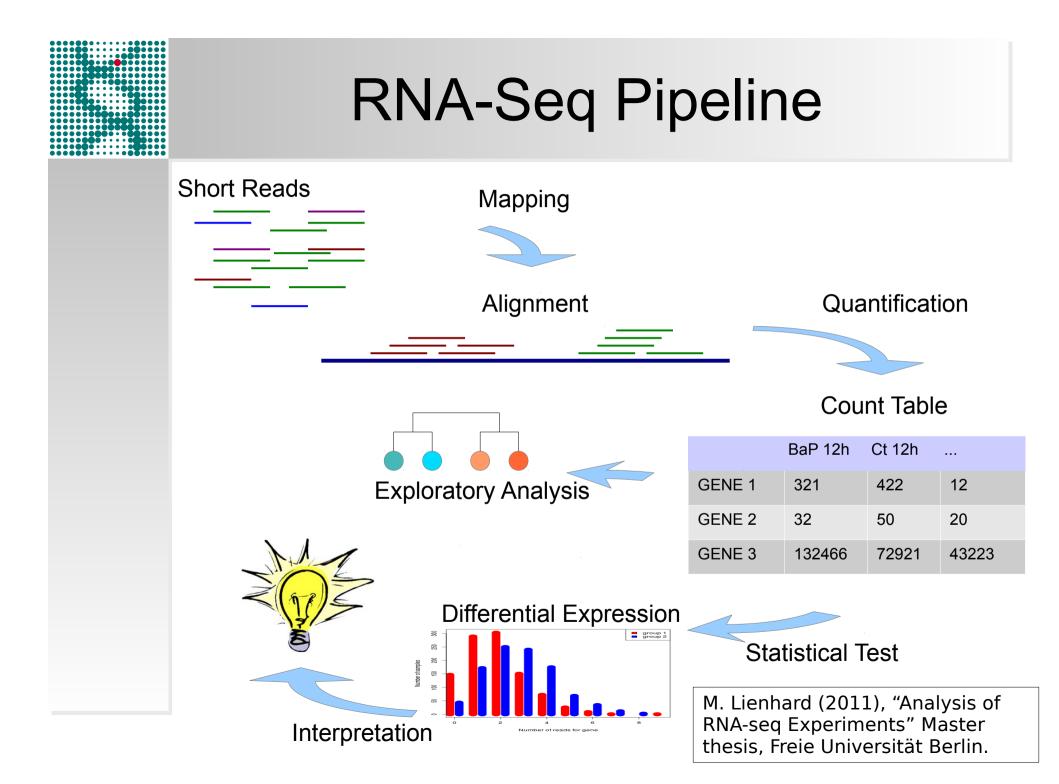


Analysis of RNA-Seq experiments

Matthias Lienhard

Seminar RNA bioinformatics

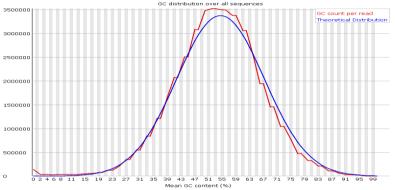
Dec 10th 2014

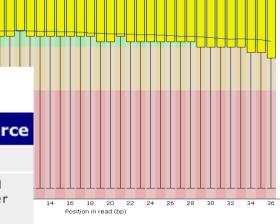


Quality Control

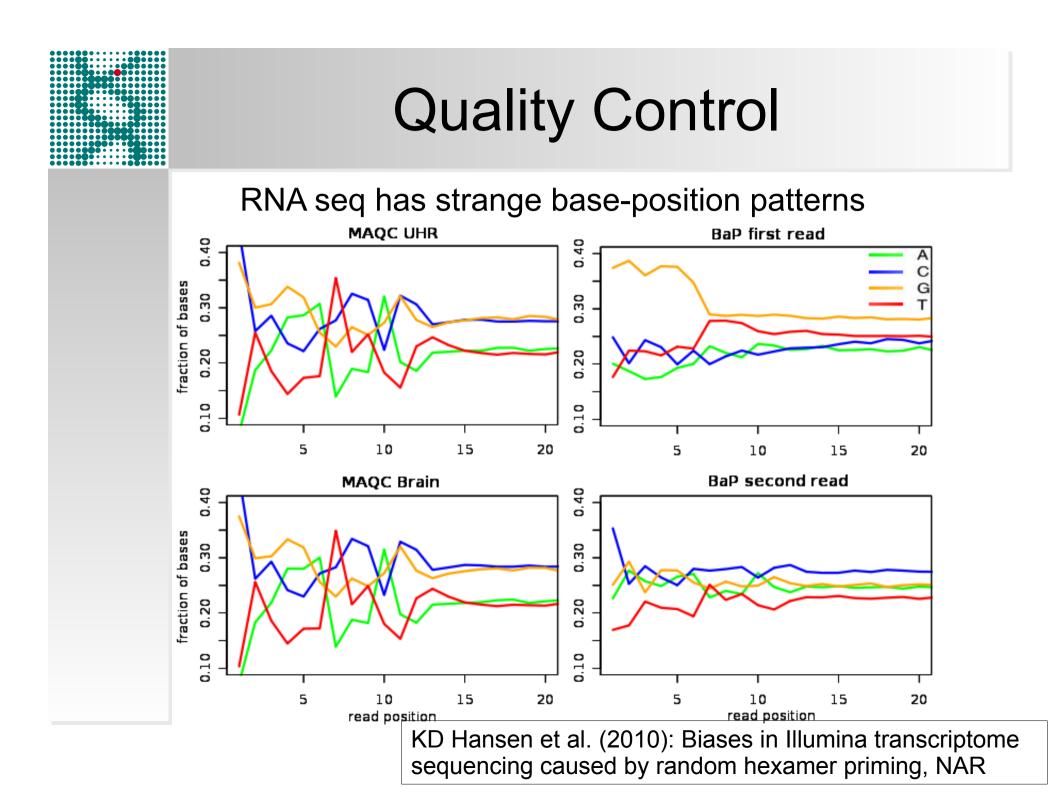
- Base Call Quality
- PCA artifacts
- Base composition
- Positional base frequency
- Adapter contamination

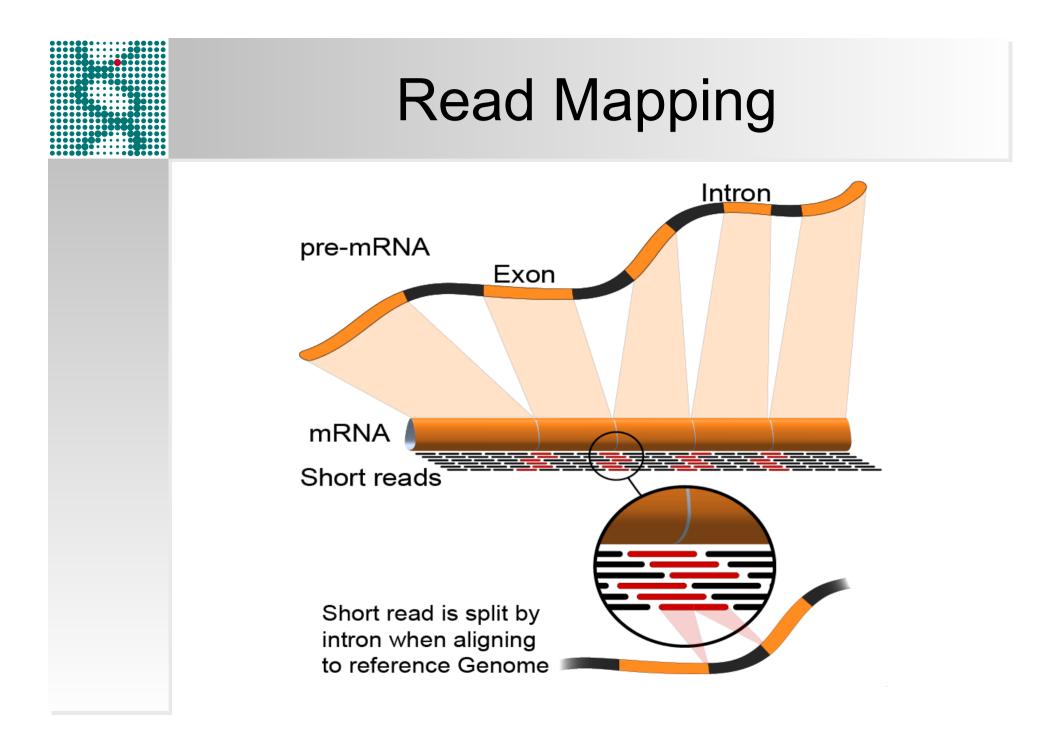
Sequence	Count	Percentage	Possible Source
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	119709	0.30700917731983646	No Hit
GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGAAA	113700	0.29159832144003717	Illumina Single End Adapter 1 (100% over 33bp)

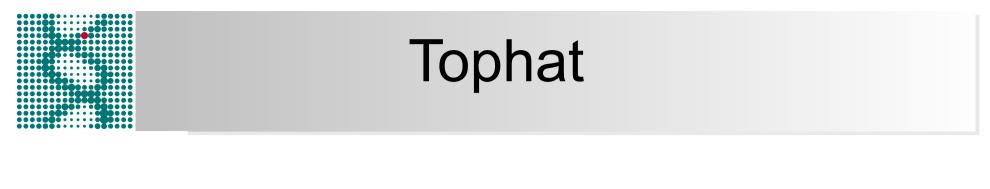




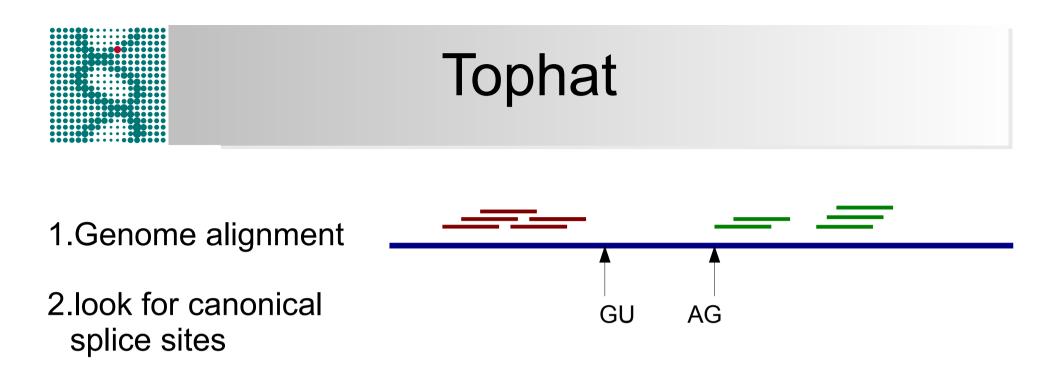
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

