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SUMMARY

The ribosomal elongation cycle describes a se-
ries of reactions prolonging the nascent poly-
peptide chain by one amino acid and driven by
two universal elongation factors termed EF-Tu
and EF-G in bacteria. Here we demonstrate that
the extremely conserved LepA protein, present
in all bacteria and mitochondria, is a third elon-
gation factor required for accurate and efficient
protein synthesis. LepA has the unique function
of back-translocating posttranslocational ribo-
somes, and the results suggest that it recog-
nizes ribosomes after a defective translocation
reaction and induces a back-translocation, thus
giving EF-G a second chance to translocate the
tRNAs correctly. We suggest renaming LepA as
elongation factor 4 (EF4).

INTRODUCTION

The functions of the ribosome can be separated into four

phases, each of which is governed by specific protein fac-

tors. The four phases are initiation, elongation, and ter-

mination of protein synthesis, and the recycling phase,

during which the ribosomes are dissociated into their

subunits so that the small subunit is ready to re-enter

the subsequent initiation phase (for a review, see Nierhaus

and Wilson, 2004). The details of the translation phases

differ significantly between ribosomes from the three do-

mains of life, viz. bacteria, archaea, and eukarya, with

the exception of the elongation phase; the elongation

phase is at the heart of protein synthesis and consists of

a cycle of reactions (hence termed ‘‘elongation cycle’’),

during which the nascent polypeptide chain is prolonged

by one amino acid. The elongation cycle is governed by

two universal elongation factors, termed EF-Tu and EF-

G in bacteria, and EF1 and EF2 in archaea and eukarya.

EF-Tu transports an aminoacyl-tRNA (aa-tRNA) in the ter-

nary complex aa-tRNA�EF-Tu�GTP to the decoding cen-
C

ter of the ribosomal A site (A for aminoacyl-tRNA) on the

small ribosomal subunit. After decoding, EF-Tu hydro-

lyzes GTP and leaves the ribosome as EF-Tu�GDP,

whereas cognate aa-tRNA accommodates fully into the

A site. The next step, peptide bond formation, does not re-

quire a translation factor. During this process, the peptidyl

residue at the ribosomal P site (P for peptidyl-tRNA) is

cleaved off of the peptidyl-tRNA and transferred to the

aa-tRNA, resulting in the peptidyl-tRNA residing at the A

site and being prolonged by one amino acid. The third

step in the elongation cycle is the translocation reaction

that is promoted by EF-G�GTP: the (tRNA)2�mRNA com-

plex is shifted by a codon length on the ribosome, moving

the peptidyl-tRNA from the A to the P site and the deacy-

lated tRNA from the P to the E site (E for exit). In higher

fungi, such as yeast and Candida albicans, a third elonga-

tion factor, EF3, has been identified as being essential for

viability. EF3 is an ATP-dependent E site factor because

ATP hydrolysis by EF3 is necessary to open up the E

site, which enables the E-tRNA to be released upon A

site occupation (Triana-Alonso et al., 1995a).

In most bacteria, the lepA gene is the first cistron of a bi-

cistronic operon. The second cistron, the leader peptidase

or lep gene, encodes the signal peptidase Lep (March and

Inouye, 1985a)—an integral membrane protein that is in-

serted into the inner cell membrane and cleaves off the

N-terminal signal (leader peptide) from secreted and peri-

plasmic proteins (Zwizinski and Wickner, 1980). Dibb and

Wolfe (1986) reported that a LepA knockout in Escherichia

coli has no phenotype under the various growth condi-

tions tested. Curiously, these null results contrast with

the fact that LepA is one of the most conserved proteins

on this planet (amino acid identity in bacteria 55%–

68%). Indeed, LepA is even more conserved than other

essential bacterial translation factors such as initiation

factor IF3 or guanine exchange factor EF-Ts (see Table

S1 in the Supplemental Data). LepA is also present in

the obligatory parasite Mycoplasma, which has a mini-

mized bacterial genome containing only �500 genes; in

Rickettsia, the smallest free-living bacteria; and in mito-

chondria from all eukaryotes, ranging from yeast to human

(Figure 1). The discrepancy between the knockout results
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Figure 1. Phylogenetic Analysis of LepA

and EF-G

An unrooted Neighbor Joining algorithm (NJ)

tree of EF-G and LepA proteins enables recip-

rocal rooting of each subfamily. Branch lengths

reflect the estimated amino acid substitutions

per every site (see scale bar). Numbers on in-

ternal branches indicate statistical support of

clades based on 1000 bootstrap samples.

Note that the total branch lengths of both

GTPase families are comparable. In both

families mitochondrial eukaryotic proteins are

monophyletic. Fly EF-G and LepA proteins

branch with their animal orthologs (confirma-

tion of the coelomata hypothesis). A prospec-

tive secondary LepA protein of Arabidopsis

branches with chloroplasts. There are no signs

of interdomain lateral gene transfer in the LepA

family.
and high conservation of LepA prompted us to analyze the

function of this protein.

