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RNA-Seq Pipeline

BaP 12h Ct 12h ...

GENE 1 321 422 12

GENE 2 32 50 20

GENE 3 132466 72921 43223

Short Reads

Alignment

Count Table

Differential Expression

Mapping

Quantification

Statistical Test

Interpretation
M. Lienhard (2011), “Analysis of 
RNA-seq Experiments” Master 
thesis, Freie Universität Berlin.

Exploratory Analysis



    

Quality Control

● Base Call Quality
● PCA artifacts
● Base composition
● Positional base frequency
● Adapter contamination

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/



    

Quality Control
RNA seq has strange base-position patterns

KD Hansen et al. (2010): Biases in Illumina transcriptome 
sequencing caused by random hexamer priming, NAR



    

Read Mapping



    

Tophat

1.Genome alignment

Trapnell, C et al. (2009), TopHat: discovering splice junctions with RNA-Seq; Bioinformatics
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Tophat
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Tophat

1.Genome alignment

2.look for canonical 
splice sites

3.add known splice sites 
from database (eg 
refseq)

4.assemble sequences 
at splice sites and map 
reads

5.Map reads to genome

GU        AG

Trapnell, C et al. (2009), TopHat: discovering splice junctions with RNA-Seq; Bioinformatics



    

Quantification

● Gene / Isoform / Exon Level
● Reads on boundaries / intronic reads 

● htseq-count strategies

● ambiguous reads

S Anders et al.(2014): HTSeq — A Python framework to 
work with high-throughput sequencing data. Bioinformatics



    

Quantification

Ambiguous reads:

~ 20% gene-level

~ 30-90% on isoform level
RSEM multiread assignment EM algorithm:

E-Step: 
Estimation of 

transcript 
abundance

M-Step:
 Reallocation of 
ambiguous reads

B Li et al, (2011): RSEM: accurate 
transcript quantification from RNA-
Seq data. BMC Bioinformatics



    

Isoform Quantification

● Problems: 
● Uneven read distribution
● Imperfect transcript annotation

→ be careful 

Reads:

Trans1:

Trans2:



    

Sample A

10 reads

Sample B

30 reads



    

Library Size Normalization

→ Scale Samples to common size

Sample A

10 reads

Sample B

30 reads

Library A
10 M reads

Library B
30 M reads



    

Scaling Library Size 
Normalization

● Divide by total number
– Highly expressed genes predominate factor

T
um

or
 r

ea
d 

co
un

t

Normal read count

MYH11
Tumor:    10.371 reads
Normal: 523.926 reads



    

Scaling Library Size 
Normalization

● Divide by total number
– Highly expressed genes predominate factor

● Upper Quantile Normalization (DESeq)
– Median is perturbed by 1 and 2 read genes 

(noise)
– 75% quartile usually works

JH Bullard (2010): Evaluation of 
statistical methods for normalization 
and differential expression in 
mRNA-seq experiments. BMC 
Bioinformatics



    

Scaling Library Size 
Normalization

● Divide by total number
– Highly expressed genes predominate factor

● Upper Quantile Normalization (DESeq)
– Median is perturbed by 1 and 2 read genes
– 75% quartile usually works

● TMM: trimmed mean of M Values (edgeR)
– Idea: center the “main 

dot cloud” in M vs A 
plot

MD Robinson et al.(2010):A scaling 
normalization method for differential 
expression analysis of RNA-seq data; 
Genome Biology



    

Read length normalization

● Read length normalization
● Compare different genes

→ Reads per kilobase of RNA per million 
(rpkm)

Gene A Gene B

30 reads 10 reads



    

Exploratory Analysis 

First Check of Quality and Hypotheses:
● How related are the samples?
● Are there distinct groups?
● Are the samples assigned correctly?
● Do we have contamination?
● Do technical differences have effects?
● Do other factors (sex, age, ...) have major 

influence?



    

Hierarchical Clustering

Two choices:
● Clustering function

– Single, complete, avg (UPGMA), Ward, 
centroid ...