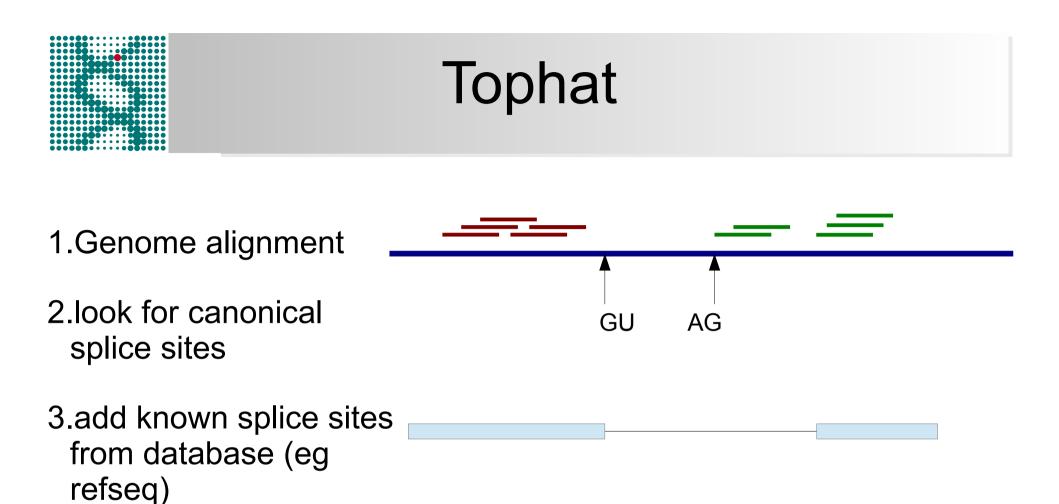


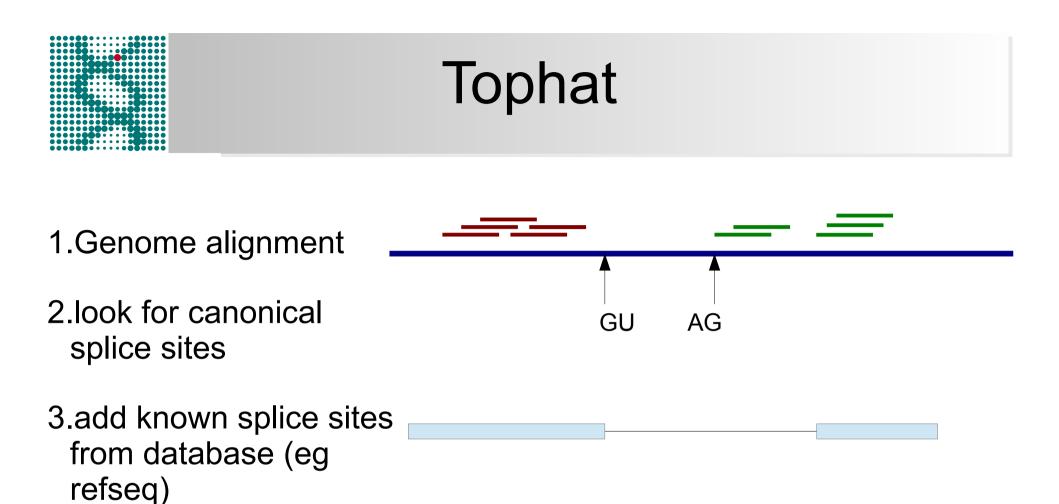


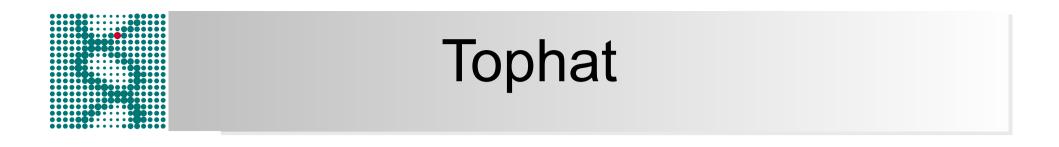


1.Genome alignment

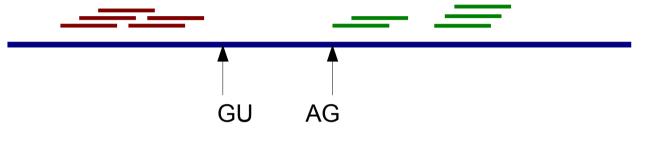




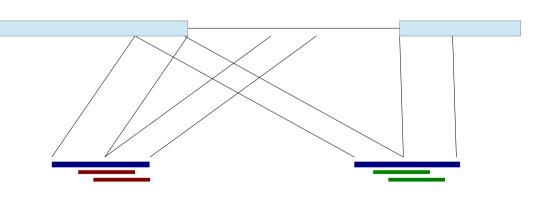




- 1.Genome alignment
- 2.look for canonical splice sites

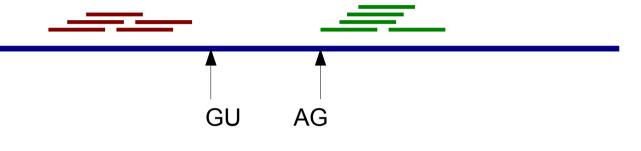


- 3.add known splice sites from database (eg refseq)
- 4.assemble sequences at splice sites and map reads

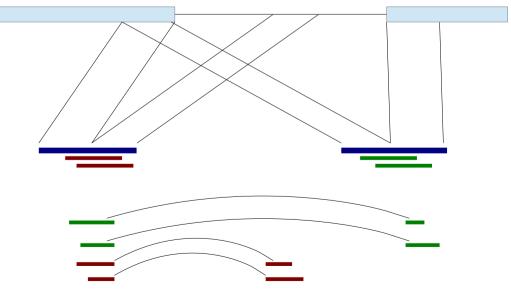




- 1.Genome alignment
- 2.look for canonical splice sites



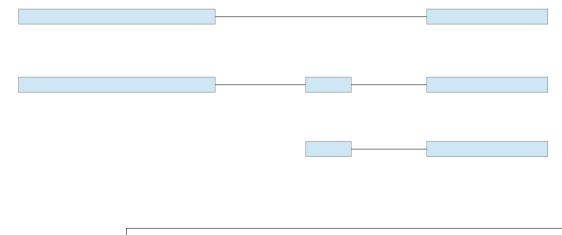
- 3.add known splice sites from database (eg refseq)
- 4.assemble sequences at splice sites and map reads



5.Map reads to genome

Quantification

- Gene / Isoform / Exon Level
- Reads on boundaries / intronic reads
 - htseq-count strategies
- ambiguous reads



S Anders *et al.*(2014): HTSeq — A Python framework to work with high-throughput sequencing data. Bioinformatics

Quantification

Ambiguous reads:

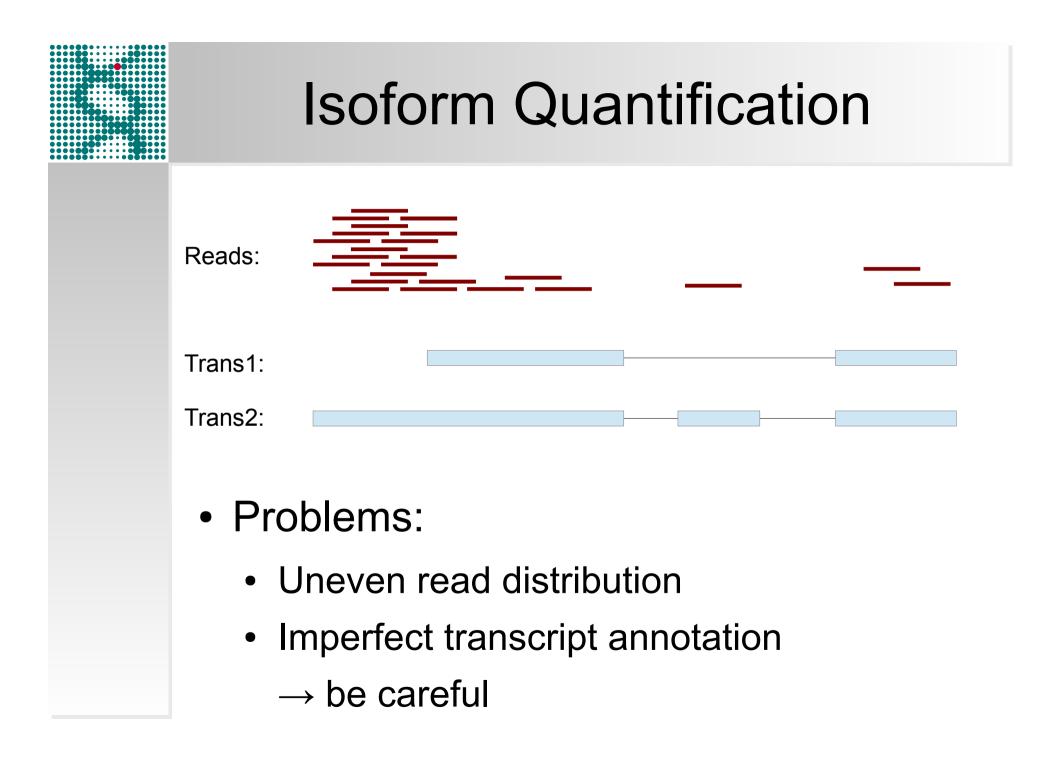
- ~ 20% gene-level
- ~ 30-90% on isoform level

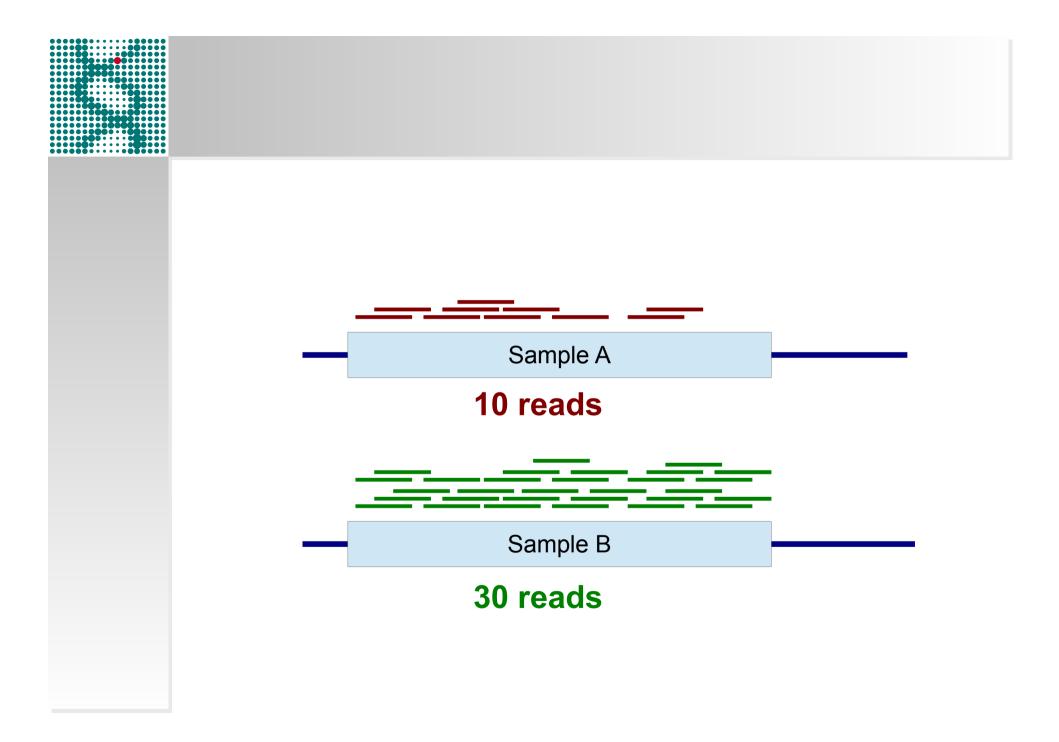
RSEM multiread assignment EM algorithm:

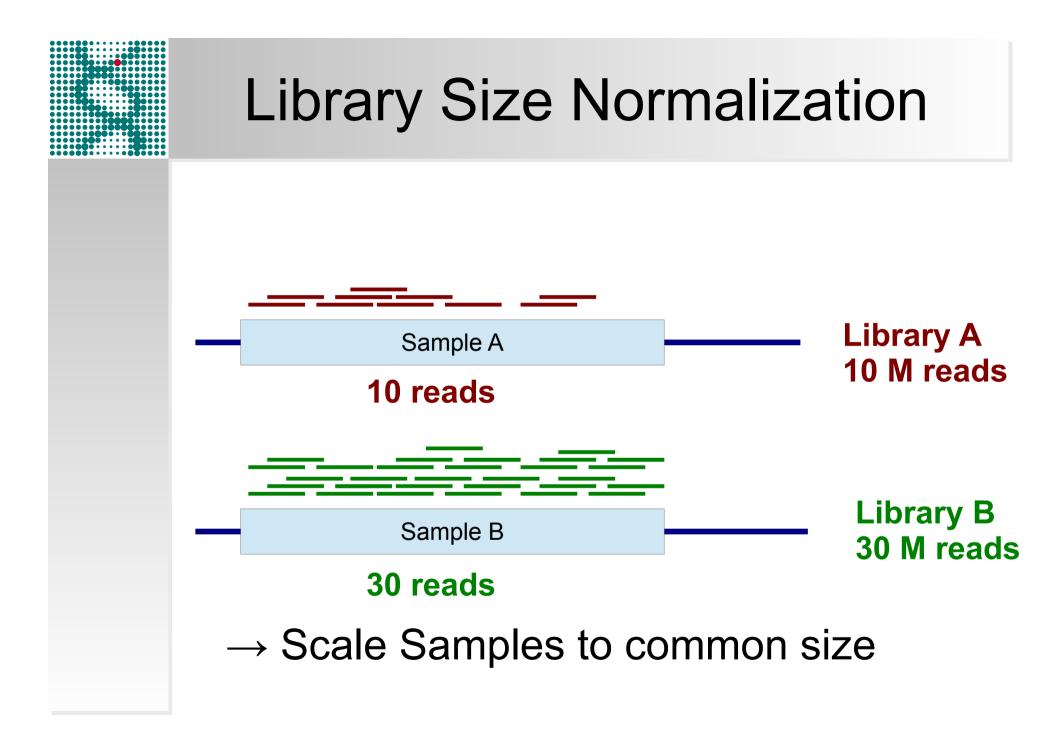
E-Step: Estimation of transcript abundance

M-Step: Reallocation of ambiguous reads

B Li et al, (2011): RSEM: accurate transcript quantification from RNA-Seq data. BMC Bioinformatics

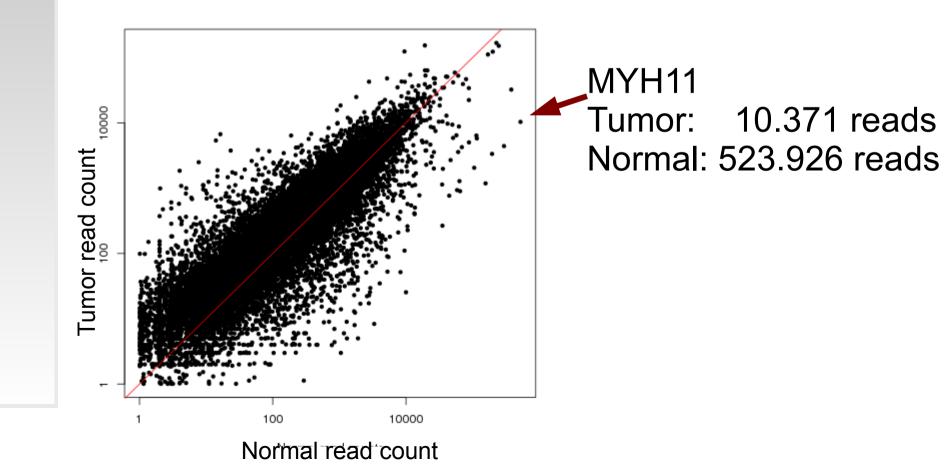






Scaling Library Size Normalization

- Divide by total number
 - Highly expressed genes predominate factor



Scaling Library Size Normalization

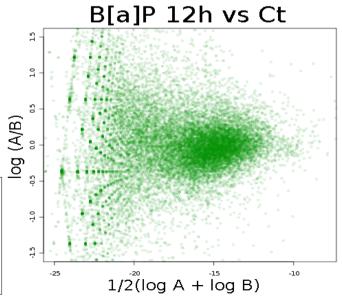
- Divide by total number
 - Highly expressed genes predominate factor
- Upper Quantile Normalization (DESeq)
 - Median is perturbed by 1 and 2 read genes (noise)
 - 75% quartile usually works

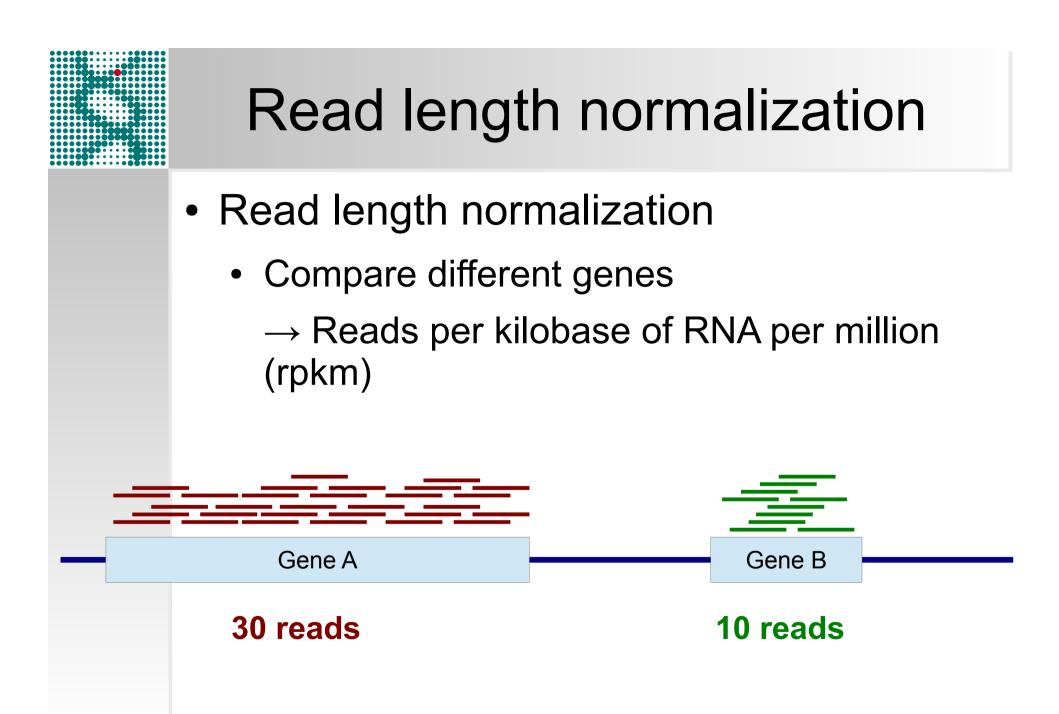
JH Bullard (2010): Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments. BMC Bioinformatics

Scaling Library Size Normalization

- Divide by total number
 - Highly expressed genes predominate factor
- Upper Quantile Normalization (DESeq)
 - Median is perturbed by 1 and 2 read genes
 - 75% quartile usually works
- TMM: trimmed mean of M Values (edgeR)
 - Idea: center the "main dot cloud" in M vs A plot

MD Robinson et al.(2010):A scaling normalization method for differential expression analysis of RNA-seq data; Genome Biology





Exploratory Analysis

First Check of Quality and Hypotheses:

- How related are the samples?
- Are there distinct groups?
- Are the samples assigned correctly?
- Do we have contamination?
- Do technical differences have effects?
- Do other factors (sex, age, ...) have major influence?

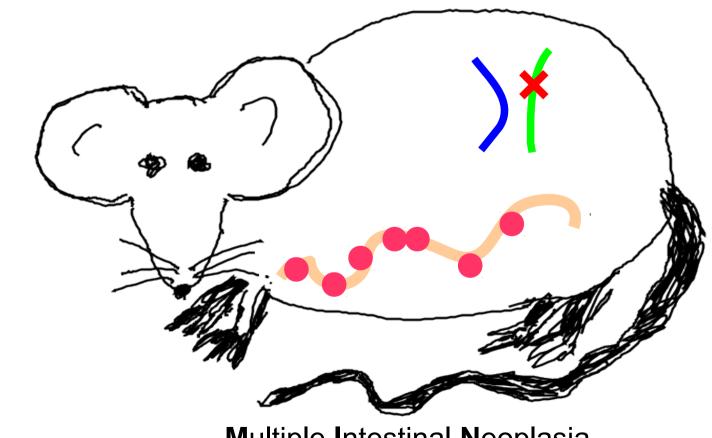
Hierarchical Clustering

Two choices:

- Clustering function
 - Single, complete, avg (UPGMA), Ward, centroid ...
- Distance function
 - Euclidean
 - Correlation based: d(x,y)=1-cor(x,y)