E. coli LepA is a polypeptide of 599 amino acid residues

with a molecular weight of 67 kDa. LepA has been shown

to bind to the ribosome in vivo (Colca et al., 2003), but no

function for this factor has been assigned. The amino acid

sequence of LepA indicates that it is a G protein. As well as

having high conservation with EF-G, LepA also exhibits

a conspicuous similarity in terms of the domain structure

with EF-G in that it contains equivalents to EF-G domains

I to V, with the exception of domain IV; this domain is ab-

sent (see Figures 2A and 2B). In addition, LepA has a spe-

cific C-terminal domain (CTD), and since the majority of

overproduced LepA (March and Inouye, 1985b) is found

in the periplasmic membrane, one might speculate that

this is related to the LepA-specific CTD. EF-G is a struc-

tural mimic of the ternary complex aa-tRNA�EF-Tu�GTP

(Nissen et al., 2000), and according to this mimicry, do-

main IV of EF-G corresponds to the anticodon stem loop

(ASL) region of the tRNA (Figure 2C). Domain IV of EF-G

interacts with the decoding center at the A site of the ribo-

some, and removing domain IV abolishes the transloca-

tion activity of EF-G (Martemyanov and Gudkov, 1999,

and references therein).

Here we demonstrate that LepA represents a third es-

sential bacterial elongation factor with a novel function in

translation that rationalizes the high conservation of this

factor. We find that LepA is a G protein with uncoupled
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ribosome-dependent GTPase activity rivaling that of EF-

G in terms of turnover rate. Our analysis reveals a sur-

prising and unique function for LepA, namely its ability

to induce ‘‘back-translocation’’ of tRNAs on the ribo-

some. Collectively, our results might suggest that LepA

recognizes ribosomes with mistranslocated tRNAs and

induces a back-translocation.

RESULTS

In Silico Analyses of LepA: Conservation

and Domain Structure

LepA is one of the most highly conserved proteins known;

the amino acid identity of LepA among bacterial orthologs

ranges from 55% to 68%, which compares well with the

corresponding values for EF-Tu, EF-G, and IF-2, which

are 70%–82%, 58%–70%, and 35%–49%, respectively

(Table S1). Database searches revealed that LepA ortho-

logs could be found in all bacteria and nearly all eukary-

otes. It is only missing in eukaryotes that have lost mito-

chondria and have only retained mitochondrial remnants

without ribosomes like Encephalitozoon cuniculi or Giardia

lamblia (Knight, 2004). In all plants with completely se-

quenced genomes (rice, mouse-ear cress, and red

algae), we found two forms of LepA. Whereas one form

branches with other mitochondria LepA sequences in

our phylogenetic analysis, the second form branched

with cyanobacterial orthologs, indicating its subcellular
.



Figure 2. In Silico Analysis of LepA

Compared with EF-G

(A) Domain structures of LepA and orthologs in

comparison with EF-G. Red, LepA (E. coli) and

orthologs Guf1 (yeast mitochondria) and

Q5XKMB (human mitochondria); different

colors, corresponding EF-G domains. LepA

has five potential structural domains (I, II, III,

IV, and LepA_C) according to the amino acid

sequence (2–595), which have high consensus

with E. coli EF-G domains I (purple), II (blue), III,

and V (yellow).

(B) Alignment of E. coli LepA with EF-G from

T. thermophilus. Black and gray boxes indicate

amino acid identity and similarity, respectively.

G’ subdomain (blue) and domain IV (orange)

are lacking in LepA, whereas LepA contains

a specific C-terminal domain (CTD, red).

(C) Comparison of the crystal structure of

the ternary complex aa-tRNA�EF-Tu�GTP

(PDB1TTT) with that of EF-G (PDB1WDT) and

a homology model for E. coli LepA. The do-

mains of EF-G are indicated with roman nu-

merals, except for the G’ subdomain of domain

I. Note that the EF-G domain IV corresponds to

the anticodon stem loop (ASL) of the aa-tRNA

within the ternary complex and that LepA lacks

the G’ domain and domain IV, but has a LepA

specific CTD.
targeting to chloroplasts in plants (see Figure 1). This sug-

gests that LepA is essential for bacteria, mitochondria,

and plastids.

The enormous conservation in LepA covers the entire

protein (see Figure S1 in the Supplemental Data). The first

four domains are strongly related to the EF-G domains I, II,

III, and V, with the last CTD being unique (Figures 2A and
C

2B). This domain arrangement of LepA is found in bacteria

and mitochondria from yeast to human. Due to the high

conservation between EF-G and LepA, it is possible to

generate a homology model for LepA based on the known

EF-G structure. From the representation seen in Figure 2C,

it is obvious that LepA lacks the G’ subdomain of EF-G

domain I as well as the complete domain IV.
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In Vivo Analyses of LepA

The E. coli LepA gene was cloned into pET14b and

transformed into an E. coli BL21(DE3) strain, and thus,

expression of LepA could be induced with isopropyl-

beta-D-thiogalactopyranoside (IPTG) (see Experimental

Procedures). Even without induction, we observed a pro-

longed lag phase, and the viable cells (BL21_LepA in

Figure 3) turn earlier into the stationary phase than the

control expression of EF-G does. Induction of LepA ex-

pression by addition of 1 mM IPTG severely affected

growth, as indicated by an early entry into the stationary

phase, whereas overexpression of EF-G as a control

shows a growth behavior similar to wild-type. SDS-

PAGE analysis reveals ‘‘leaky’’ expression of uninduced

BL21_LepA and strong expression of both induced

LepA and EF-G (data not shown). After a 10-fold dilution

in the presence of IPTG, the strain overexpressing LepA

hardly grows at all, whereas the control EF-G strain again

shows almost wild-type growth (Figure 3). These results

demonstrate that overexpression of LepA is toxic to the

cell.

In Vitro Analyses of LepA: GTPase Activity

and Assays Related to Translocation

The high similarity between the domain structure of LepA

and EF-G prompted us to test the ribosome-dependent

GTPase activity of LepA. EF-G is known to have the stron-

gest ribosome-dependent GTPase activity among all

characterized G proteins involved in translation. When

the ribosome stimulation of GTP cleavage is not coupled

to protein synthesis, it is referred to as being uncoupled

GTPase activity. Figure 4A demonstrates that LepA not

only exhibits uncoupled GTPase activity, but also that

this activity is stimulated by ribosomes to the same extent

as that of EF-G.

