can be done on the raw maps (where it is usually called
‘dewarping’) or on already identified features

* The latter is simpler, as it does not require the alignment of
millions of peaks, but just of tens of thousands of features

* Disadvantage: it replies on an accurate feature finding



Feature-Based Alignment
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Feature Finding

* |dentify all peaks belonging to one peptide
* Key idea:

* |dentify suspicious regions

* Fit a model to that region and identify peaks explained by it




Feature Finding

* Extension: collect all data points close to the seed

* Refinement: remove peaks that are not consistent with the model
* Fit an optimal model for the reduced set of peaks

* |terate this until no further improvement can be achieved




Linear Alignment

* Lange et al. proposed an efficient feature-based
alignment of maps based on pose clustering

* The algorithm takes a pair of maps and computes an
optimal linear alignment

* It can be applied for multiple alignment of an arbitrary
amount of maps by applying it multiply and align the
maps in a star-like fashion onto one reference map (k-1
alignments for k maps)

* The algorithm relies on accurate feature detection but is
rather runtime efficient

Lange et al., Bioinformatics (2007), 23:i273-i281



Multiple Alignment

e Dewarp k maps onto a comparable coordinate system

e Choose one map (usually the one with the largest number of features) as
reference map (here:map 2 ->T, =1)
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Quantification Strategies

Metabolic labeling Chemical labeling Spiked peptides Label free
Cells or tissue™
2
Purification or : : : : : : 8 |
fractionation E : : : : : g
Protein [ 8 a
b ] ] - ; ' ) :‘":"': :'":'":
Peptides [ [
MS data U =
Ul 1 1 1 3
Data analysis [

Common quantitative mass spectrometry workflows. Boxes in blue and yellow represent two experimental conditions. Horizontal lines indicate when samples are
combined. Dashed lines indicate points at which experimental variation and thus quantification errors can occur.

Authors: Nahnsen, Kohlbacher, Reinert Bantscheff et al., Anal Bioanal Chem (2005), 389, 1017-1031.



Materials

* Quantification in general:
* Bantscheff et al., Quantitative mass spectrometry in proteomics: a critical
review, Anal Bioanal Chem (2005), 389, 1017-1031 [PMID: 17668192]
* Experimental methods

e SILAC: Ong, Mann, Nat Prot 1 (2007), 2650-2660.
* iTRAQ: Ross et al., Mol Cell Prot (2004), 3, 1154-1169.

* Pose clustering algorithm
* Lange etal., A geometric approach for the alignment of liquid-chromatography—
mass spectrometry data, Bioinformatics (2007), 23:i273-i281 [PMID: 17646306]
* Nonlinear alignment

* Podwojski et al., Retention time alignment algorithms for LC/MS data must consider
non-linear shifts, Bioinformatics (2009), 25 (6): 758-764. [PMID: 19176558]



Materials

* Online Materials
* Learning Unit 4[A,B,C]

* Background
 Chromatography: Learning Unit 2A
 Statistical concepts: Learning Unit 3A
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COMPUTATIONAL PROTEOMICS
AND METABOLOMICS

Oliver Kohlbacher, Sven Nahnsen, Knut Reinert

5. Quantification II: Label-free quantification, SILAC

This work is licensed under a Creative Commons Attribution 4.0 International License. ‘@ @ \



LEARNING UNIT 5A
FEATURE FINDING FOR
LABEL-FREE QUANTIFICATION

This work is licensed under a Creative Commons Attribution 4.0 Internationa | License.

S
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Label-Free Quantification (LFQ)

 Key advantage: no labeling needed — cheap, scales well
» Key disadvantage: normalization tricky — direct comparison

* Based on the notion of and
* LC-MS data: 2D datasets of up to hundreds of GB per sample
: unmodified detector signal
: peaks called on the MS level
: the stuff that matters in
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LC-MS Data (Map)

Quantification

2e+07
1.8e+07 |
1.6e+07 |
1.4e+07 |
1.2e+07 |
le+07 P
Be+0B P
Bet0B |
de+0B
2e+06

(15 nmol/pl, 3x over-expressed, ...



Feature Finding — Terms

Two-dimensional data set (RT, m/z) containing the MS signal
from one LC-MS run.

The sum of all the MS signals caused by the same analyte in
a specific charge state.

Different charge states or adducts will result in distinct
features. Primarily characterized by RT, m/z, charge,
intensity.