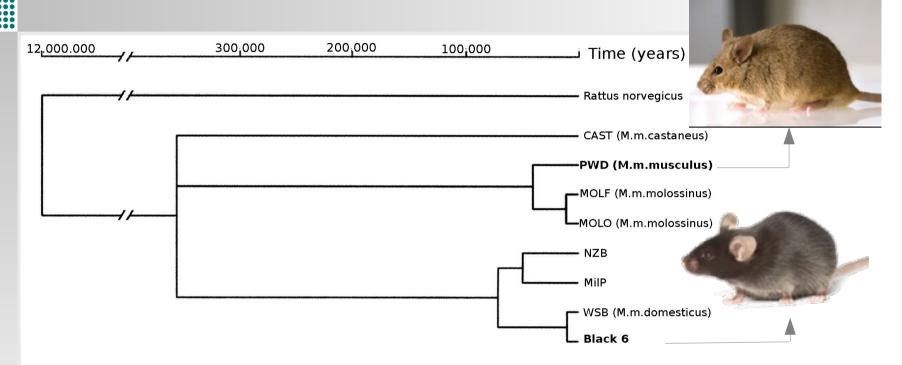
Example: Colon Cancer Mouse Model

APC ^{min/+} Mouse



Multiple Intestinal Neoplasia

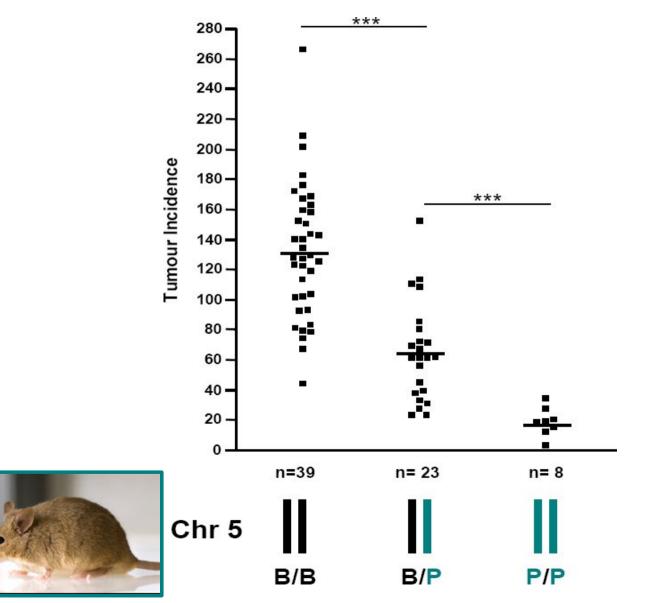
Genetic variation

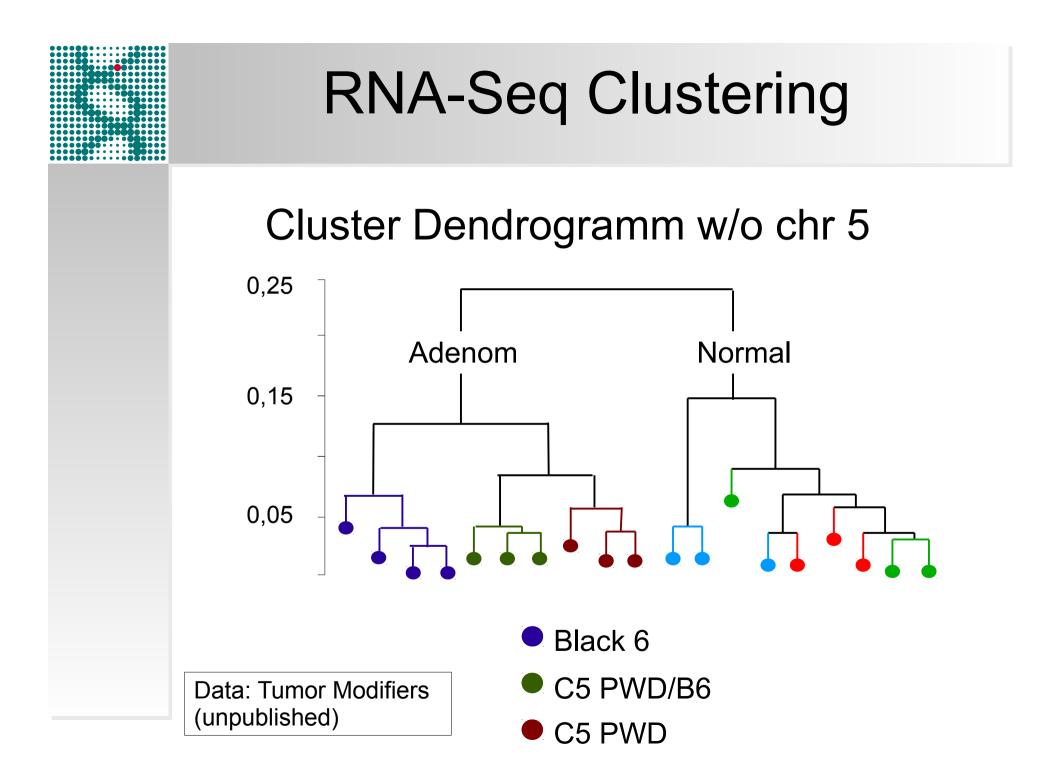


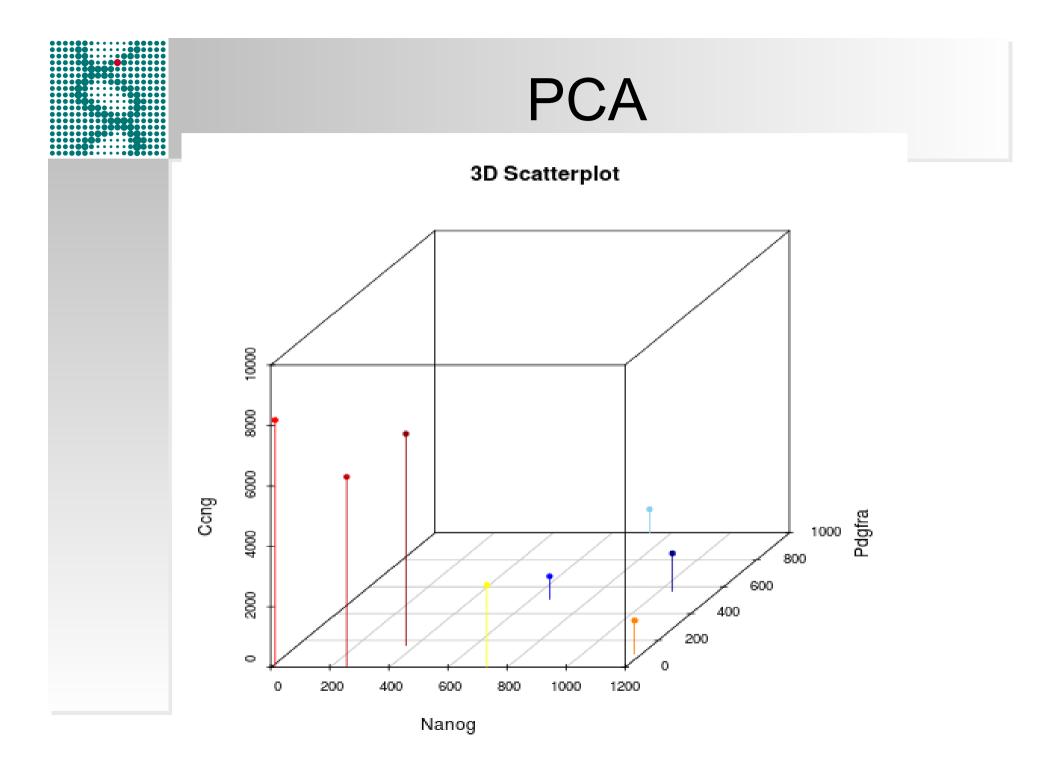
- Genetically divergent
- High degree of sequence polymorphisms

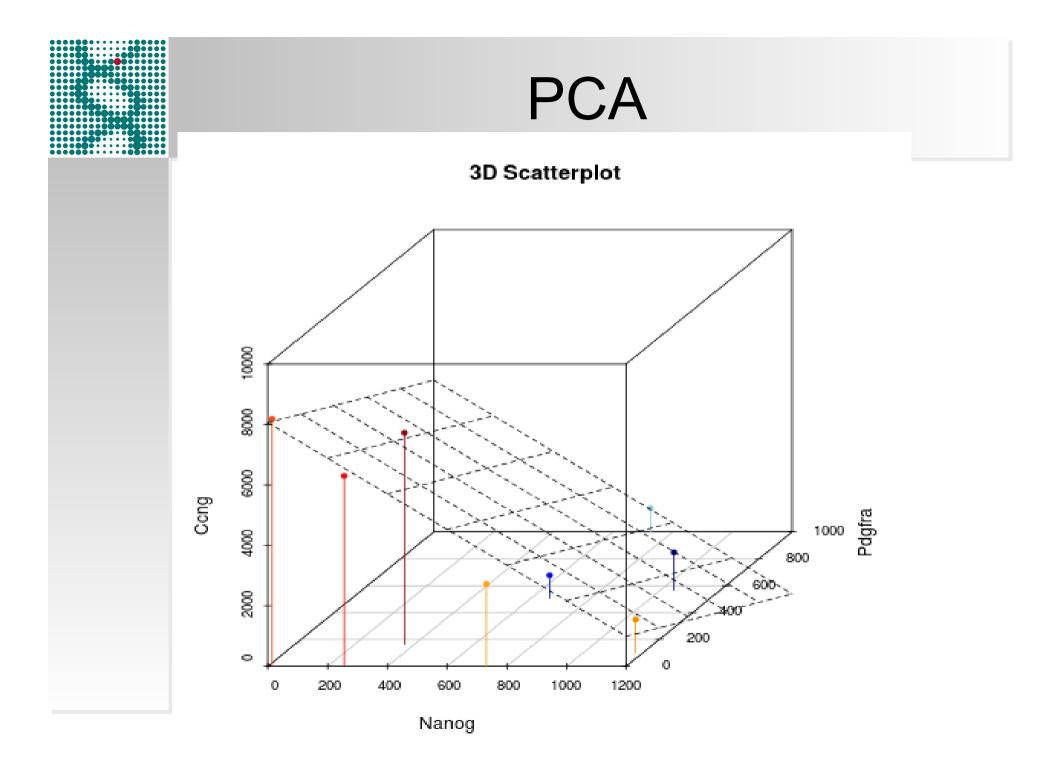
Goios *et al* (2007): mtDNA phylogeny and evolution of laboratory mouse strains, Genome Res.

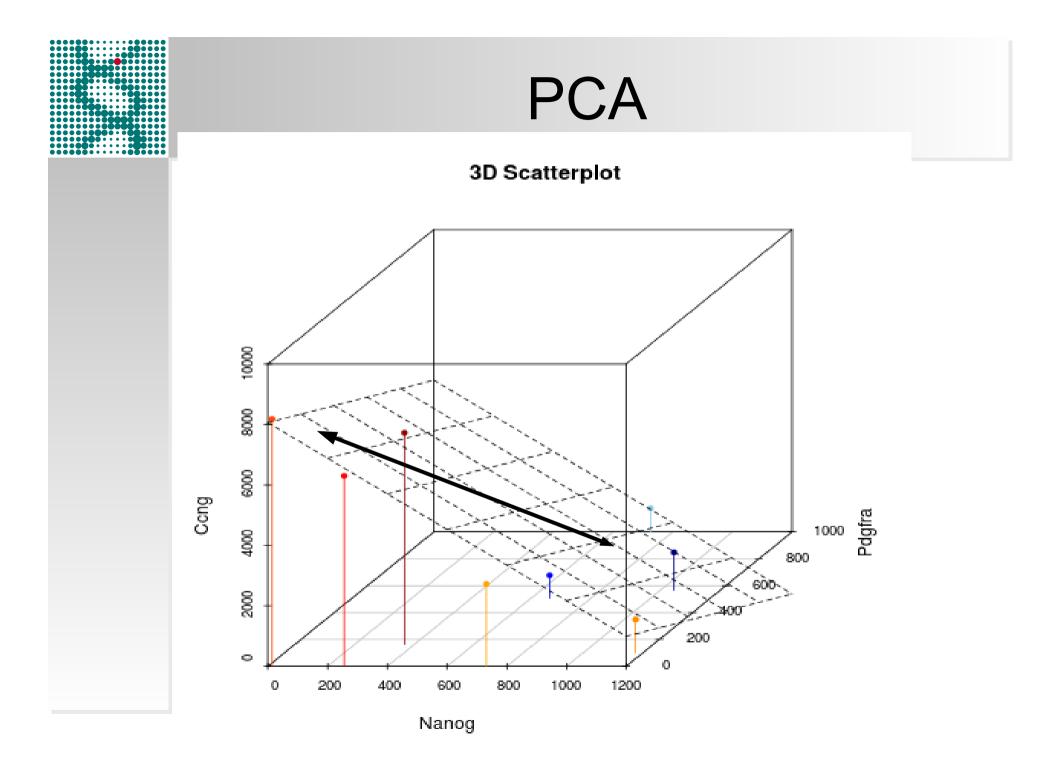
Genetic Background Matters Chromosome Substitution Stains:



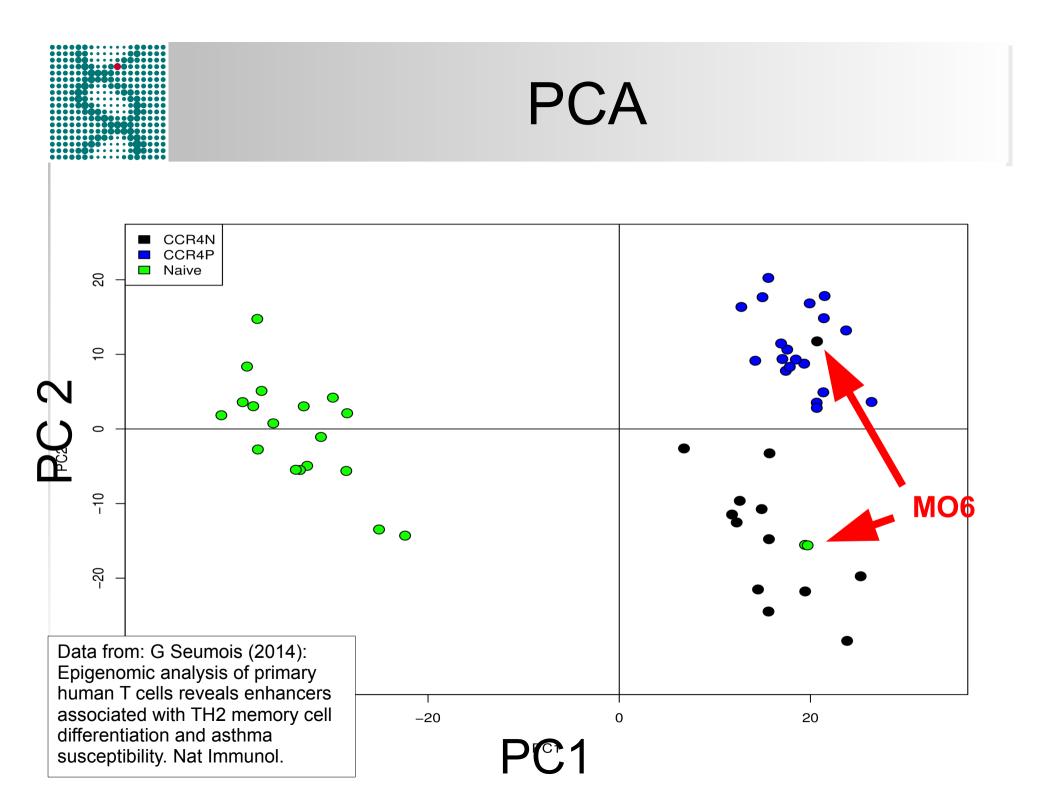




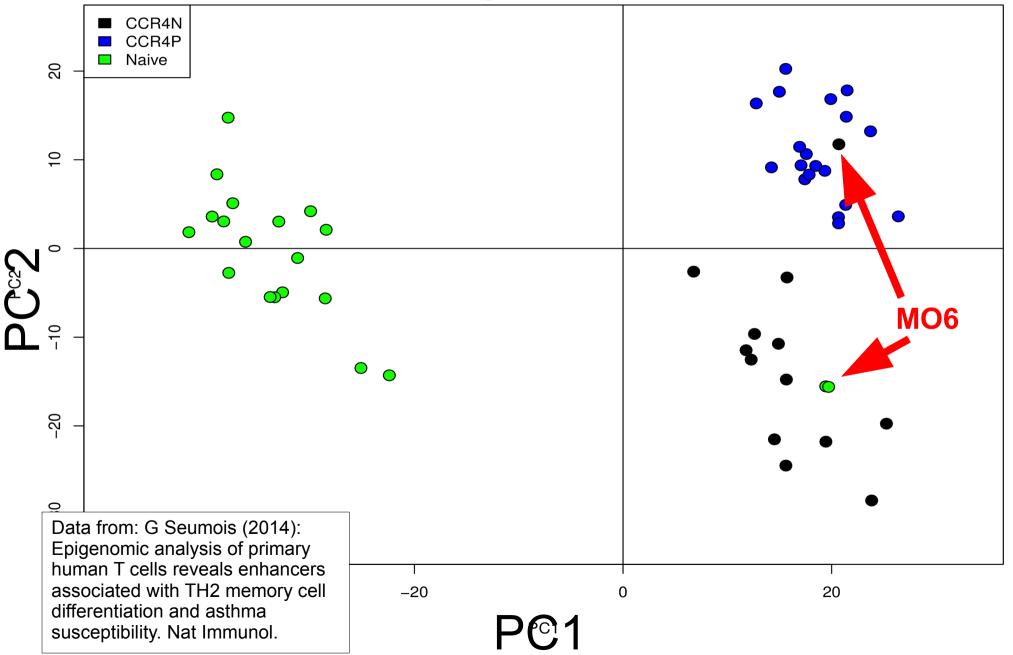




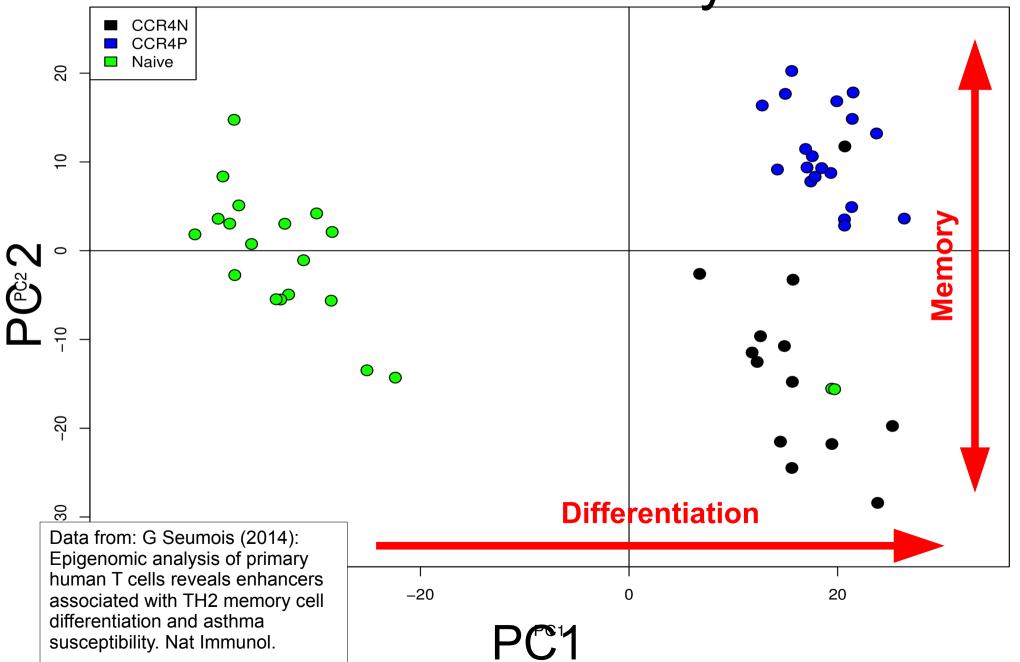




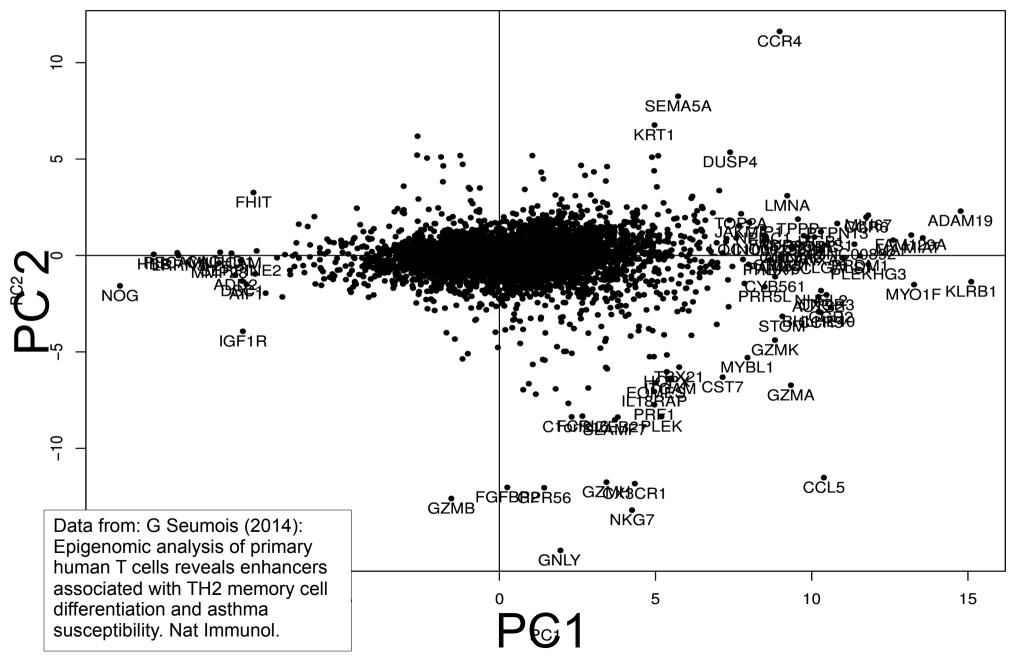
PCA – sample verification



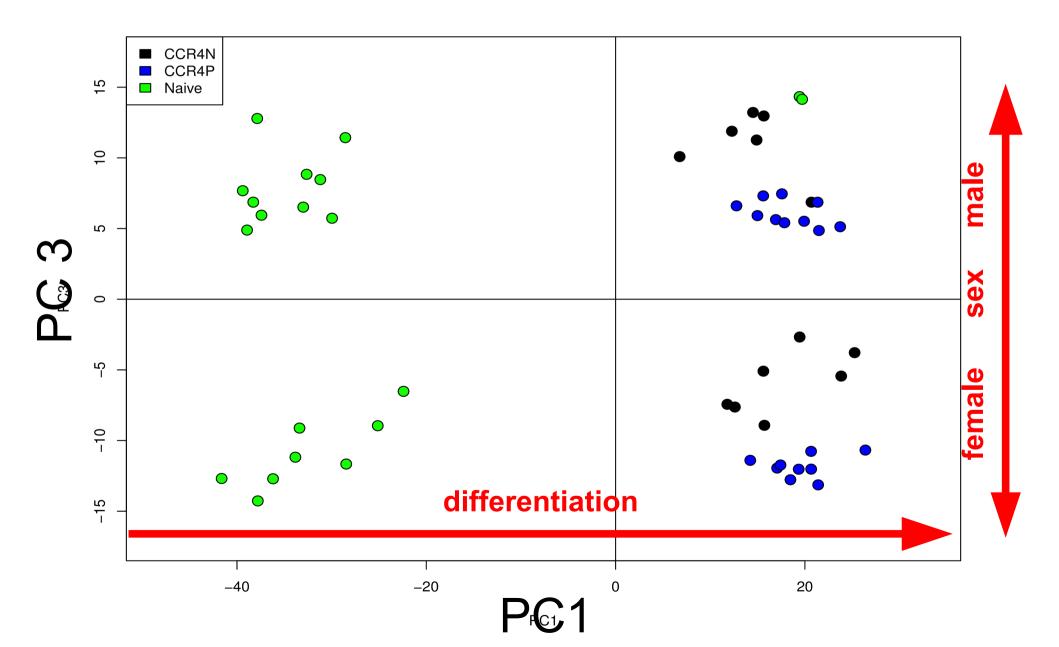
PCA – factor analysis

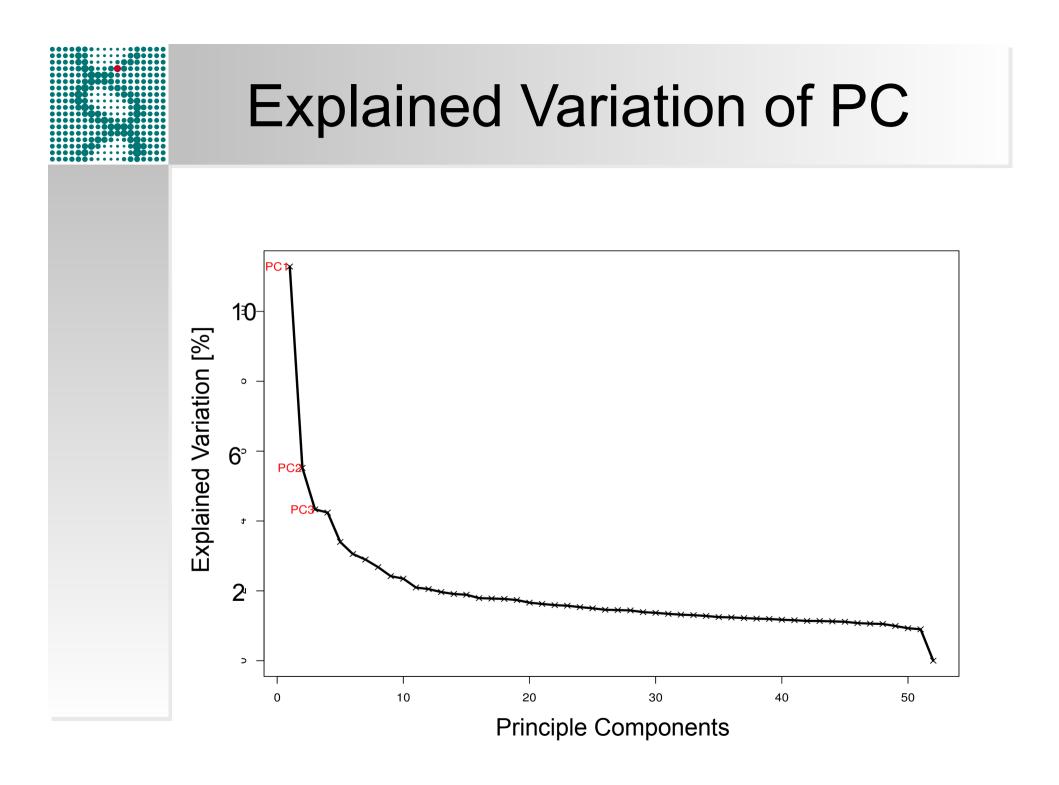


Genes Contributing to PCs

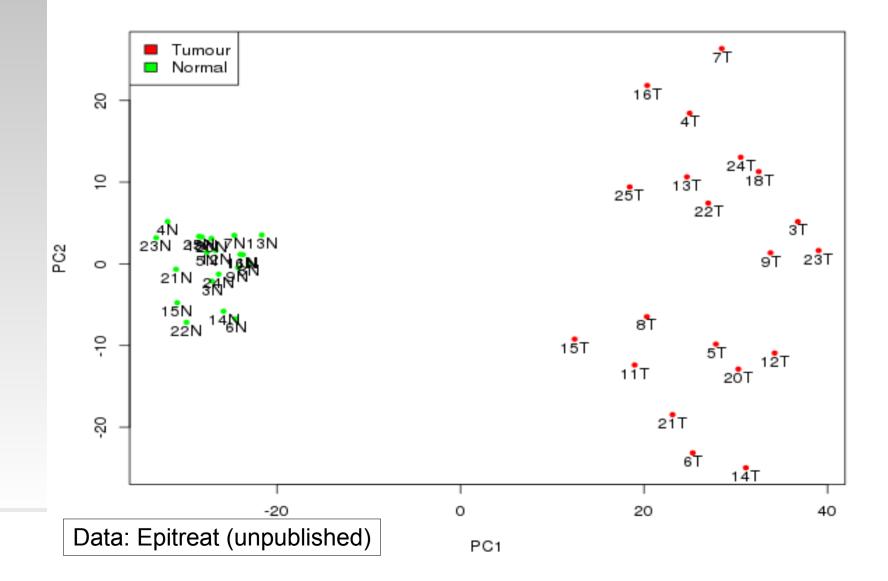


Further Components





Principle Component Analysis Tumour Example

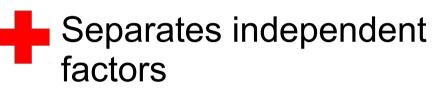


Summary: PCA / Clustering

Clustering:

- flexible (distance and clustering functions)
- Can display nested properties
 - "Binary" decisions