Next we tested whether or not LepA can affect peptide

bond formation. To this end we constructed three func-

tional states of the ribosome: (1) the Pi state, with only

one tRNA on the ribosome, namely the peptidyl-tRNA

analog AcPhe-tRNAPhe at the P site (i for initiation, since

this state compares with the 70S initiation complex); (2)

the pretranslocational complex (PRE) state, with a [32P]

tRNAMet
f at the P and an Ac[14C]Phe-tRNA at the A site;

and (3) the posttranslocational (POST) state with the

same tRNAs, but now located at the E and P sites, respec-

tively. Puromycin, an analog of the 30 end of an aa-tRNA

that binds to the A-site region of the peptidyl-transferase

center, reacts quantitatively with the Pi and POST states

(0.72 and 0.73, respectively, in Figure 4B), but not with

PRE state ribosomes (0.00) as expected. Surprisingly, in

the presence of LepA the POST state does not react

with puromycin anymore (0.01), whereas the Pi state still

does (0.71; PM reaction in Figure 4B). At the same time,

LepA does not affect the amount of tRNAs bound to the

programmed ribosomes (binding values for both tRNAs

are the same in the presence and absence of LepA). Di-

peptide analyses also support the puromycin results,

suggesting that the addition of LepA to a POST state
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ribosome prevents dipeptide formation by precluding

binding of aa-tRNA to the A site (Figure S2).

Figure 4C shows an additional detail: in the presence of

GTP, LepA works catalytically, in a similar fashion as EF-

G, saturating at 0.4 molecules per 70S ribosome (the cor-

responding number for EF-G is 0.3). However, in the pres-

ence of the nonhydrolysable GTP analog GDPNP, the

LepA action becomes stoichiometric, saturating at �1

molecule per 70S ribosomes. Therefore, GTP cleavage

seems to be required for dissociation of LepA from the ri-

bosome, and thus, the factor behaves like a typical G pro-

tein (reviewed by Bourne et al., 1991). In order to test

whether the rates of EF-G-dependent translocation and

LepA-dependent back-translocation are comparable, we

performed kinetics at 30�C in order to slow down the reac-

tions. Single turnover conditions were applied (LepA and

EF-G in a 5- and 10-molar excess of ribosomes, respec-

tively, in the presence of GDPNP). Figure 4D shows that

both reactions occur with similar rates, indicating that

the LepA-dependent reaction can be incorporated into

an elongation cycle without a significant delay of protein

synthesis.

A possible explanation for the puromycin and dipeptide

observations is that LepA induces a back-translocation of

the POST state to the PRE state, since the occupation of

the A site by the AcPhe-tRNA after back-translocation

would prevent both the puromycin reaction and binding

of a cognate ternary complex to the A site (dipeptide for-

mation). In contrast, the Pi state cannot be back-translo-

cated because the A site of the ribosome cannot be occu-

pied in a stable fashion without a tRNA in the adjacent P

site (Rheinberger et al., 1981). This explains why the Pi

state remains puromycin-reactive even in the presence

of LepA. To verify this back-translocation hypothesis we

employed three strategies: (1) chemical probing of the

tRNA positions through analysis of diagnostic base pro-

tections in the 16S rRNA, (2) monitoring a POST state-

specific 23S rRNA conformation marker by Pb2+ cleavage,

Figure 3. Overexpression of LepA Blocks Growth

The strain BL21(DE3) containing the plasmid pET+LepA stops growth

soon after IPTG induction (red, BL21_LepA) in contrast to wild-type or

overexpression of EF-G (BL21_EF-G). The yellow curve shows the

growth of BL_LepA without induction. The arrows indicate the addition

of IPTG (1 mM). After 10-fold dilution in the presence of IPTG, the strain

overexpressing LepA does not resume growth, in contrast to wild-type

and the strain overexpressing EF-G.



Figure 4. In Vitro Assays with LepA

(A) Uncoupled ribosome-dependent GTPase activity of EF-G (green) and LepA (red). The GTPase activity is given as GTP hydrolyzed in 5 min per

ribosome, and plotted as a function of the molar ratio of factor to ribosome.

(B) tRNA binding and puromycin reaction with ribosomal complexes in different functional states (shown schematically) before and after incubation

with LepA and GTP. The data are normalized to reactions per one ribosome (n). LepA does not influence the amounts of bound tRNAs (upright bars),

but it abolishes the puromycin reaction (hanging bars) of the POST state rather than that of the Pi state. Red tRNAs and columns, Ac[14C]Phe-tRNA;

blue tRNAs and columns, [32P]tRNAMet
f . As a control, the experiment was also performed in the presence of nonlabeled AcPhe-tRNA, added either to

(1) the PRE state (no chasing of the Ac[14C]-Phe-tRNA at the A site was observed: 0.65 and 0.69 Ac[14C]Phe-tRNA at the A site per ribosome in the

absence and presence of nonlabeled AcPhe-tRNA), or (2) during back-translocation, when the nonlabeled AcPhe-tRNA was added to the purified

POST state before addition of LepA to induce back-translocation (0.56 and 0.54 of Ac[14C]Phe-tRNA per 70S in the absence and presence of

nonlabeled AcPhe-tRNA after back-translocation).