Finding the set of features explaining as much of the
signal in a map as possible.
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Raw Map

m/z

NOPPVIEW 20 x|

Feature

File View Image Windows Tools

eptideMix_ESI|_TOF_small. mzData ]

590

el

.....

.
.
.
-"‘
ant®

-----------

il
e

00000000
0000000

T

CYTITITIITIITIIY

560 570 580 590 6




Raw Map
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Raw Map - Feature Map
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LFQ — Analysis Strategy

1. Find features in all maps . - -
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1. Find features in all maps

2. Align maps

LFQ — Analysis Strategy
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LFQ — Analysis Strategy
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LFQ — Analysis Strategy

1. Find features in all maps il il il R
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LFQ — Analysis Strategy
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Feature Finding as Data Reduction

Maps

Diff.
Anal.

Annot.
Maps

HPLC/MS >
<)ata Reduction

Identification>

Raw Data

Sig.-
Proc.

Filtered
Raw Data

Differentially
Expressed
Proteins
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Feature Finding

* |dentify all peaks belonging to one peptide

* |dentify suspicious regions

* Fit a two-dimensional model to that region
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Feature Attributes

000000

= Position (m/z, RT)
= |[ntensity,
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Feature Model

Feature model = Isotope pattern X Elution profile

i ¥yt Y
rr I
4 . Db
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o
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m/z rt
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Feature Model

* Physical processes leading to the shape of a feature:

Elution profiles are (ideally) shaped like a Gaussian

Parameters: width, height, position

Mass spectra of peptides are characterized by the isotope
pattern

Modeled by a binomial distribution

e Both

* Atwo-dimensional feature is then described by the
product of two one-dimensional models
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Averagine

* Since the isotope pattern changes with the composition
of the peptide, it is unknown which pattern should be

fitted!

* We know the mass of the feature
 Assume an average composition of an amino acid

* Then we can estimate the composition

* The elemental composition of such an average amino
acid, also called * ’, can be derived statistically:

C4.94H7.76N 1.3601.4850.04
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Isotope Patterns

Based on averagine compositions one can compute the

isotope patterns for any given m/z

Heavier peptides have smaller monoisotopic peaks

In the limit, the distribution approaches a normal

/

\

distribution
m [Da] P P P P P
(k=0) | (k=1) | (k=2) | (k=3) | (k=4)
1000 | 0.55 | 0.30 | 0.10 | 0.02 | 0.00
2000 | 0.30 | 0.33 | 0.21 | 0.09 | 0.03
3000 | 0.17 | 0.28 | 0.25 | 0.15 | 0.08
4000 | 0.09 | 0.20 | 0.24 | 0.19 | 0.12

v
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Feature Model — m/z

* Isotope pattern is also modulated by the

 We can assume a Gaussian shape for each of the peaks of the isotope pattern

Effect of the smoothing width on an averagine isotope pattern at mass 1350

0.09 T T T T T T T
stdev = 0.1
0.2
0.08 - -
0.07 -
0.06 _
>
2
& 0.05 B
=
[ ]
=
¥ 004 .
o
5 6
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Feature Model — RT

e Elution profile is typically assumed to be a Gaussian
 There are some variants that also allow for asymmetric peaks

* This defines the shape of a feature in in the RT dimension
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Feature Finding — Algorithm

Most algorithms consists of four phases

. Choose peaks of high intensities, as those are usually in
features (“seeds”).

Conservatively add peaks around the seed, never mind
if you pick up a few peaks too many.
Estimate parameters of a two-dimensional feature for

the region.

Optimally fit a model to the collected peaks. Remove
peaks not agreeing with the model. Iterate until convergence.

79



Algorithm: Seeding

e Start with the highest peaks in the map

* Pick only one seed per feature, thus exclude peaks of already
identified features for later seeding

 More advanced variants of the algorithm use Wavelet techniques
to detect the best seeds

* Low-intensity features have intensities barely above the
surrounding noise

* Choose a threshold based on the average noise

* Dilemma:
 threshold too high, features will not get seeded

* Threshold too low, millions of noise peaks will be considered as seeds
HUGE run times

80



Feature Finding — Overview

7 while [ charge > min & charge < max ] \\‘
. do ——— — i
: Determine seed list ] |
i S Vo i
. i while | seed nr<seeds.size() ] [
e | -
! Extend seed region ! |
o v o
Fit model to region L
o Y o
L Clip region to feature model