 - "One dimenisonal"

PCA:



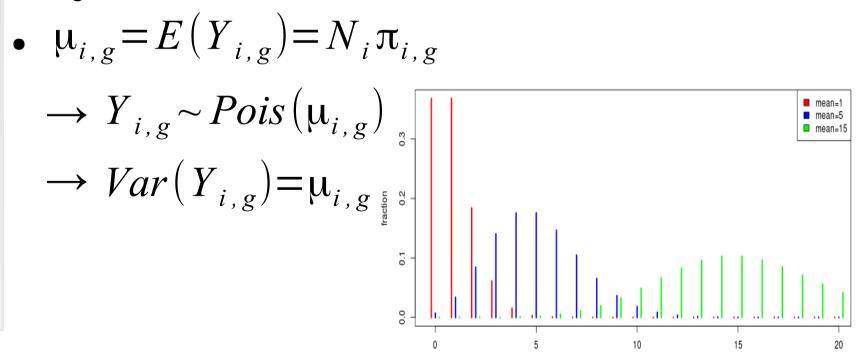
- PC interpretable as factors
- Needs sufficient samples
- Problems with nonlinear dependencies

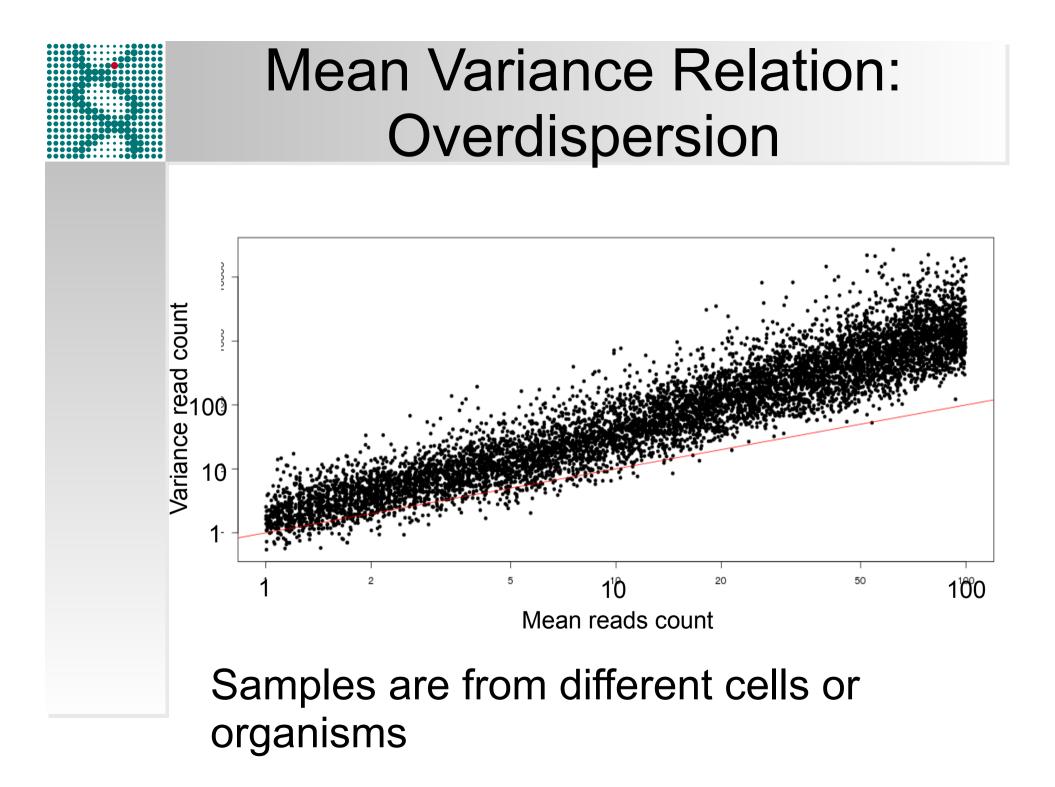
Differential Gene Expression

- p-value: probability that H0 is true: gene is expressed in A and B at the same level
 - assuming negative binomial distribution and estimated dispersion
 - If p is "very low" \rightarrow H0 is "very unlikely"
- Test each gene
 - Multiple testing problem
 - FDR

Poisson Model

- N: total number of reads from sample i
- $\pi_{i,g}$: fraction of fragments from gene g in i
- y_{ig} : number of reads from g in i





