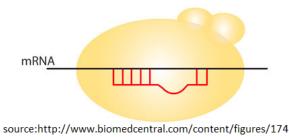
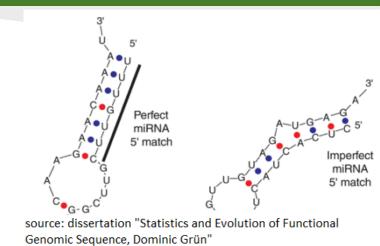
Combinatorial microRNA target predictions


Azra Krek, et al.

Herbert Schulz

- microRNA?
 - $\circ \quad \text{small noncoding RNAs} \quad$
 - 18 24 nucleotides
 - can bind several different mRNAs
 - \circ $\,$ bind complementary sites in the 3' UTR of target genes
 - several different miRNAs can act together
 - multiple target sites


- post-transcriptional regulation of gene expression
 - RISC : gene-knockout/gene-knockdown
- highly conserved binding site
 - target site identification
- problems:
 - don't know a lot about miRNAs
 - number of confirmed heteroduplexes are small
 - predicted sites can be false positive

1-7007-10-58-1-l.jpg

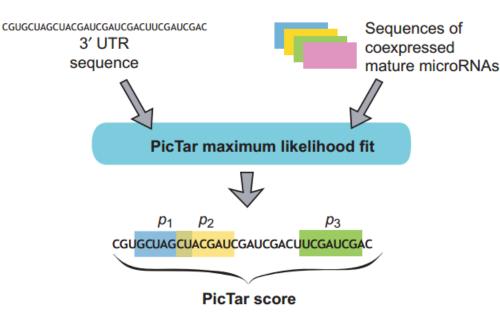
- target site identification
 - perfect nuclei (seed) ~7 nucleotides
 - starting at pos. 1 or 2
 - imperfect nuclei
 - at most one insertion/mutation


 problems of over-expression may be avoided by using miRNA repression

Paper(2005!):

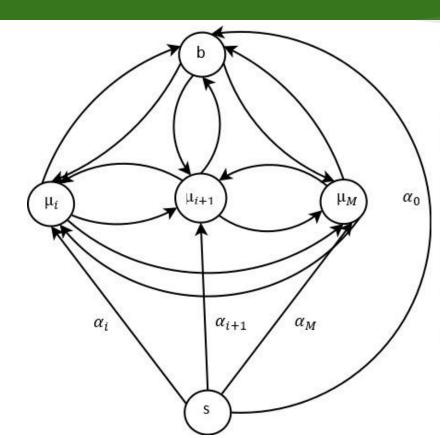
- search for combinations of miRNA binding sites
 - $\circ \quad \text{common targets of miRNAs}$
- PicTar **p**robabilistic **i**dentification of **c**ombinations of **tar**get sites
 - identification of targets for single miRNAs and combinations of miRNAs

PicTar


- fixed search set of miRNAs and multiple alignments of orthologous nucleotide sequences (3' UTR)
- follows the logic of ahab
 - identification of combinations of transcription factor binding sites

PicTar

- tallies all segmentations of a sequence into binding sites and background
 - computes maximum likelihood score


 probabilities assigned to a single site - modeled in accordance with experimental and computational results

PicTar

- cross-species comparisons
 - filtering out false positives by using sequence alignment to eight vertebrates
- candidate genes:
 - UTRs with a minimal number of evolutionarily conserved binding sites
- PicTar scores the candidate sequences for each species separately
 - scores are combined to obtain the final PicTar score

PicTar - HMM

p = transition probability from i = 1 to M(prior probabilities of binding) p_0 = transition probability to the background arrows from one state to another state, have a transition probability p

 \forall_{p_i}

M = # of different miRNAs $\mu_i = microRNA$ $\alpha = initial probability$ b = backgrounds = start

selfloops are not displayed

PicTar - HMM

$$P(S \mid \theta) = \sum_{T} P(S \mid \theta, T)$$

$$P(S \mid \theta, T) = \prod_{i=1}^{N(T)} \rho_i \cdot m_i(s)$$

Material & Methods Data sets of known and randomized mature miRNA

- miRNA sequences from Rfam
 - added 9 miRNAs
- extracted a subset of miRNAs conserved between human, chimpanzee, mouse, rat, dog and chicken
- constructed a set of unique miRNAs (lumping together seq. with same 1-7 or 2-8 base pairs)
 - 58 unique sequences
- generated cohorts of unique randomized miRNAs