(C) Puromycin reaction of the PRE state after incubation with various amounts of EF-G�GTP (green curve) and the POST state after incubation in the

presence of various amounts of LepA with GTP and GDPNP (red and orange, respectively). In the presence of GDPNP, quantitative blockage of the

puromycin reaction is only achieved at a molar ratio of LepA:70S = 1:1, whereas with GTP, full blockage is already seen at a ratio of (0.3–0.4):1.

(D) Comparison of kinetics of EF-G-dependent translocation and LepA-dependent back-translocation. The reactions were performed at 30�C under

single turnover conditions in the presence of GDPNP (0.5 mM; molar ratios of EF-G and LepA to 70S were 5:1 and 10:1, respectively).
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and (3) direct testing of the ribosome movement on the

mRNA with a toeprint assay.

A-site-bound tRNAs protect a set of characteristic ba-

ses in the 16S and 23S rRNA from chemical modifications

(Moazed and Noller, 1989, 1990). In order to unravel the

ribosomal location of AcPhe-tRNA in our various com-

plexes, we screened two known A-site tRNA footprints

in 16S rRNA. At position A1408 in the decoding center,

AcPhe-tRNA in the PRE state ribosome produced the ex-

pected A-site protection, which however was lost upon

translocation to the P-site in the POST state (Figure 5A).

Significantly, the addition of LepA�GTP to the POST state

re-established the A1408 footprint. An essentially identical

tRNA footprinting pattern was observed at position U531

of 16S rRNA (data not shown). These data are compatible

with the notion that AcPhe-tRNA reoccupies the A site

upon LepA addition to POST state ribosomes.

Furthermore, the 50S subunit also shows structural

evidence for a LepA-promoted back-translocation. Previ-

ously we demonstrated that the 50S conformation of

the posttranslocational ribosome is different to that of the

pretranslocational ribosome—a difference that could be

monitored by site-specific Pb2+ cleavage of 23S rRNA

(Polacek et al., 2000). A diagnostic cleavage was detected

at position C2347, which was significantly enhanced in the

POST state compared with the PRE state. Figure 5B dem-

onstrates that LepA brings the strong signal observed in

the POST state down to the level of the PRE signal, sug-

gesting that upon binding of LepA�GTP, the ribosome

adopts a PRE configuration.

Additionally, we confirmed the back-translocation abil-

ity of LepA using a toeprinting assay. In this assay, the

programming mRNA carries a complementary [32P]-

labeled DNA primer annealed to the 30 end, located

downstream of the ribosome. The primer is prolonged

by reverse transcription until the polymerase clashes

with the ribosome. In this way, the length of the transcript

provides a measure of the distance between the primer

and the ribosome. During translocation the ribosomes

move by a codon length toward the primer position, and

thus, the reverse transcript becomes shorter by three nu-

cleotides (Hartz et al., 1990). Conversely, the transcript

will be longer by three nucleotides after the putative

back-translocation. A translocation of a PRE state shows

a decrease in the length of the reverse transcript by three

nucleotides, while the addition of LepA�GTP to a POST

state increases the length of the transcript to that of the

PRE state again (Figure 5C), proving that LepA is

a back-translocator.

An alternative possibility is that we are not in fact ob-

serving a back-translocation, but rather a complete re-

lease of AcPhe-tRNA from the POST state coupled with

quantitative rebinding of the tRNA to the A site to form

a PRE state. To exclude this, the back-translocation ex-

periment was repeated in the absence and presence of

a 2 molar excess of nonlabeled AcPhe-tRNA over ribo-

somes. If LepA triggers a release of Ac[14C]Phe-tRNA

from the P site and rebinding at the A site, then the pres-
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ence of nonlabeled AcPhe-tRNA would reduce the ribo-

some-bound Ac[14C]Phe-tRNA dramatically. However,

no reduction in the [14C] label during the back-transloca-

tion was observed (numbers given in the legend to

Figure 4B).

In Vitro Analyses of LepA: Effects on Synthesis

of Active Protein

We have demonstrated previously that bacterial coupled

transcription-translation systems can produce large

amounts of protein (e.g. 4 mg/ml green fluorescent protein

[GFP]), but under standard conditions (30�C incubation)

the active fraction (50% ± 20%) is unsatisfactorily low (Di-

nos et al., 2004; Iskakova et al., 2006). The experimental

setup is that the total protein amount is assessed via

SDS-PAGE, since the reporter protein GFP does not over-

lap in a Coomassie stained gel with any other protein pres-

ent in the cell lysate. This enables the GFP band to be

scanned and an accurate determination of the total

amount to be made. In parallel, the same samples are

loaded onto native gels and the active amount is revealed

via the fluorescence of the GFP band (Figure 6A), thus

allowing a precise assessment of the active fraction.

In the presence of increasing amounts LepA, the total

GFP amount increases and peaks at a ratio of 0.1 mole-

cules LepA added per 70S. Further addition of LepA leads

to a rapid reduction in the GFP production, eventually

blocking the total synthesis completely at a molar ratio

of LepA:70S = (R0.5):1, in agreement with the toxic ef-

fects of overproduced LepA in vivo (Figure 3). In contrast,

the native gel reveals that the active GFP amount in-

creases to attain the same levels as the total GFP amount

at LepA stoichiometries of R0.2 LepA per 70S. In other

words, addition of LepA promotes the synthesis of fully

active proteins (also demonstrated with luciferase, data

not shown). We conclude that LepA not only increases

the total protein yield, but more importantly improves the

activity of the produced protein.

