Genexpressionsanalyse



A cell and its population of genes:



DNA forms double strands by a process called
hybridization:




Labeling




Hybridization
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2 color fluoresent dye labeled mRNA
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Affymetrix oligonucleotide arrays
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[llumina bead arrays
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illumina multi-sample array formats


http://www.illumina.com/Images/technology/beadarray_multi_sample_array_formats_lg.gif

2 micron diameter
beads are coated with
Oligonucleatides

g\

B Coads embedded in a slide with
multiple arrays located on each slide

Fooled Eeads are randomly located
and assayed to identify the location
of each bead within the array using a
29 base tag sequence

Beads located in the end of a microfibre and
collected into a bundle each bundle in a 96
samplefarray matrix format







e |llumina flyer




SNP detection

(slide from NCBI,

http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/TechBeadArray.shtml
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RNA-seq

mRMA
From: - = Cpecrr
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RNA-Seq: a revolutionary vlr
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& Michael Snyder
. . ATCACAGTGGGACTCCATAAATTTTTCT
Nature Reviews Genetics 10, CGAAGGACCAGCAGAAACGAGACTNEN Short sequence reads
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Estimation of gene expression from RNA-seq: RPKM values

Number of reads which map per kilobase of exon per million
mapped reads for each gene



log Gene Intensities of Experiment 2
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Two samples from the same kidney carcinoma

log10(R)




Cancer — normal comparison

log10(QG)



MA-plot: Minus vs. Average

M = logy(R/G) = log2 (R) — logs(G)

A= Lo, (RG) = L(logs (R) + logs (G))

2

(Wikipedia)


http://en.wikipedia.org/wiki/File:Pre-normalization.MAplot.png

Normalization of microarray
data

Anja von Heydebreck

Dept. Computational Molecular
Biology, MPI for Molecular Genetics,
Berlin



Systematic differences between arrays

The boxplots show
distributions of log-
ratios from 4 red-

green 8448-clone o - g
cDNA arrays
hybridised with -

<+ —

8]

zebrafish samples. o -

Some are not centered
at 0, and they are
different from each
other.

o
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Experimental variation |

amount of RNA in the sample
efficiencies of

-RNA extraction

-reverse transcription
-labeling

-photodetection

Systematic

o similar effect on many
measurements

0 corrections can be
estimated from data

Normalization

Normalization:

Correction of

systematic effects

arising from variations in the
experimental

process




Ad-hoc normalization procedures

o 2-color cDNA-arrays: multiply all intensities of
one channel with a constant such that the median
of log-ratios Is O (equivalent: shift log-ratios).
Underlying assumption: equally many up- and
downregulated genes.

e One-color arrays (Affy, radioactive): multiply
Intensities from each array k with a constant c,,
such that some measure of location of the intensity
distributions is the same for all arrays (e.g. the
trimmed mean (Affy global scaling)).



log-log plot of intensities from the two
channels of a microarray

comparison of kidney
cancer with normal - 4
kKidney tissue, A
cDNA microarray with - By < 4

8704 spots 3 i
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e red line: median it
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Assumptions for normalization

* \WWhen we normalize based on the observed
data, we assume that the majority of genes
are unchanged, or that there is symmetry
between up- and downregulation.

* |n some cases, this may not be true.
Alternative: use housekeeping genes, which
supposedely don’t change, or (spiked)
controls, and base normalization on them.



1. Loess normalization

« M-A plot
(minus vs. add):
log(R) - 10g(G) =log(R/G) C
VS. o
log (R) + log(G)=log(RG) . 3
o With 2-color-cDNA arrays, )
often “banana-shaped” T -
scatterplots on the log- CENEA
scale are observed. | SRR




|_oess normalization

zebrafish data

« Intensity-dependent
trends are modeled by
a regression curve,
M=1(A) + & -

e The normalized = = -
log-ratios are

computed T
as the residuals & :
of the loess | RN

regression.



|_oess regression

Locally weighted regression.

For each value x; of X, a linear or polynomial
regression function f; for Y is fitted based on
the data points close to x;. They are weighted
according to their distance to Xx;.
Local model: Y = f(X) + &.
Fit: Minimize the weighted sum of squares
2w; (X) (Y - fi(xj))2
Then, compute the overall regression as:

Y = f(X) + & where f(x;) = fi(x:).



|_oess regression

regression lines for each data point

The user-defined width ¢
of the weight function

° determines the degree of
smoothing.

tricubic weight function

|X_Xo|
C

w(x) =[1(

)3]3’| X_XO |SC




Print-tip normalization

« With spotted arrays, ;
distributions of
Intensities or log-ratios
may be different for
spots spotted with
different pins, or from = .
different PCR plates.

» Normalize the data TR g
from each (e.g. print- | |
tip) group separately. D

2
I
000 O

PrintTip



Print-tips correspond to localization of

spots

Slide: 25x75 mm

t-to-spot: ca. 150-350 um

>

4x4 or 8x4 sectors

17...38 rows and
columns per sector

ca. 4600...46000
probes/array

ector: corresponds
to one print-tip




Print-tip loess normalization




Q-Q Plots

o [Wikipedia] A Q-Q plot s a plot, which is
a graphical method for comparing two
probability distributions by plotting their
guantiles against each other.

« A point (X,y) on the plot corresponds to one
of the quantiles of the second distribution
(y-coordinate) plotted against the same
quantile of the first distribution (Xx-
coordinate)



Q-Q Plots, continued

o |If the two distributions being compared are
similar, the points in the Q—-Q plot will
approximately lie on the liney = x.

e Q-Q plots can be used to compare
collections of data, or theoretical
distributions. The use of Q-Q plots to
compare two samples of data can be viewed
as a non-parametric approach to comparing
their underlying distributions.




Exponential data quantiles
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Quantile Normalization

A comparison of normalization methods for

high density oligonucleotide array data based
on variance and bias

Bolstad, Irizarry, Astrand, Speed
Bioinformatics 2003, vol 19(2), 185-193



Quantile Normalization

Hyb1 Hyb2 Hyb3 ..
Gen1l ..
Gen 2
Gen 3
Gen 4



Quantile normalization: Algorithm

1. Given n arrays of length p, form X of dimension
p X n where each array iIs a column;
2. sort each column of X to give Xsort;
3. take the means across rows of Xsort and assign
this mean to each element in the row to get Xsort;
4. get Xnormalized by rearranging each column of
Xsort to have the same ordering as original X



Questions

 Differential genes between two conditions
(e.g., healthy/diseased)

o Coexpressed genes: pathways, coregulation

» Genes characteristic for particular
conditions (e.g., tumor staging)



Chromatin IP (ChIP chip
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Tuning the model

= ~ 200 transcription factors

ChlIP-chip data for yeast: bound/unbound binding ratios (R/G)

= 32 transcription factor descriptions (TRANSFAC)

o)
&}

6000 intergenic regions (~1000 bp)

ChlIP-chip R/G

—_—
e
* ad

1 0.2 0.3 0.4 0.5 0.6

Predicted Affinity

0.7

choose parameters,

A and R,, to achieve

optimal correlation
with R/G-ratios

Cbfl

Pearson corr = 0.67
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Drosophila: Eve-2 Promoter
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