Resolve contradicting features

Sturm, OpenMS - A Framework for Computational
Mass Spectrometry, Dissertation, Tubingen, 2010 81



Algorithm: Extension

* Explore the peaks around the seed
 Add them to a set of relevant peaks
* Abort if the peaks are getting too small or too far away

S e

N

c @
O

rt down rt up
o ¢ O g o ©

O

3

N @

S

2 o

- |
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Algorithm: Refinement

that are not consistent with the model
for the reduced set of peaks
this until no further improvement can be achieved
 Remove all peaks of this feature from potential seeds
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Collecting Mass Traces

A is a series of
peaks along the RT
dimension with little
variation in the m/z
dimension

Mass traces are found with
a simple heuristic aborting
the search if the peak
intensity hits the local
noise level

Search for mass traces in
the correct m/z distance

Limit length of mass trace
to the length of the most
intense mass trace

RT

RT

intensity

X X
X X X
. |
v N T T
X X X m +1 +2
X X X
X X
X
m/z
upper boundary
X
A
X X
A
X X X
3 X X

Pa
X

lower boundary

m/z

Sturm, OpenMS - A Framework for Computational
Mass Spectrometry, Dissertation, Tuibingen, 2010
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Feature Deconvolution

In various ways

* Mass traces can contain more than one chromatographic
peak (features not baseline-separated in RT dimension)

* Mass traces can be interleaved between features in the m/
z dimension

* Co-eluting features can be sharing mass traces
* Resolving these conflicts is done in
step by statistical testing:
* Test several hypotheses that could explain the features

 The most likely of all hypotheses will be identified through
comparison with the data
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overlap type 2

m/z

4900

Sturm, OpenMS - A Framework for Computational

86

Mass Spectrometry, Dissertation, Tuibingen, 2010
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Algorithm: Modeling

e Test all possible models for different charges states
(charge +2, charge +3, ...)

* Decide on the charge of the features based on the best
fit for these models
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Algorithm: Modeling/Refinement

* Estimate for model m and data d; at
positions r;:

_ (Zim(r)di)?
> m(ri)2 3 d7

e Maximum Likelihood Estimator determines

fit(m, d)

(least-squares fit)
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Feature Assembly

3
~*
(1]
3J
]
=
<

RT

l |

<

|| l||”“W”||||||I L
|

950

I L N L L L L B

111111

713.75
m/z

* Feature resolution is not always possible
unambiguously
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Feature Finding — Problems

* Low-resolution instruments might not yield good
Isotope patterns

* Peptides can overlap, in particular in complex samples

* Fitting of such overlapping patterns can yield bogus
results

* Low-intensity features are hard to distinguish from
noise peaks

* |sotope labels can skew the distributions or can lead
to overlapping pairs
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Still Difficult: Low-Intensity Features

signal intensity
160
120 |
80

40

The algorithm picked up the blue feature,
The red one was not found as it was too
close to the noise peaks (green)

35

40 45
4565 457 457 S Am/z [Th]

A, fmin] WI‘ Nl b M[.

\
|
ll Y
N
|

N
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LEARNING UNIT 5B
MAP ALIGNMENT

This work is licensed under a Creative Commons Attribution 4.0 International License.




Pairwise Alignment
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The problem is to find the
affine transformation T that

minimizes the distance between T(S) and M.
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m/z

Pairwise Alignment
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Pose Clustering
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Pose Clustering
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« Matching of corresponding pairs
> P will result in the
P j".. _ b, correct transformation
()
- * These are more likely than
a¢ random matches!
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Speeding Things Up
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Only consider pairs (s;,S,) in S
with s, having a small distance

tos,in m/z.
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Speeding Things Up
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Only match
pair (s,,S,) onto pair (m;,m,)
if s, and m, as well as s, and m,
lie close together in m/z.
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Improve Matching
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Normalize intensities in M and S:
weight the vote of each transformation
by the intensity similarities of the
point matches (s;,m,) and (s,,m,).
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Linear Alignment

