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Overview

1) Biological Background

2) RNACompete

3) RNAContext 

a) RNA annotation

b) Motif model

c) Fitting of the model   

4) Results
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RNA binding proteins - RBPs

● Critical roles in numerous cellular processes

● Essential during germline and early embryonic development

http://en.wikipedia.org/wiki/File:Zinc_finger_rendered.png

● Binding preferences not well 

characterized

● Multiple RNA targets

● Identification of mechanism 

behind function

Challenges:
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RNACompete
● Estimates binding affinity data

● Pool of unique short RNA sequences (29- to 38-nt)
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RNACompete

● Eukaryotic RBPs recognize:

➔ Short unstructured sequences 

➔ Loop sequences in RNA stem-loop

● Mircoarray design:

➔ independent duplicate sets of unstructured and stem-loop RNAs

➔ Set A – stem-loop and unstructured sequences

➔ Set B – stem-loop and unstructured sequences 
No overlap !
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RNACompete

● Caution:

➔ Unstructured sometimes of stem-loops

➔ Stem-loops unexpected structures

● Constraints to minimize:

➔ Folding of unstructured RNAs 

➔ misfolding of structured RNAs

➔ Extensive base-pairing among any two RNAs

➔ microarray cross-hybridization
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RNAcontext

● Motif model 

● Predicts sequence and structure preferences of RBPs

● Considers multiple structural preferences simultaneously

● Webserver (restriction on input size)

● Terminal application (no restriction on input size)
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Methods

Three steps:

1. How to annotate RNA in terms of structural context

2. Details and mathematical formulation of the motif model

3. How to fit the RNAcontext motif model
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Methods - RNA annotation

● Annotation of each base in each structure by context alphabet

● Predicting secondary structure → SFOLD

● RNA multiple distinct stable secondary structures

● Distribution over all its possible context

Alphabet A: 

P - paired

L - hairpin loop

U - unstructured or external region

M - miscellaneous 
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Methods - Motif model 

Input : 

● Set of sequences together with their estimated binding affinities (S) 

● RNA secondary structure annotations of the sequences (P)
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Methods- Motif model

f (s , p ,Θ)⏞

score
probability that at least one

of the subsequences of length K
is bound by the RBP

=1−∏
t=0

|s|−K

1− N (st+1 : t+K , pt +1 :t +K ,Θ)⏟
depends onboth basecontent (s)and structure (p)

N seq(st+1: t+K ,Θ)⏟
depends only on basecontent

∗C( pt +1: t+K ,Θ)⏟
depends only onstructure

S – sequence set
P – annotation profiles
Θ – model parameter
K – width of binding site
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Methods- Motif model

N seq(st+1: t+K ,Θ)⏟
depends only on basecontent

∗C( pt +1: t+K ,Θ)⏟
depends only onstructure

N seq(s ,Θ)=σ (βs+∑
k=1

K

Θs k , k
)

⏟
estimate of probability that RBPbinds st +1: t :k  in ideal structural context

C ( p ,Θ)=σ (β p+∑
α∈A

Γα∗∑
k=1

K

pα , k)
⏟

estimate of probability that RBP prefers structural context p t+1 : t∗K

pα ,k−probability that baseat pos k of shas structural context α
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Methods- Motif model

σ (x )=(1+exp(−x))−1

http://en.wikipedia.org/wiki/Logistic_function

N seq(s ,Θ)=σ(βs+∑
k=1

K

Θsk , k
)

⏟
estimate of probability that RBPbinds st +1: t :k  in ideal structural context

C ( p,Θ)=σ (βp+∑
α∈A

Γα∗∑
k=1

K

pα , k )
⏟

estimate of probability that RBP prefers structural context pt+1 : t∗K

Logistic function:
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Methods- Motif model

http://en.wikipedia.org/wiki/Logistic_function

● Гα → favored structure

➔ N(s,p,Θ) ≈ N(s,Θ)

➔ determined by s

● Гα → unfavored structure

➔ C(p, Θ)  ≈  0 

➔ N(s,p, Θ)  ≈  0

➔ determined by p

Гα Гα

f (s , p ,Θ)⏞
score

=1−∏
t=0

|s|−K

1−N (s , p ,Θ)=1−∏
t=0

|s|−K

1−(N seq(s ,Θ)∗C (p ,Θ))
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Methods - Motif model fitting

● Model affinity of sequence as linear model

● Minimizing least squares cost function by L-BFGS-B

➔ Constrain slope of linear model to only take positive values

➔ Making use of position weight matrix (PWM)

➔ Small constant to ensure unique global minimum

● Cost function multi-modal

➔ different initializations → different outputs

➔ Take the best 
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RNAcontex-Output

● Structure parameters: 

➔ Scaled → most preferred context =1

● Sequence parameters: 

➔ Position Weight Matrix (PWM) 

➔ Displayed with EnoLOGOS 

http://rnamotif.org/help.html

http://rnamotif.org/help.html
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Results

● Compared MEMERIS(MEME), RNAcontext and MatrixReduce

● Each method trained individually 

● making use of each possible parameter setting 

● best model
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Results
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Results - RNAcompete
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Results - RNAContext
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Summary

● New motif model of RBP binding preferences

➔ Sequence and structure

➔ Corresponding algorithm for fitting model

● Recovers previously reported sequences and binding preferences

● Predicts new structure binding preferences

● Interprets RNAcompete data better than correlation analysis

● Initially designed for short RNA sequences can be used for long:

●  RNAplfold
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Thank youThank you  forfor  youryour  attentionattention!!

Questions?
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Methods – L-BFGS-B

BFGS :

● iterative method

● solves unconstrained non-linear optimization problems

● Approximates Newton's method by Hessian matrix 

● Hessian 

➔ square matrix of second-order partial derivatives of a function 

● stores and computes whole matrix 
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Methods – L-BFGS-B

L-BFGS:  

● Vectors implicitly model Hessian

● Optimization algorithm for parameter estimation in machine learning

L-BFGS-B: 

● extends L-BFGS 

● handle simple box constraints (aka bound constraints) on variables

● identifies fixed and free variables at every step

● L-BFGS method only free variables 

➔ higher accuracy
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