The best-known drugs that induce misincorporations

are aminoglycosides, such as paromomycin, which bind

directly in the decoding center to impair the tRNA selec-

tion process (Ogle et al., 2001). Since LepA was shown to

increase the active fraction of proteins, we asked whether

LepA could also correct paromomycin-induced transla-

tional errors. Figure 6B, left panel, demonstrates that

paromomycin severely decreases GFP synthesis, block-

ing it completely at 2 mM. On the native gel, the fluores-

cence of GFP was even more strongly reduced by paro-

momycin addition, indicating that paromomycin causes

a drop in the active GFP fraction. In the presence of

LepA, a similar paromomycin-dependent reduction in

the active GFP fraction is observed (Figure 6B, right

panel), indicating that LepA cannot counteract the paro-

momycin-induced errors. Equivalent results were ob-

tained with both other aminoglycosides, such as strepto-

mycin and neomycin, which also bind to the decoding

center of the A site, and with the E site antibiotic edeine

(data not shown).
.



Figure 5. LepA Induces Back-Translocation

(A) Primer extension analysis of DMS-modified 16S rRNA from various ribosomal complexes in the absence (�) or presence (+) of LepA�GTP. The

band of the diagnostic A-site tRNA footprint at A1408 of 16S rRNA is indicated by an arrow. A and C denote dideoxy-sequencing lanes. Quantification

of the DMS reactivity at A1408 in different ribosomal complexes is shown below the gel. The DMS reactivity at A1408 in the empty ribosome (70S) was

taken at 1.00. Values shown represent the mean and the standard deviation of two independent DMS probing experiments.

(B) Primer extension analysis of Pb2+-cleaved 23S rRNA. The cleavage efficiency at C2347 of 23S rRNA (arrow) was monitored in various ribosomal

complexes in the absence (�) or presence (+) of LepA�GTP. The characteristic cleavage enhancement at C2347 in the POST sate disappears upon

LepA addition. A and C denote dideoxy-sequencing lanes. The Pb2+ cleavage efficiency of vacant ribosomes (70S) was taken as 1.00. Values shown

represent the mean and the standard deviation of two independent Pb2+ cleavage experiments.

(C) Toeprint assay with PRE and POST states. The PRE state (lane 1) was translocated with EF-G and GTP and the resulting POST state was purified

by pelleting through a sucrose cushion. The purified POST state was then toeprinted either directly (lane 2) or after an incubation in the presence of

LepA and GTP (lane 3). The relative amounts of the PRE and POST states given in percentages were obtained by scanning the respective bands.
Cell 127, 721–733, November 17, 2006 ª2006 Elsevier Inc. 727



The fidelity of protein synthesis is very sensitive to

changes in magnesium concentration, such that an in-

crease of only 5 mM (from 12 to 17 mM) reduces the total

synthesis of GFP to 40% and the active fraction from 50%

Figure 6. LepA Effects on GFP Synthesis in a Coupled Tran-

scription-Translation System In Vitro

(A) Addition of various amounts of LepA. One aliquot of the reaction

mixture was applied to a native gel and the fluorescence was mea-

sured (upper panel, amount of active GFP); a sister aliquot was devel-

oped in an SDS-gel (middle panel, total amount of GFP). The total

amount of GFP synthesized in the absence of LepA was designated

as 100%, the relative amounts of total and active GFP were deter-

mined, and the active fraction was calculated (lower graph).

(B) GFP synthesis as in (A), but in the presence of various concentra-

tions of the aminoglycoside paromomycin. Left panel, no LepA; right

panel, in the presence of LepA (0.3 mole per mole of 70S).

(C) Same as (B), but with increasing Mg2+ concentrations. ‘‘0’’ indi-

cates the intrinsic Mg2+ concentration of 12 mM.
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to 25% (Figure 6C, left panel). Addition of LepA dramati-

cally alters the picture: with a Mg2+ increase up to 3 mM,

the total synthesis is not reduced; in fact, a small but

significant increase is observed (up to 120%) and the ac-

tive fraction is maintained at �100% (Figure 6C, right

panel). It follows that the dominant effect of LepA is seen

at a Mg2+ increase of 2–3 mM, where the total protein syn-

thesis is doubled with an active fraction of virtually 100%.

DISCUSSION

The conserved domain structure of LepA, in which the first

four domains correspond to the EF-G domains I, II, III, and

V, coupled with the presence of a fifth unique LepA do-

main (Figure 2), makes it easy to trace LepA through the

three domains of life. We used LepA domain III and IV (cor-

responding to III and V from EF-G) as well as the unique

CTD as probes in order to avoid false positives caused

by EF-G or the corresponding factor EF2 in archaea and

the cytoplasm of eukarya. We found LepA orthologs in

all bacteria and eukaryotes with mitochondria, but not in

archaea. This observation suggests that LepA does not

contribute to eukaryotic cytoplasmic translation, but is

probably essential for correct mitochondrial translation.

LepA is probably also ubiquitous in chloroplasts, since

we found LepA with apparent chloroplast import se-

quences to be nuclear encoded in the three plant ge-

nomes that have been completely sequenced, viz. the di-

cotyledon Arabidopsis thaliana, the monocotyledon Oryza

sativa and the red alga Cyanidioschyzon merolae (data not

shown). We note that LepA phylogeny largely reflects the

canonical species phylogeny and shows no signs of inter-

domain horizontal gene transfer (HGT). In this respect,

LepA behaves like ribosomal proteins rather than tRNA

synthetases that frequently undergo HGT (Wolf et al.,

1999).