● Distance function
– Euclidean
– Correlation based: d(x,y)=1-cor(x,y)



    

 Example: Colon Cancer Mouse 
Model 

APC min/+ Mouse

Multiple Intestinal Neoplasia



    

Genetic variation

● Genetically divergent
● High degree of sequence polymorphisms

Goios et al (2007): mtDNA phylogeny and evolution of 
laboratory mouse strains, Genome Res. 



    

Genetic Background Matters
Chromosome Substitution Stains:



    

RNA-Seq Clustering

0,15

0,25

0,05

Cluster Dendrogramm w/o chr 5

Black 6

C5 PWD/B6

C5 PWD

Adenom Normal

Data: Tumor Modifiers 
(unpublished)



    

PCA



    

PCA



    

PCA



    

PCA

PC1

P
C

 2

Data from: G Seumois (2014): 
Epigenomic analysis of primary 
human T cells reveals enhancers 
associated with TH2 memory cell 
differentiation and asthma 
susceptibility. Nat Immunol.



    

PCA

MO6

PC1

P
C

 2

Data from: G Seumois (2014): 
Epigenomic analysis of primary 
human T cells reveals enhancers 
associated with TH2 memory cell 
differentiation and asthma 
susceptibility. Nat Immunol.



  

PCA – sample verification

MO6

PC1

P
C

 2

Data from: G Seumois (2014): 
Epigenomic analysis of primary 
human T cells reveals enhancers 
associated with TH2 memory cell 
differentiation and asthma 
susceptibility. Nat Immunol.



  

PCA – factor analysis

Differentiation

M
em

o
ry

PC1

P
C

 2

Data from: G Seumois (2014): 
Epigenomic analysis of primary 
human T cells reveals enhancers 
associated with TH2 memory cell 
differentiation and asthma 
susceptibility. Nat Immunol.



  

Genes Contributing to PCs

PC1

P
C

 2

Data from: G Seumois (2014): 
Epigenomic analysis of primary 
human T cells reveals enhancers 
associated with TH2 memory cell 
differentiation and asthma 
susceptibility. Nat Immunol.



  

Further Components

differentiation
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Explained Variation of PC 

Principle Components

E
xp

la
in

ed
 V

ar
ia

tio
n 

[%
] 10

6

2



    

Principle Component Analysis
Tumour Example

Data: Epitreat (unpublished)



  

Summary: PCA / Clustering

Clustering:

flexible (distance and 
clustering functions)

Can display nested 
properties

“Binary” decisions

“One dimenisonal”

PCA:

Separates independent 
factors

PC interpretable as 
factors

Needs sufficient  
samples

Problems with nonlinear 
dependencies



    

Differential Gene Expression

● p-value: probability that H0 is true: gene 
is expressed in A and B at the same level
● assuming negative binomial distribution and 

estimated dispersion
● If p is “very low” → H0 is “very unlikely”

● Test each gene
● Multiple testing problem
● FDR



    

Poisson Model

● N
i
: total number of reads from sample i

●       : fraction of fragments from gene g in i

● y
ig
: number of reads from g in i

●

→

→ 

Y i , g ~ Pois (μi , g)

μi , g=E (Y i , g)=N i πi , g

πi , g

Var (Y i , g)=μi , g



    

Mean Variance Relation:
Overdispersion

Samples are from different cells or 
organisms

Mean reads count

V
ar

ia
nc

e 
re

ad
 c

ou
nt

100

100

10

101

1



    

Poisson Mixture Model

   : Random variable with 
–

–

                    (backbord)

→ 

Y i , g ~ Pois (μi , g∗θ)

θ

E (θ)=1

Var (θ)=Φ

Var (Y i , g)=?