Ul vvwua lul/t}ll]&'\' TILIADO T WILIUY VYD) AVIVOD VUILLIUVILIVAL 1T UL

i POdWOjSki et al. proposed an 1. Cluster Analysis

for cach mass-window do

alternative linear alignment use p peaks with highest intensities
calculate distance matrix of pairs of peaks (7, h)
method and also extended , Gfi(re) < ki A

diff(mass), if /
diff(log, o (intensity)) < ko

this to a nonlinear alignment

d’j.h, = 4 -
. ) ] .. o £ diff(rt) > k; V
 The linear alignment is similar . " diff(log, o (intensity)) > ko
: hlu'uchlca] average linkage cluster analysis
to the d Igorlth m by La nge et cut cluster-tree at mass accuracy Ay,
a l . if gy, < thresholdi N nyjge < thresholdy then
cluster is ‘well-behaved’

° |t uses a d|ﬂ:e rent type Of delete duplicated ‘well-behaved’ clusters

. . for cach “well-behaved’ cluster do
cluster analysis to determine a rt = median(rt)

for cach peak i do

linear regression S
2. Regression
* |n contrast to the Lange gl b
: : : : take only peaks from ‘well-behaved’ clusters
algorlth.m' It gener.allzes n|Ce|y fit regression line dm5 i = s + b\ ¥xrl;
to multiple map alignment by minimizing 3° (dev; — devs ;)?

Correction

for cach min < dao
Podwojski et al., Bioinformatics (2009), 25:758-764.
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Nonlinear Alignment

* Perform linear alignment (using pose clustering)

 Compute a more accurate local alignment using LOESS
regression

(often also called LOWESS)

* Locally weighted polynomial regression
e Based on a pre-defined window size

e Points within this window contribute to the local
regression

* Perform local regression (linear or quadratic, cubic)
around the predicted coordinate
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LOESS Regression

* Weighting is often performed by
tricubic weighting function

_1s13)3 f
w(z):{ (1 —1]2[7) if|z] <1

0 otherwaise

* Weighting function is applied to
coordinates scaled into the chosen
window (-1 -0 - 1)

* Local regression (linear, quadratic)
needs to be recomputed around

every point (computationally very

, tricubic function
expensive)

| | |
-0.5 0 0.5

Cleveland, J. Am. Stat. Soc (1979), 74:829-836
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LOESS Regression

How Loess Works

[
A g 1 :2 \ <
ForO<a<]1
st - =l . . [a . n]
T . i nearest neighbours
¢ o 8 ’ : are considered
st 1, >\
gives degree of
I Iy | fitted polynomial
A

http://demonstrations.wolfram.com/HowLoessWorks
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Nonlinear Alignment
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Alignment of two different datasets (top/bottom). Left: linear, right: nonlinear.
(around 30 k aligned peaks)
Podwojski et al., Bioinformatics (2009), 25:758-764.

108



Nonlinear Alignment

L .
o
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=
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S
|
|
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i | |
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S
| |
linear loess
regression regression

Comparison of median RT error for linear/nonlinear regression

Podwojski et al., Bioinformatics (2009), 25:758-764.
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Feature Linking

 Map alignment does not yet create a direct correspondence (bijection)
between the features!

e Feature linking pairs up features
for label-free quantification

for arbitrary labeling strategies (e.g., SILAC: link pairs 6 Da
apart)

* A user-specified and are
required as input

* Labeled feature linking also requires the specification of the label
distance (mass difference)

* The result are consensus features containing the original features as well

* Correctness of linked features can also be verified through identifications
(if present)
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OpenMS/TOPP

* OpenMS implements the Lange et al. algorithm

 TOPP contains tools for map alignment and for
feature linking

* Implements the pose clustering algorithm and computes the
corresponding transformation

* Uses QT clustering to compute the best assignment of
features across several maps

* Result is a consensus map

111



Consensus Features
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Consensus Features
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Quality Control

* Produces some descriptive statistics of a map for QC
* Did feature finding and map alignment work properly?
* Do all maps we aligned have roughly the same amount of features?

