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Protein — RNA interactions

= Core of post-transcriptional regulation

* RNA binding proteins (RBPs) often bind several sites on most RNAs
— landcape of interactions

= CLIP-seq (cross-linking immunoprecipitation combined with HTS)
= Binding site detection with high-resolution for a given RBP

" Transcriptome-wide analysis
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Identification of binding sites
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> 80% truncated

— diagnostic events (DES)
(Source: Nature Reviews Genetics 13, 77-83)



Read counts & RBP binding affinity?



Normalization

Read count depends on expression level:
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(Source: Nature Reviews Genetics 13, 77-83)



Which peaks are significant?



Binding site calling

= Model underlying read count distribution to distinguish background
from binding site

= Take DEs into account



Binding site calling

Piranha (2012)

*=  Models read count distribution of bins using the ZTNB (zero truncated
negative binomial) distribution

®  Given (untruncated) mean read count U

— find dispersion parameter maximizing the ZTNB log-likelihood function

= External data as covariates X (e.g. transcript abundances, DEs)

— ZTNB regression model: ;= exp | ETYL ]

— Find dispersion and regression parameters 8 that maximize the log-
likelihood function



Binding site calling

(_SAm/BAMfile
PIPE-CLIP (2014) 1 —
Calling peaks/enriched clusters: T
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=  ZTNB regression model for read counts e e PR
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Detecting cross-linking sites:
Cross-linking regions

=  Number of DEs is modeled with binomial distribution
(no. of mapped reads, DEs and global success rate)

— p-value — FDR

— Combine p-values for final calling (using Fisher's method)

= No normalization for transcript abundances!



Binding site calling

dCLIP (2014)

= Comparative CLIP-seq analysis

= Normalization: MA-plot (assuming a large number of common
binding sites with similar binding strengths)

= Detection of RBP sites using HHM:

= Differential binding vs. non-differential binding site



Is it that simple?



Sequence bias

UV-C induced cross-linking preferentially occurs at Us (Sugimoto et al., 2012):
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— Bias can be avoided by analysis of motifs enriched in the vicinity

(Source: Sugimoto et al. Genome Biology 2012)



Background binding

1) Binding to proteins != RBP of interest

2) False cross-linking events

Friedersdorf et al., 2014:

=8 — 45% of reads from published PAR-CLIP datasets overlap with
background sites from FLAG-GFP PAR-CLIP

= Background reads are mostly derived from direct protein-RNA
Interactions — DEs

— Use control CLIP with unspecific protein (or publicly available results
In GEO for PAR-CLIP) for correction



GC hias

Read counts depend on GC content:
= GCrich and poor sequences are underrepresented

(due to different melting temperatures in PCR)

— GC normalization



Motifs:

Refining binding sites and characterization



Motif discovery

= RBP binding sites:
= Shorter than TF binding sites
= Characteristic secondary structures (not trivially determined by sequence)!

= Low sequence specificity in some RBPs

MEMEtris: uses RNA secondary structure to guide motif search
towards single-stranded regions

RNAcontext:  learning RBP-specific sequence and structural
preferences

RNAmMotifs: identifies multivalent regulatory motifs (clusters of short
and degenerate sequences)

GraphProt: learning sequence and structural preferences



Simultaneous binding site location and motif

discovery

Zagros (Bahrami-Samani et al., 2014)

= Simultaneous motif characterization and binding site localization

= EM algorithm:

= estimate parameters motif model M and background model f
= Taking sequence, structure and DEs into account

= Recompute motif occurence indicators at each iteration
— binding sites

" Improved motif discovery compared to methods taking only sequence
Into account



Conclusion

Split-read mapping:
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Conclusion

Open problems
= Accurate quantitative analysis remains challenging

= Need for computational methods taking sequence bias, background
noise into account

Future
= Combinatorial interactions of proteins on RNAS?
" Interactions with DNA?

" How does RNA editing or epigenetic modifications influence these
Interactions or vice versa?
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