The lack of EF-G domain IV in the LepA structure is in-

triguing. Our finding that LepA is a back-translocator fits

with the early suspicion that domain IV of EF-G has

a ‘‘door-stop’’ function, i.e., by occupying the decoding

region of the A site after the tRNAs have been translocated

from A and P sites to the P and E sites, respectively, do-

main IV of EF-G prevents a back-movement of the tRNAs

(Nierhaus, 1996a; see also Figure 2C). In this respect,

LepA would reduce the activation barrier between PRE

and POST states in a way similar to EF-G, but due to the

absence of domain IV, it catalyzes a back-translocation

rather than a canonical translocation.

In addition to lacking EF-G domain IV, LepA also lacks

the G’ subdomain (Figures 2B and 2C). It has been spec-

ulated that the function of G’ might be to promote the

GDP-GTP exchange, as EF-Ts does for EF-Tu (Czwor-

kowski et al., 1994). However, the GDP-GTP exchange

on EF-G can also be explained without the help of an ad-

ditional factor or G’ subdomain (Nierhaus, 1996b). Despite

the absence of the G’ subdomain, LepA shows uncoupled

GTPase activity in the presence of 70S, paralleling that of
.



EF-G (Figure 4A). This argues against the assumption that

this subdomain is involved in GDP-GTP exchange.

The first experimental hint for the back-translocation

activity of LepA came from two separate functional tests,

the puromycin reaction and dipeptide formation. Both Pi

and POST states with an AcPhe-tRNA donor at the P

site usually act as equally good substrates for peptide

bond formation using puromycin, or an aa-tRNA, as an A

site acceptor. The essential point is that LepA prevents

peptide bond formation exclusively of the POST state,

while leaving the Pi state unaffected (Figure 4B and

Figure S2). The most likely interpretation for this is that

LepA induces a back-translocation by shifting the tRNAs

from the E and P sites back to the P and A sites, respec-

tively, whereas a ribosome with a single tRNA at the E

site cannot be moved either forward or backward. After

a back-translocation, the A site is now filled with AcPhe-

tRNA; this prevents binding of both puromycin and aa-

tRNA, and thus prevents peptide bond formation with

both substrates.

This interpretation was substantiated by three structural

assays monitoring (1) the tRNA occupancy of the A site via

protection of diagnostic rRNA bases of the A site, (2) the

functional state—PRE or POST—of the ribosome via con-

formation-specific Pb2+ cleavage, and (3) the movement

of the ribosome on the mRNA via toeprinting. Protection

of residues A1408 and U531 of the 16S rRNA is indica-

tive of the presence of a tRNA at the A site (Moazed and

Noller, 1990). POST state ribosomes have an empty A

site and therefore show no A-site tRNA footprints; how-

ever, upon administering LepA�GTP to such a POST

state, protection of these A site-specific positions was

observed, thus arguing for the reoccupation of the A site

by the peptidyl-tRNA (Figure 5A). Pb2+ cleavages occur

within distinct binding pockets of RNAs and are therefore

very sensitive to conformational changes. Cleavage at po-

sition C2347 of 23S rRNA is strong in the POST state and

weak in the PRE state (Polacek et al., 2000), and LepA re-

duces the cleavage level of the POST state to that of the

PRE state (Figure 5B). Finally, the toeprinting assay (Hartz

et al., 1991) was used to directly demonstrate the back-

movement of the ribosome on the mRNA by one codon

upon the addition of LepA to the POST state (Figure 5C).

Such a back-translocation cannot take place in a Pi state:

a single tRNA on the ribosome cannot move from the

P to the A site since the resulting complex (A site occu-

pied, P site free) is unstable (Rheinberger et al., 1981).

The fact that LepA functions only with the POST state,

rather than with the Pi state, means that the function of

this factor depends on the ribosome having an occupied

E site. This requirement is a strong indication that the E

site also exists in mitochondrial ribosomes, for which the

number of tRNA binding sites has not yet been assessed.

The mitochondrial membrane potential depends on the

respiratory activity of the mitochondria (Petit et al., 1990),

which in turn might influence the intraorganelle ionic

strength, creating a requirement for LepA. We note, how-

ever, that this must be true only under specific and yet
C

unknown conditions, because a knockout of the LepA

ortholog GUF1 in yeast mitochondria exhibits no clear

phenotype (Kiser and Weinert, 1995). Be that as it may,

the extreme conservation of both the domain structure

and the amino acid sequence in all currently available se-

quences of mitochondrial LepA orthologs signals that an

important function for this protein must also exist in this

organelle.

Although LepA seems to work like a typical G protein

(Figure 4C), one note of caution must be added: the bind-

ing of LepA to the ribosome was monitored in the absence

of nucleotides and in the presence of GTP or GDPNP via

pelleting the ribosomes through a sucrose cushion and

determining the presence of LepA in an SDS gel. We ob-

served 0.20, 0.19, and 0.51 LepA bound per 70S ribo-

some, respectively. In a second experiment, back-translo-

cation of a purified POST state was analyzed using a

toeprinting assay in the presence of LepA with and with-

out GTP. Surprisingly, we observed that LepA promoted

back-translocation, even in the absence of GTP; however,

the level was up to 50% of that observed in the presence

of GTP (data not shown). One explanation might be that,

even in the absence of nucleotide, a fraction of the LepA

molecules have retained the GTP conformation. Whether

this ‘‘apo’’ LepA can work catalytically has yet to be deter-

mined. Such a scenario would go some way toward ex-

plaining why a 40% reduction of the puromycin reactivity

was observed in the presence of GDPNP when the LepA

concentration was only 10% of that of the ribosomes

(Figure 4C): while half of this discrepancy can be ac-

counted for by the fraction of ribosomes in the POST state

(60%), the rest may result from the possible catalytic

action of apo LepA.