CV 2(Y i , g)=CV technical
2 +CV biological

2



    

Poisson Gamma Mixture

 Y i , g ~ Pois (μi , g∗θ)

θ ~ γ(α ,β) with α=β=
1
Φ

E (θ)=α
β

=1

Var (θ)= α
β

2 =Φ



    

Poisson Gamma Mixture

θ

Gamma distribution

θ ~ γ(α ,β) with α=β=
1
Φ



    

Poisson Gamma Mixture

 Y i , g ~ Pois (μi , g∗θ)

θ ~ γ(α ,β) with α=β=
1
Φ

E (θ)=α
β

=1

Var (θ)= α
β

2 =Φ

Y i , g ~ NB(k , r) with k=
1
Φ  and r=

1
μ∗Φ+1



    

Poisson Gamma Mixture



    

Estimating Dispersion

● edgeR: quantile adjusted conditional 
maximum likelihood estimate 

● Problem: Few samples
● Share information over genes

→ Common dispersion for all genes

→ Trended dispersion (expression level)

→ dispersion squeezed  towards trend

→ dispersion cut by trend
MD Robinson (2008): Small-
sample estimation of negative 
binomial dispersion, with 
applications to SAGE data. 
Biostatistics



    

Testing Differential Expression
● H0: Reads for gene g are drawn from the same 

distribution for groups a and b

● y
T
, y

a
, y

b
: # reads form gene in total, a and b

● N
T
, N

a
, N

b
: total # reads in all, a and b

●

pvalue=∑i=0

yT
pr (i |μ0, a ,Φ)∗pr ( yT−i |μ0, b ,Φ)∗I

I
1 if  

0 else

pr 0( ya)∗pr 0( yb)≥ pr0(i)∗pr 0( yT−i)

μ0,a ,μ0,b : E (Y |H 0, N x)=
yT
N T

∗N x



    

Differentially Expressed?

0,15

0,25

0,05
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Adenom Normal



    

More Complex Experimental 
Design

Example: APC-min mice

0,15

0,25

0,05

Black 6

C5 PWD/B6

C5 PWD

P
la

g2
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Adenom Normal



    

GLM

log(
μg , i

N i

)=β0, g+β1,g∗x1, i+ ...+βn , g∗xn , i

log (μg , i)=xi
Tβg+log (N i)

x i :  Vector of covariats from model matrix

βg :  Vector of regression coefficients

Sample B6_ad1 B6_ad2 B6_no1 C5F1_ad1 C5F1_no1 C5_ad1 C5_no1

Intercept 1 1 1 1 1 1 1

Adenom 1 1 0 1 0 1 0

Chr5 PWD 0 0 0 1 1 2 2

model matrix:



    

GLM

● Find estimates for beta for reduced (null) 
and full model

● Estimate dispersion under GLM
● Test for DE: likelihood ratio test

log (μg , i)=xi
Tβg+log (N i)

L(M 0)

L(M 1)
~ χ

2
JD McCarthy et al.(2012): 
“Differential expression analysis 
of multifactor RNA-Seq 
experiments with respect to 
biological variation.” Nucleic 
Acids Research



    

Summary: Tests for 
Differentially Expressed Genes
● Group A vs group B: exact NB test
● Multi factor test: GLM

→ List of differentially expressed genes



    

All genes

Interpretation of DE Genes

● Overrepresentation analysis
● Web tools: CPDB, DAVID, ...
● Integrate GO, Pathway databases, 

interaction databases, ...
● Hypergeometric test: is overlap significant?

Pathway

Differentially 
expressed 

genes



    

Pathway Analysis

Over-representation Analysis

Kamburov, A. et al. (2009) ConsensusPathDB--
a database for integrating human interaction 
networks. Nucleic Acids Res.37:D623-628. 



    

CPDB: Induced networks

A Kamburov et al. (2013) The 
ConsensusPathDB interaction 
database: 2013 update. Nucleic 
Acids Res. 



    

CPDB: Induced networks

A Kamburov et al. (2013) The 
ConsensusPathDB interaction 
database: 2013 update. Nucleic 
Acids Res. 



    

Induced Network



    

Induced Network



    

Summary

● Quality Control: Do data look OK?
● Mapping: Handle reads across exon 

boundaries
● Quantification: Gene/isoform/exon level
● Exploratory analysis: Relation of 

Samples?
● Differential Expression: A vs B or GLM?
● Over representation and network 

analysis: Make sense out of gene lists.
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