Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites

Stefan Budach 12.11.2014

Seminar RNA Bioinformatics

Introduction

Betel *et al. Genome Biology* 2010, **11**:R90 http://genomebiology.com/2010/11/8/R90

METHOD

Open Access

Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites

Doron Betel¹, Anjali Koppal², Phaedra Agius¹, Chris Sander¹, Christina Leslie^{1*}

1

• miRNAs: small non-coding RNAs of length ~22 nt

Duroux-Richard et al., Swiss Med Wkly. 2011;141:w13175

- one miRNA can bind up to several hundreds mRNAs
- majority of mRNAs possess a conserved miRNA-binding site

→ miRNAs are an import part of regulation!

Introduction

- one challenge in the field of miRNAs: target site identification
- general problems:
 - experimental analysis is difficult
 - insufficient knowledge of miRNA biology
 - limited number of experimentally validated targets
- often by means of predictive computational methods

- properties used by previous methods:
 - seed region (position 2 to 7 at the 5' miRNA end)
 - most methods require perfect seed matching
 (= "canonical" site)
 - few methods allow G-U wobbles or other mismatches
 (= "non-canonical" site)
 - few methods: mRNA secondary structure
 - all methods: conservation filter
- problem:
 - lots of predicted sites, many false positives
 - conservation filter too strict

- this paper: mirSVR
- support vector regression model for scoring and ranking the extent of down-regulation of given predicted target sites
- trained and tested on experimentally determined expression data
- prediction of poorly conserved and non-canonical sites without introducing a large number of spurious predictions

Support Vector Machine - SVM

• hyperplane: $\langle w, x \rangle + b = 0$

margin: 1/||w||

- main ideas:
 - 1) reduce data (sparsity)
 - 2) maximize margin by minimizing w
 - 3) linear separation in high-dimensional space (kernel trick)

http://lectures.molgen.mpg.de/statistik03/docs/Kapitel_16.pdf

3) linear separation in high-dimensional space (kernel trick)

http://lectures.molgen.mpg.de/statistik03/docs/Kapitel_16.pdf

- maximize number of points within an ε-tube, minimize error of points lying outside the tube
- linear regression using ε-insensitive loss function instead of e.g. ordinary least square:
 - \circ $\,$ errors less than ϵ are ignored
 - reduced data
- linear kernel (no mapping into high-dimensional space)

Data

- miRanda: alignment-based prediction of target sites
- mirSVR: ranking and scoring of target sites
- expression data from transfection experiments:
 - measurement of mRNA expression levels
 - transfection of one microRNA into the cell (overexpression)
 - measurement of mRNA expression level 24h later
- prediction of log expression change using mirSVR

Data

- previously published data sets
- training data:
 - 9 mRNA expression array data sets using only genes with one target site
- test data:
 - 17 additional mRNA expression array data sets
 - 5 protein expression data sets
 - 3 inhibition experiments

Model features

 features and log expression values are Z-score transformed (standardized) before training

- score transformation with sigmoid transfer function to produce comparable values
- sum of scores for genes with multiple target sites

Regression coefficients					
 -0.6	-0.4	-0.2	0.0	0.2	
L					
			_	UTRLength	
				SS 1	
				SS 2 SS 3	
			–	SS 4	
				SS 5 SS 6	
			=	SS 7	
				SS 8 SS 9	
			-	SS 10	
				SS 11 SS 12	
				SS 13	
			7	SS 14 SS 15	
				SS 16	
				SS 1/ SS 18	
				SS 19	
				SS 20 conservation	
				AU-content	
				3–Score UTRDis	
				1A	
				m2 m3	
_				m4	
				m5	
				m7	
				m8	
				1119	

Spearman rank correlation

Non-canonical sites

mirSVR scores vs. log expression change

Non-canonical sites

Conservation filter

Conclusions

- miRanda-mirSVR: competitive model due to
 - binary representation of seed features
 - training with robust SVR
 - score transformation to correlate with down-regulation
 - using conservation as a feature

- transfection experiments != physiological conditions
 - stronger regulatory effects
 - out-competing of other miRNAs
 - imbalance between miRNA and RISC concentrations

- many target sites located in coding regions
- target specificity vary between different cell lines
- currently unknown non-sequence-specific features
- integrating RISC expression levels

Thank you for your attention!