Material & Methods Vertebrate 3' UTR sequences and alignments

- extracted genome-wide multiple alignments of 8 vertebrates
- define multiple alignments of 3' UTRs
 - cover human, chimpanzee, mouse, rat and dog for 90% of human 3' UTR sequences
- restricted human 3' UTR sequences
 - unique
 - masking repeats

	Human	Chimpanzee	Mouse	Rat	Dog	Chicken	Pufferfish	Zebrafish
1	19,253,481	18,720,159	15,610,779	15,071,221	17,356,774	5,485,265	1,334,211	1,688,879
2	14,575,934	14,224,691	13,144,375	12,699,682	13,873,555	4,398,114	1,136,336	1,430,061

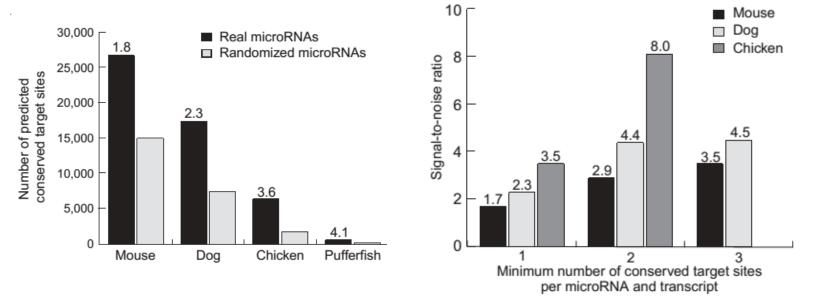
Material & Methods Identification of single miRNA target sites

- used experimental results to:
 - define probabilities for a mRNA sequence to be a binding site
 - insertions/deletions allowed if free energy does not increase
- free energy(using RNAhybrid) below a cutoff value
 - perfect nuclei: 33% of optimal free energy ~ 5% discarded
 - imperfect nuclei: 66%
- perfect nucleus assigned a probability p to be a binding site
- imperfect nucleus:

 $\frac{1-p}{\#imperfect\ nuclei}$

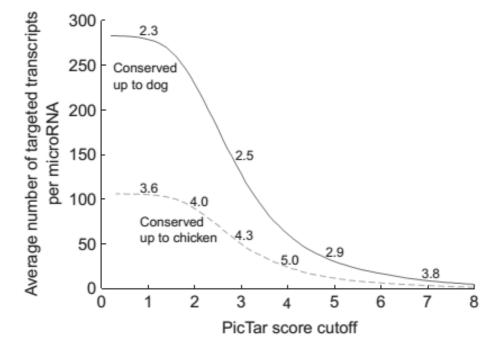
Material & Methods Scoring combinations of target sites

- computes a maximum likelihood score
 - RNA sequence targeted or not
- 5 implementation details
 - 1. sets the length of miRNA binding sites to the length of the corresponding nuclei
 - 2. short 3' UTR sequences cannot be used
 - 3. Baum-Welch algorithm to compute the maximum likelihoods
 - 4. optimized prior for background
 - 5. order of the model for background sequence is set to o

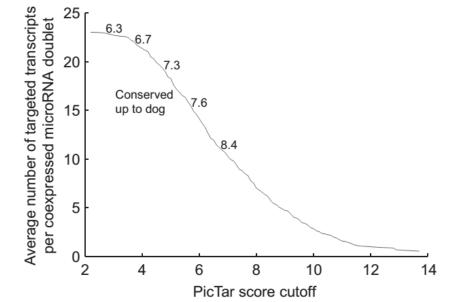

Material & Methods Genome-wide picTar runs and cross-species comparison

- precomputed positions of all possible miRNA nuclei in all UTR seq.
- nuclei fall into overlapping alignment for all species?
 - $\circ~$ check: optimal free energy of miRNA:mRNA duplex
 - anchors
- filtering improbable target sites
 - \circ $\,$ compute score for each UTR $\,$
- final score: averaged the scores for all species that defined anchor sites