* Check instrument calibration and stability of chromatography

|
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8000 #features vs. # of maps containing the feature—
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114



Map Normalization

* For label-free quantification a normalization of features across
maps is often helpful

» Spiked in peptides/proteins are used for normalizing maps
* This is easily done in a statistics package or Excel after the analysis

* For a sufficiently complex background only a small number of features/
peptides will be differential

* The background can be used to normalize maps with respect to each other
(keeping the ration of unregulated background features at 1:1)

: ‘robust regression’
* Look at all the ratios
* Remove outliers
* Determine the normalization factor from the rest
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intensity

Effect of Normalization

e Label-free quantification in a complex (platelet) background
measured with a spiked in peptide

ID= 2 m/z=507.279 Th, RT=3101.1402 s ID= 4 m/z=507.279 Th, RT=3101.1402 s
corr=0.9879 corr=0.9993
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Feature Finding in KNIME

* TOPP tool FeatureFinder
(FeatureFinderCentroided in OpenMS 1.11)

 Reads a centroided LC-MS map — so if data is available
as raw data, it needs to be converted to centroided
data using a peak picker

* Label-free workflows can get rather complicated and

usually require identification steps as well (which we
will discuss later in the lecture)

Input Files FeatureFinderCentroided
MapAlignerPoseClustering
Output Files

In szLfor';liipLoopStan/» ﬁnd ¥PLMDE"/ FeatureLinkerUnlabeled
features Compute Node s
Ls"‘:?
=9

map alignment

link similar features
into consensus feature
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LEARNING UNIT 5C
SILAC QUANTIFICATION

This work is licensed under a Creative Commons Attribution 4.0 International License.




SILAC
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SILAC Analysis

* In principle, SILAC pairs are regular features
* Note that isotopic labels shift the averagine model

* A standard analysis workflow could thus look like:
* Feature finding
* Linking of pairs with the proper distance (4/6/8/10 Da,
depending on the experiment)
e Specialized SILAC analysis tools can make use of the
additional information contained in pairs
* Exact mass differences

* Presence of a second pair can increase confidence in the
detection

* Inclusion of this knowledge generally improves
sensitivity of the feature/pair detection
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MaxQuant

ldentify chromatograpic peaks

e Construct features from the matching
chromatographic peaks

 |dentify SILAC pairs among the de-isotoped peaks

* Determine the ratio of the SILAC pair

Cox & Mann, Nat. Biotech. (2008), 26:1367-1372. 121



Peak Detection

73

72

MaxQuant uses the notion of 3D peaks to describe the mass traces
on the raw data (three dimensions: RT, m/z, intensity)

3D peaks can be defined as all the signal caused by one isotopic
mass of an analyte — they correspond to mass traces in centroided
feature finding

Features are then defined as several of these 3D peaks

3D peak eluting over
1.5 min, m/z around
918 Da in 2D and 3D

representation

L] 1

Ll I Ll
918.02
m/z Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Peak Detection

Counts/s

3D peaks are detected by detecting peaks within individual mass
spectra first

For high-resolution MS instruments (e.g., Orbitrap), peak detection
is achieved by looking for local maxima

2D peaks are then determined as the range from the maximum
until either zero or a local minimum has been reached

Counts/s
()

m/z m/z
Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Peak Detection

Counts/s

If there are more than three data points to the peak, then the
center of the peak (centroid) is determined as by a to
these three peaks

Special treatment for peaks consisting of only one or two peaks

Intensity of the peak is approximated by the
of the peak

Counts/s
()

m/z ml/z

Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Peak Detection

e 2D peaks of adjacent scans are assembled into a 3D pealk, if their
centroid positions differ by less than 7 ppm

e 2D peaks may be missing in up to one scan (e.g., in case a 2D peak

detection did not work well), 3D peak consists of the maximum
number of 2D peaks that can be joined in this way

* Intensities of 2D peaks are smoothed and the 3D feature is split if
there are local minima in the intensity

 The 3D peak mass the intensity-weighted average of its 2D peaks’
masses

t

Counts/s

m/z Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Peak Detection

81.2 -
80.8 -

80.4 -

Two 3D peaks with identical masses, but
different RT (~80.6 and ~81.0 min)

844.2

844.6

L] l L]
Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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De-Isotoping

* 3D peaks are aggregated to features

* Tothisend, a is constructed

e An is added between two nodes, if

* Their masses match the distance within an isotope profile
* Their elution profiles overlap (normalized inner product
[cosine] of the two 3D peaks is greater than 0.6)
of this graph are potential
features, but can still contain 3D peaks from multiple
features (overlapping features)
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De-Isotoping

The mass criterion for an edge between the nodes representing two
3D peaks is fulfilled if the following holds:

AM| (AS
< =

Am —

& &

) + (5Am1)2 + (5Am2)2

Where m is the mass difference between the peaks and /AAM is the

mass difference between the monoisotopic and the *3C satellite for

an averagine of mass 1,500 Da (1.00286864 Da), z the charge.
Am, and Am, are the bootstrapped standard deviations of the two

exact peak masses and

A S =2 m(13C) — 2 m(*2C) — m(34S) — m(32S) = 0.0109135 Da
Is the maximum mass shift caused by the incorporation of one
sulphur atom.
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De-Isotoping

 Connected components of this graph correspond to
sets of overlapping features and individual (noise) 3D
peaks

 They are resolved by iteratively removing the largest
set of 3D peaks that are consistent

* Consistency is defined by

* Mutual consistency of all pairs of peaks with respect to
their mass distances (similar to the above definition for an
edge, but also between more distant peaks)

* Correlation of 0.6 or better between all elution profiles

e Correlation of 0.6 or better of the 3D peak distances with
the isotope distribution of an averagine at mass 1,500 Da
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Pair Detection and Ratio Estimation

e SILAC pairs are found through their distances by
searching for pairs in the correct distance (for up
to three labeled K or R in all possible
combinations)

* Intensities of the two features have to have a
correlation of 0.5 or better

* For each pair, the intensity ratios are determined
as the slope of a regression line through the
itensities of corresponding 3D peaks in the light
and heavy feature
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Result

SILAC pairs
identified in a
large-scale study of
human Hela cells.
Over 5,000 SILAC
pairs were found in

! one run.
4 ?'
548 550 552 554 556 558 560 562 564 566
miz
t | \’
3 . 108 -
72 - i : \l/
foiy E \)
il ) NN G LR P G 4 H 8 | \l,
715] -4 8 )%
T ¥ T T X r T L T L T g T 0 T e, A‘ T T 1
557.6 558.0 558.4 557.6 558 0 558 4
[ m/z " 1 m/z
LHHVSSLAWLDEHTLVTTSHDASVK, light, VIVPNMEFR, heavy, LGINSLQELK, light,
M=1103.5798, z=2 M=1113.6394, z= 2

M=2782.4038,z=5
Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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MaxQuant

* MaxQuant implements the SILAC pair detection
algorithm sketched here

e Later versions of MaxQuant can also be applied to
label-free quantification

 MaxQuant is unfortunately restricted to a specific
vendor format (ThermoFischer RAW format) and
platform (Windows)

* The output consists of a text file, that can then be
parsed and analyzed statistically with other tools
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MaxQuant

e Differential quantification of
protein ratios of HelA cells after 2 i
h of EGF stimulation
* 99.3% of all proteins have aratioof £ | T
1.0 (+/- 50%) and are thus not = KARI29 ogson
significantly regulated
.C1orf52 NR4A1.
* Transcription factor JunB and fe6 | o ®*JUNB
orphan nuclear receptor NR4A1

- e 0.1 10
are both significantly upregulated Protein ratio

‘christmas tree plot’:

pair intensity as a function of the

found through other methods and pair ratio (double logarithmic plot)

described in literature as well reveals the distribution of ratios,
accuracy, LOD, LOQ, LOL

Cox & Mann, Nat. Biotech. (2008), 26:1367-1372.
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Original Papers

e Label-free feature finding (OpenMS feature finder)

* Clemens Gropl, Eva Lange, Knut Reinert, Oliver Kohlbacher, Marc Sturm,
Christian G. Huber, Bettina M. Mayr, Christoph L. Klein: Algorithms for the

Automated Absolute Quantification of Diagnostic Markers in Complex
Proteomics Samples. ComplLife 2005: 151-162.

Online: http://www.springerlink.com/content/811k5vjtxqwbflce/

e Sturm, Marc: OpenMS — A framework for computational mass spectrometry,
Dissertation, Tubingen (2010)

Online: http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-51146
* Website: http://openms.de
e SILAC feature finding (MaxQuant)

* Cox, J. and Mann, M. (2008) MaxQuant enables high peptide identification rates,
individualized p.p.b.-range mass accuracies and proteome-wide protein
guantification. Nat Biotechnol 26, 1367-72.

(algorithm: see Supplementary Material at http://www.nature.com/nbt/journal/
v26/n12/extref/nbt.1511-S1.pdf)

* Website: http://maxquant.org
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Materials

* Online Materials
* Learning Unit 5[A,B,C],
* Learning Unit 1C
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