How can we reconcile the in vivo and in vitro effects of

LepA to provide a complete molecular description of its

function? One possible explanation is that LepA slows

down the translational rate, thus improving both cotrans-

lational folding of proteins and the active fraction of the

synthesized proteins. We cannot exclude this possibility,

but at the moment we favor an alternative scenario as

follows.

We have demonstrated that LepA improves the fidelity

of translation and induces back-translocation of POST

state ribosomes, which suggests that there is a link be-

tween translocation and activity of the synthesized pro-

tein. EF-G-dependent translocation is probably not suc-

cessful in 100% of all cases, particularly at higher Mg2+

concentrations, at which the ribosome may not reach

the canonical POST state. Translocation of tRNAs occurs

at the interface between the small and large subunits and

involves a ratchet-like movement of one subunit relative to

the other (Frank and Agrawal, 2001). It has long been

known that Mg2+ and ionic strength influence subunit in-

teraction (Hapke and Noll, 1976), and therefore it is easy

to envisage that high ionic strength could hinder EF-G ac-

tion and/or induce a defective POST state in the ribosome.

This defective posttranslocation state might have two

consequences. (1) It may result in a suboptimal display
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Figure 7. Model for LepA (EF4) Function

(A) Under optimal growth conditions the translocation has a very low rate of error, and therefore, EF4 is not so important under such conditions. Trans-

location involves the movement of tRNAs at the A and P sites (PRE state) to the P and E sites (POST state). This reaction is catalyzed by elongation

factor G (EF-G, blue) and GTP. After dissociation of EF-G, the A site is now free for binding of the next ternary complex aa-tRNA�EF-Tu�GTP (blue

tRNA to blue A site codon), which leads to release of the E-tRNA (cyan).

(B) In the rare case that EF-G malfunctions, a defective translocation complex may result. This is likely to occur more frequently under conditions of

high ionic strength. The consequences of the defective translocation complex are 2-fold: (1) ribosomes may incorrectly display the A site codon, al-

lowing binding of near-cognate ternary complexes and therefore misincorporation, as illustrated by the right-hand pathway (binding of green tRNA to

blue codon); (2) under extreme conditions, the ribosome may even become stuck, thus precluding continued translation. The defective translocation

state is recognized by EF4�GTP (red), which induces a back-translocation, allowing EF-G a second chance to catalyze a correct POST state. In this

way EF4 reduces translational errors and relieves stuck ribosomes.
of the A-site codon in a way that promotes misincorpora-

tion. This is evident from the coupled transcription-trans-

lation system, in which the addition of low amounts of

LepA leads to dramatic increases in the accuracy of

GFP synthesis, particularly in conditions of high ionic

strength (Figures 6A and 6C). (2) In some cases, such as

under the influence of high Mg2+ concentrations, a ribo-

some might even become stuck during the course of

a translocation reaction. In this respect it should be noted,

however, that the increased misincorporation seen at

higher Mg2+ concentrations (Figure 6C) cannot alone ex-

plain the lethal effect, since E. coli strains harboring

a RAM mutation in S4 or S5 exhibit 10-fold higher misin-

corporation rates, i.e. rates equivalent to those induced

by streptomycin, but are still viable (Zimmermann et al.,

1971).

Based on our findings that LepA binds to POST-state

ribosomes, we suggest that LepA should be renamed as

elongation factor 4 (EF4). Collectively, our results enable

a model for EF4 action to be proposed: at low concentra-

tions of EF4 (%0.3 molecules per 70S ribosome), EF4 spe-

cifically recognizes improperly translocated ribosomes,
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back-translocates them, and thus provides EF-G with

a second chance to catalyze a proper translocation reac-

tion (Figure 7). At higher concentrations (�1 molecule per

70S), EF4 loses its specificity and back-translocates every

POST ribosome, thereby putting the translational machin-

ery into a nonproductive mode. This is seen by the inhibi-

tion of the coupled transcription-translation system at high

concentrations of EF4 (R1.5 mM, equivalent to 1.5 mM ri-

bosome concentration in the Rapid Translation System

(RTS; Figure 6A), and it explains the toxicity of overex-

pressed EF4 in vivo (Figure 3). From these results it is clear

that the intracellular level of EF4 must be precisely tuned

and regulated to restrict it to the narrow beneficial concen-

tration window. We finally note a potential application for

EF4 derived from results of the coupled transcription-

translation system, namely that the addition of a small, de-

fined amount of EF4 to bacterial lysates significantly im-

proves the protein output, combining both high yield and

full activity of the synthesized protein. This illustrates not

only the importance of EF4 for protein synthesis in the

bacterial cell, but paves the way to the development of

more efficient in vitro transcription-translation systems.



EXPERIMENTAL PROCEDURES

Materials

The materials used were described in Marquez et al. (2004).

Protein Sequence and Homology Analysis

Database searches for orthologs of E. coli and yeast LepA and EF-G

were carried out using BLASTP with standard parameters and protein

databases of organisms with completely sequenced genomes that

were downloaded from the Integr8 web site (http://www.ebi.ac.uk/

integr8/). Orthology was assigned based on best reciprocal hits. Addi-

tionally, the INPARANOID database (http://inparanoid.cgb.ki.se) and

the NCBI nonredundant protein database (ftp://ftp.ncbi.nih.gov/

blast/db/nr.00.tar.gz and ftp://ftp.ncbi.nih.gov/blast/db/nr.01.tar.gz)