- search in genome-wide set of 10,607 *C. elegans* and *C. briggsae* 3' UTR sequences
 - miRNAs: *lin-4* or *let-7*
 - known targets *lin-14*, *hbl-1*, *daf-12* and *lin-28*
 - ranked first, second, fourth and seventh
- in vertebrates:
 - construction of a multiple alignment of human annotated 3' UTRs from 7 other vertebrates
 - to reduce false positive rate


false positive rate

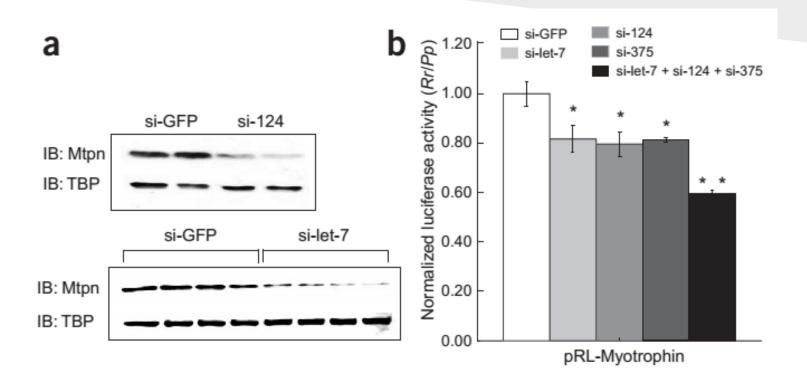
- estimate false positive rate
 - recorded all perfectly binding conserved target sites ("anchors") and for randomized DNA


false positive rate

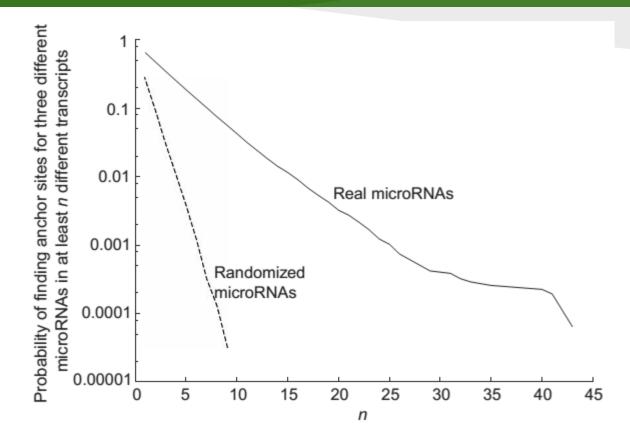
• ranked target prediction for all available, conserved miRNAs

false positive rate

- PicTar score dependent sensitivity and specificity of target site predictions
 - 4 sets of coexpressed miRNAs + corresponding sets of randomized miRNAs - require 2 anchor sites


PicTar - common binding site

hypothesized 3 miRNAs in the murine pancreatic cell line MIN6
miR-124, *miR-375* and *let-7b* may act together


- examined results for *Mtpn* (known target of *miR-375*)
 - with *miR-375*: rank 102
 - with *miR-375* and *miR-124*: rank 15
 - with *miR-375*, *miR-124* and let-7b: rank 4

PicTar - common binding site

Validation

Estimate of miRNAs that may regulate target genes

Conclusions

- developed a computational approach that identifies targets that are likely regulated by miRNAs in common pathways
- showed that seq. comparison using genome-wide alignments across 8 vertebrates reduce the FP-rate of miRNA target prediction
 - predict on average ~200 targeted transcripts per miRNA
- let to experimental validation of Mtpn
 - regulated coordinately by 3 miRNAs

Conclusions

- PicTar is from 2005!
 - $\circ \quad \text{good prediction} \quad$
- problem: based on data that is over 10 years out of date
 - "today" more:
 - databases/sequences for 3' UTRs
 - knowledge about the biology from miRNAs
- based on free energy calculations (filtering)
 - my not be complete or accurate
 - quality of data used in free energy calculation

Thank you for the attention