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Introduction

e mMIiRNAs: small non-coding RNAs of length ~22 nt
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Duroux-Richard et al., Swiss Med Wkly. 2011;141:w13175

e one MmiRNA can bind up to several hundreds mRNAs
e majority of mMRNAs possess a conserved miRNA-binding site

—> mIiRNAs are an import part of regulation!



Introduction

e one challenge in the field of mMiRNAs: target site identification

e (general problems:

o experimental analysis is difficult
o insufficient knowledge of miRNA biology
o limited number of experimentally validated targets

e often by means of predictive computational methods



Introduction

properties used by previous methods:

seed region (position 2 to 7 at the 5" miRNA end)
most methods require perfect seed matching

( = “canonical” site)

few methods allow G-U wobbles or other mismatches
( = “"non-canonical” site)

few methods: mRNA secondary structure

all methods: conservation filter

problem:

lots of predicted sites, many false positives
conservation filter too strict



Introduction

this paper: mirSVR

support vector regression model for scoring and ranking the
extent of down-regulation of given predicted target sites

trained and tested on experimentally determined expression data

prediction of poorly conserved and non-canonical sites without
introducing a large number of spurious predictions



Support Vector Machine - SVM
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Support Vector Machine - SVM

3) linear separation in high-dimensional space (kernel trick)
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Support Vector Regression - SVR

maximize number of points within an e-tube, minimize error of
points lying outside the tube

linear regression using e-insensitive loss function instead of e.g.
ordinary least square: vk
o errors less than € are ignored
o reduced data

linear kernel (no mapping
into high-dimensional space)
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http://kernelsvm.tripod.com/



Data

e¢ miRanda: alignment-based prediction of target sites
e mirSVR: ranking and scoring of target sites

e expression data from transfection experiments:

o measurement of MRNA expression levels

o transfection of one microRNA into the cell (overexpression)

o measurement of MRNA expression level 24h later

e prediction of log expression change using mirSVR



Data

e previously published data sets

e training data:

o 9 mRNA expression array data sets
using only genes with one target site

e test data:

o 17 additional mMRNA expression array data sets
o 5 protein expression data sets
o 3 inhibition experiments



Model features

Position
98 76 54327
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3' binding Seed malch
score bit vector
Flanking AU
Local context features content score
20 1-1 .. -20

Secondary structure accessibility
(multiple positions)

Global context features Relative position
in3' UTR
. AAAAA
Stop Length of Conservation score
codon 3'UTR (block containing site)

features and log expression values are Z-score transformed
(standardized) before training
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Score transformation 1

e score transformation with sigmoid transfer function to produce
comparable values

e sum of scores for genes with multiple target sites
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Regression coefficients
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Spearman rank correlation

Rank correlation between predicted and observed expression changes

in 25 transfection experiments
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Non-canonical sites

Log expression change (mean of percentile)

mirSVR scores vs. log expression change
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Non-canonical sites

mirSVR AUC
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Conservation filter

Fraction detected of the top 5% down-regulated genes
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Conclusions

miRanda-mirSVR: competitive model due to

binary representation of seed features

training with robust SVR

score transformation to correlate with down-regulation
using conservation as a feature

O O O O

transfection experiments != physiological conditions

o stronger regulatory effects
o out-competing of other miRNAs
o imbalance between miRNA and RISC concentrations
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Future directions

many target sites located in coding regions

target specificity vary between different cell lines

currently unknown non-sequence-specific features

integrating RISC expression levels
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Thank you for your attention!