Poisson Mixture Model

$$Y_{i,g} \sim Pois(\mu_{i,g} * \theta)$$

 $\boldsymbol{\theta}$: Random variable with

$$-E(\theta) = 1$$

$$-Var(\theta) = \Phi$$

$$Var(Y_{i,g}) = ? \quad \text{(backbord)}$$

$$\rightarrow CV^{2}(Y_{i,g}) = CV_{technical}^{2} + CV_{biological}^{2}$$

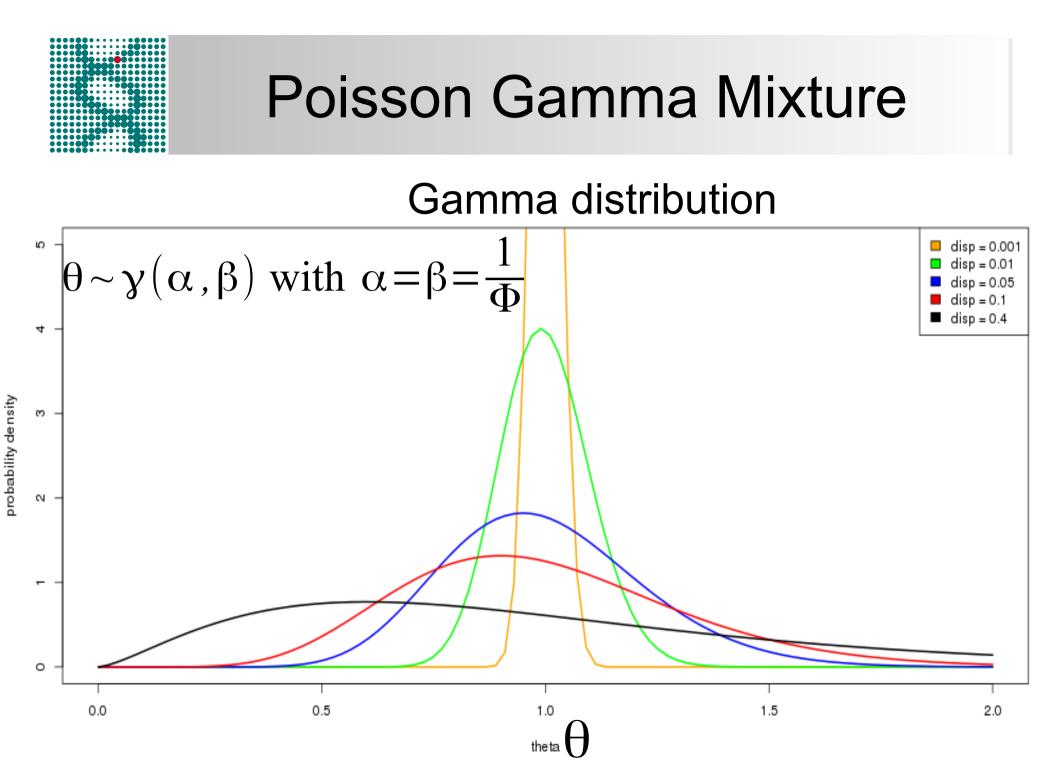
Poisson Gamma Mixture

$$Y_{i,g} \sim Pois(\mu_{i,g} * \theta)$$

$$\theta \sim \gamma(\alpha, \beta) \text{ with } \alpha = \beta = \frac{1}{\Phi}$$

$$E(\theta) = \frac{\alpha}{\beta} = 1$$

$$Var(\theta) = \frac{\alpha}{\beta^2} = \Phi$$



Poisson Gamma Mixture

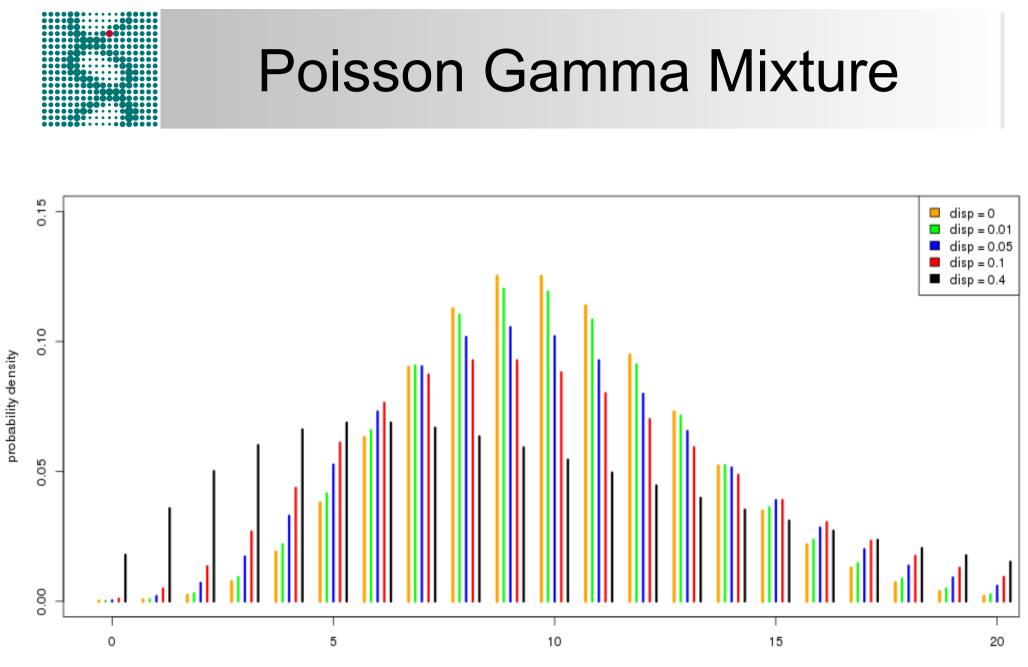
$$Y_{i,g} \sim Pois(\mu_{i,g} * \theta)$$

$$\theta \sim \gamma(\alpha, \beta) \text{ with } \alpha = \beta = \frac{1}{\Phi}$$

$$E(\theta) = \frac{\alpha}{\beta} = 1$$

$$Var(\theta) = \frac{\alpha}{\beta^2} = \Phi$$

$$Y_{i,g} \sim NB(k, r) \text{ with } k = \frac{1}{\Phi} \text{ and } r = \frac{1}{\mu * \Phi + 1}$$



number of reads

Estimating Dispersion

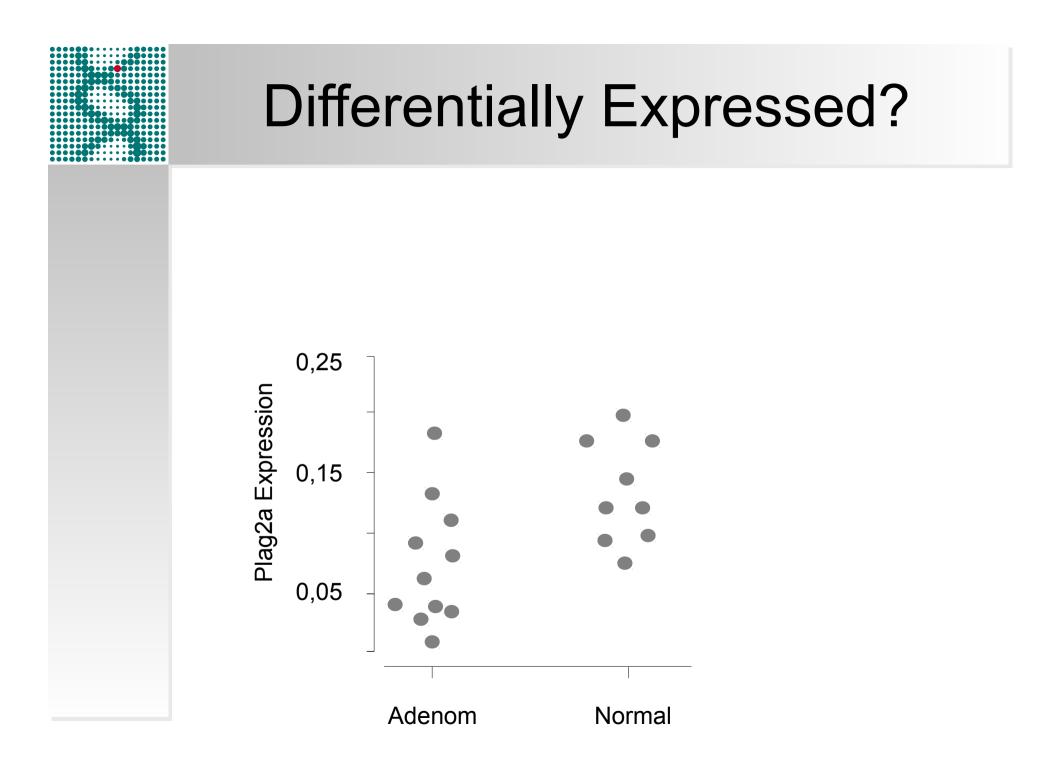
- edgeR: quantile adjusted conditional maximum likelihood estimate
- Problem: Few samples
 - Share information over genes
 - \rightarrow Common dispersion for all genes
 - \rightarrow Trended dispersion (expression level)
 - \rightarrow dispersion squeezed towards trend
 - \rightarrow dispersion cut by trend

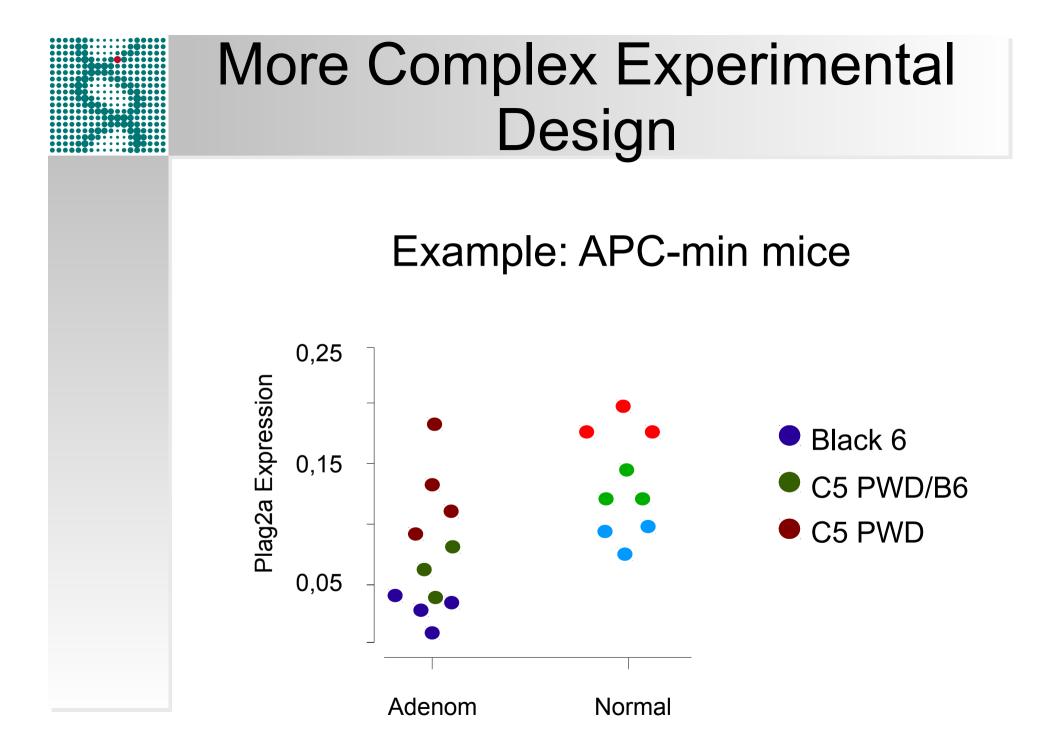
MD Robinson (2008): Smallsample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics

Testing Differential Expression

- H0: Reads for gene g are drawn from the same distribution for groups a and b
- $y_{T'}$, $y_{a'}$, $y_{b'}$: # reads form gene in total, a and b
- N_{τ} , $N_{a'}$, N_{b} : total # reads in all, a and b
- $\mu_{0,a}, \mu_{0,b}: E(Y|H_{0,N_x}) = \frac{y_T}{N_T} * N_x$ $pvalue = \sum_{i=0}^{y_T} pr(i|\mu_{0,a}, \Phi) * pr(y_T - i|\mu_{0,b}, \Phi) * I$

$$I \begin{cases} 1 \text{ if } pr_0(y_a) * pr_0(y_b) \ge pr_0(i) * pr_0(y_T - i) \\ 0 \text{ else} \end{cases}$$





GLM

$$\log\left(\frac{\mu_{g,i}}{N_i}\right) = \beta_{0,g} + \beta_{1,g} * x_{1,i} + \dots + \beta_{n,g} * x_{n,i}$$
$$\log\left(\mu_{g,i}\right) = x_i^T \beta_g + \log\left(N_i\right) \longleftarrow$$
$$x_i: \text{ Vector of covariats from model matrix}$$

 β_g : Vector of regression coefficients

model matrix:

Sample	B6_ad1	B6_ad2	B6_no1	C5F1_ad1	C5F1_no1	C5_ad1	C5_no1
Intercept	1	1	1	1	1	1	1
Adenom	1	1	0	1	0	1	0
Chr5 PWD	0	0	0	1	1	2	2

GLM

$$\log(\mu_{g,i}) = x_i^T \beta_g + \log(N_i)$$

- Find estimates for beta for reduced (null) and full model
- Estimate dispersion under GLM
- Test for DE: likelihood ratio test

 $\frac{L(M_0)}{L(M_1)} \sim \chi^2$

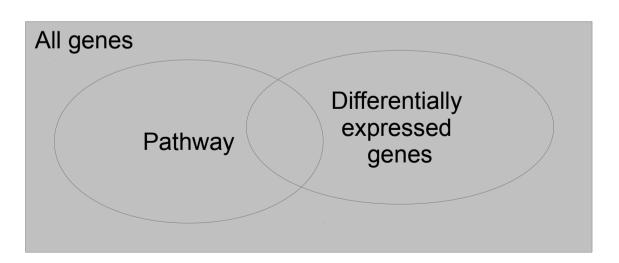
JD McCarthy et al.(2012): "Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation." Nucleic Acids Research

Summary: Tests for Differentially Expressed Genes

- Group A vs group B: exact NB test
- Multi factor test: GLM
 - \rightarrow List of differentially expressed genes

Interpretation of DE Genes

- Overrepresentation analysis
 - Web tools: CPDB, DAVID, ...
 - Integrate GO, Pathway databases, interaction databases, ...
 - Hypergeometric test: is overlap significant?



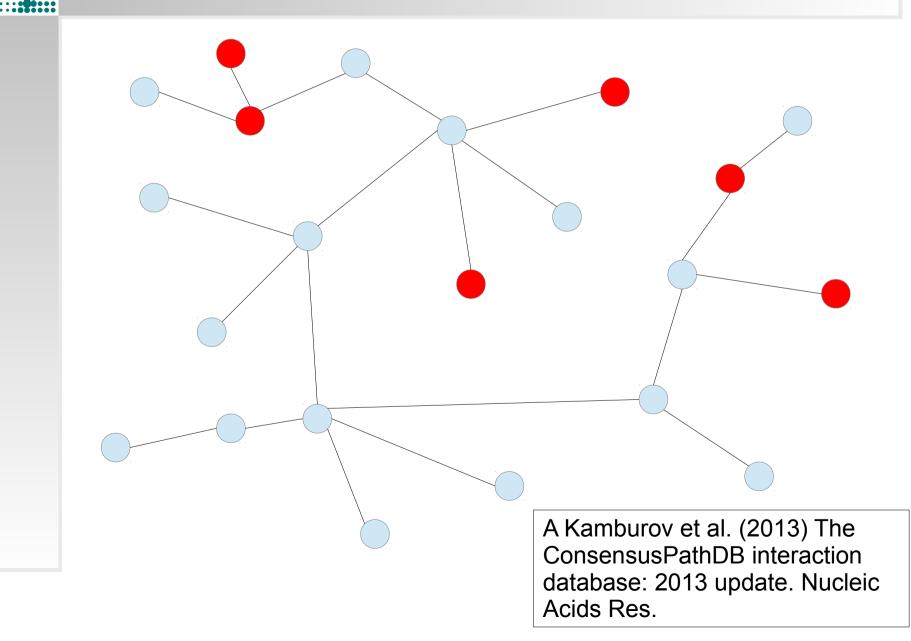
Pathway Analysis

CPDB Over-representation Analysis

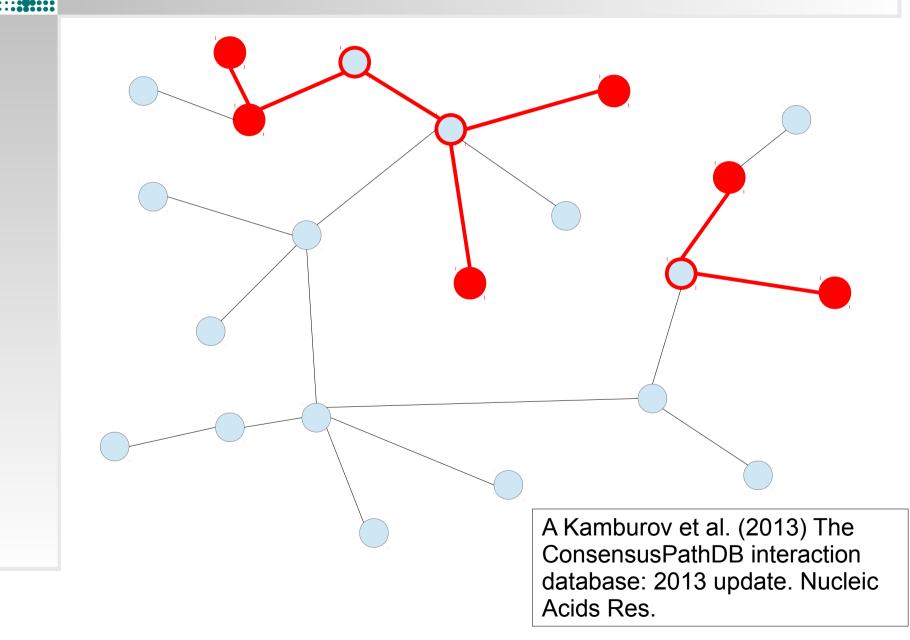
ay source
irta
ome
athways
athways
2

Kamburov, A. et al. (2009) ConsensusPathDB-a database for integrating human interaction networks. Nucleic Acids Res.37:D623-628.

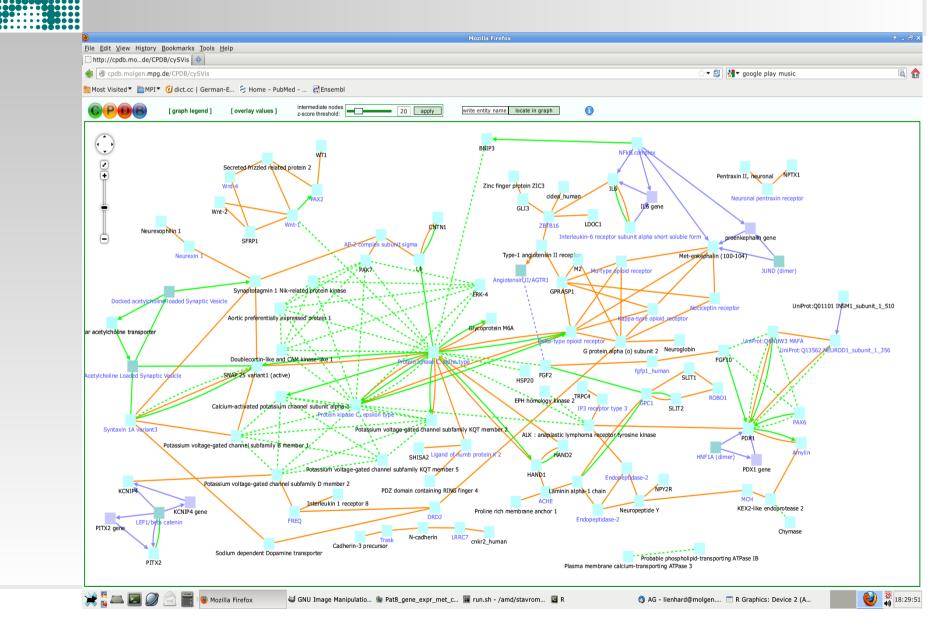
CPDB: Induced networks



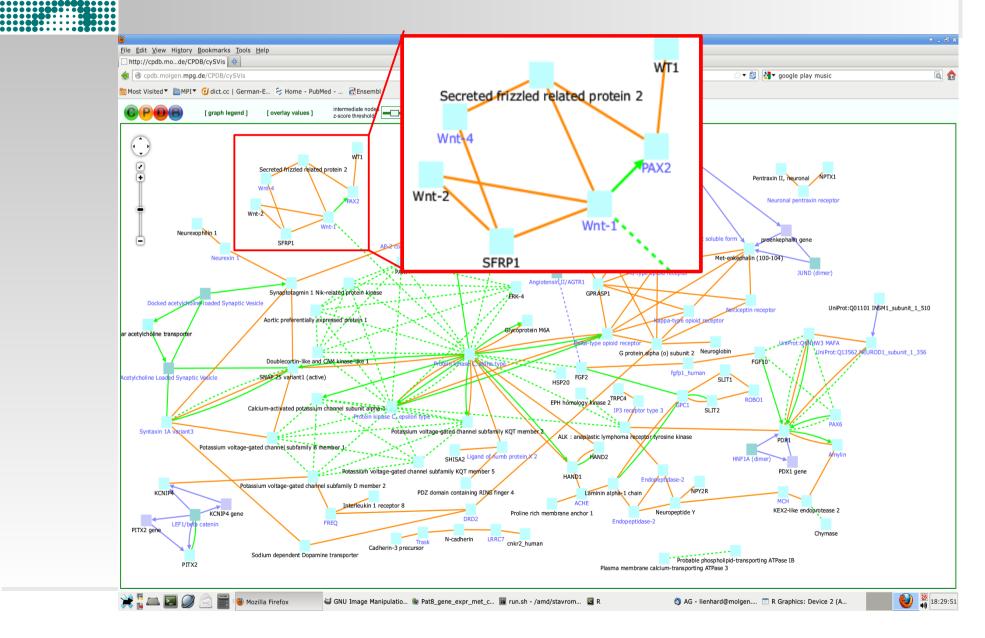
CPDB: Induced networks



Induced Network



Induced Network



Summary

- Quality Control: Do data look OK?
- Mapping: Handle reads across exon boundaries
- Quantification: Gene/isoform/exon level
- Exploratory analysis: Relation of Samples?
- Differential Expression: A vs B or GLM?
- Over representation and network analysis: Make sense out of gene lists.