were screened for additional homologs that were tested for orthology

by phylogenetic analysis. Subcellular localization of proteins was pre-

dicted using CHLOROP and MITOP. Multiple alignments were con-

structed using MAFFT software (http://www.biophys.kyoto-u.ac.jp/

�katoh/programs/align/mafft/) for each common structural domain

of EF-G and LepA separately, because domain order is only partially

conserved between these proteins. Only regions with sufficient se-

quence similarity for unambiguous alignment were considered. Align-

ments for individual domains were concatenated and used for phylo-

genetic analysis. Phylogenetic analysis was carried out with MEGA

software (version 3.1, http://www.megasoftware.net/). Pairwise se-

quence distances were obtained by Maximum Likelihood estimation

on the basis of the JTT substitution rate matrix with the assumption

of a uniform distribution of rates across sites. Phylogenetic trees

were reconstructed using the Neighbor Joining algorithm. Statistical

support values for internal branches of the tree were obtained from

1000 bootstrap samples and their analyses. Trees were calculated

on a reduced set of organisms (Figure 1) and on a large set of organ-

isms (data not shown). The essentials of the phylogenetic tree already

emerged during the analysis of the smaller data set. Due to the higher

number of taxa, the second data set offers an enhanced resolution of

internal branching patterns in the bacterial subtree and confirms re-

sults from the first data set.

The homology model for E. coli LepA (Figure 2C) was generated

based on the sequence alignment (Figure 2B) and the crystal structure

for Thermus thermophilus EF-G (PDB1WDT) using the Protein Homol-

ogy / analogY Recognition Engine (PHYRE) (http://www.sbg.bio.ic.ac.

uk/�phyre/). Figure 2C was created using the PyMOL Molecular

Graphics System (2002) from DeLano Scientific, San Carlos, CA,

USA (http://www.pymol.org).

LepA, Strains

E. coli LepA gene was cloned from genomic DNA using PCR primers

that introduce NdeI and BamHI restriction sites for cloning into the ex-

pression vector pET14b (Novagen). The cultures of E. coli BL21(DE3)

strain, or this strain transformed with either pET14b or pET+LepA,

were grown overnight with 150 rpm shaking at 37�C. Cells were diluted

1:200 and grown for 2–3 hr at 37�C. When the optical density reached

an A580 of �0.4, the cells were induced with 1 mM IPTG.

Preparation of Purified Components for In Vitro Assays

Reassociated 70S ribosomes were prepared according to Blaha et al.

(2000). MF-mRNA described in Triana-Alonso et al. (1995b) and en-

coding Met-Phe [sequence: GGG(A4G)3AAAAUGUUC(A4G)3AAAU]

was prepared according to Schäfer et al. (2002). EF-Tu and EF-G

with C-terminal His-tags were isolated from E. coli as described previ-

ously for EF-Tu (Boon et al., 1992) with the following changes: the cells

were induced by a cell density of 0.5 A560 and incubated further for 4 hr.

The cells were pelleted and resuspended (1 ml/g) in a buffer containing

20 mM Hepes-KOH (pH 7.6 at 0�C), 60 mM NH4Cl, 7 mM MgCl2, 7 mM

b-mercaptoethanol, and 1 mM phenylmethylsulfonyl fluoride (PMSF),

and additionally, in the case of EF-Tu, 50 mM GDP. The cells were dis-

rupted with the microfluidizer (model M-110L; Microfluidics). After
C

a centrifugation step (30,000 3 g for 45 min) the supernatant was

treated according to method 2 in Boon et al. (1992) (EF-Tu elution

from the Ni2+-column at 80 mM and EF-G at 250 mM imidazole) fol-

lowed by a final dialysis against a buffer containing 20 mM Hepes-

KOH (pH 7.6 at 0�C), 6 mM MgCl2, 150 mM KCl, 1 mM DTE, 10 mM

GDP, and 10% glycerol. Crude or specific tRNAs were purchased

from Sigma and charged according to Marquez et al. (2004). tRNA

binding and dipeptide assays and translation of model-mRNAs were

performed as described (Dinos et al., 2004), with the final conditions

of our standard buffer as follows: 20 mM Hepes-KOH (pH 7.6 at

0�C), 4.5 mM Mg(acetate)2, 150 mM NH4acetate, 4 mM b-mercaptoe-

thanol, 2 mM spermidine, and 0.05 mM spermine.

GTPase Activity

The GTPase assays were as described previously (Connell et al.,

2003), except that reactions were set up to maintain the condition of

the standard buffer with a final ribosome concentration of 0.2 mM, a fi-

nal protein concentration of 0.02–0.2 mM, and a [g-33P] GTP concen-

tration of 50 mM.

Preparation of Defined Ribosomal Complexes

Pi, PRE, and POST complexes were made as described previously

(Marquez et al., 2004). The Pi complex consisted of reassociated

70S ribosomes programmed with MF-mRNA and Ac[14C]Phe-tRNAPhe

in the P site. The PRE complex consisted of reassociated 70S ribo-

somes programmed with MF-mRNA, a [32P]deacyl-tRNAMet
f in the P

site, and Ac[14C]Phe-tRNAPhe in the A site, and they were subsequently

translocated by EF-G to yield the POST complexes. The complexes

(1 ml) were then sedimented through a sucrose cushion (1 ml 10% su-

crose in standard buffer) at 65,000 3 g for 18 hr, 4�C in a TL-100 ultra-

centrifuge (Beckman) to remove nonbound mRNA and tRNA in the

case of Pi and PRE complexes, or EF-G in the case of POST

complexes.

Puromycin Assay

Defined ribosomal complexes (0.2 mM) in the standard buffer were

incubated with or without 0.06 mM LepA and 250 mM GTP at 37�C

for 10 min. A puromycin reaction followed as described previously

(Marquez et al., 2004).

Structural Probing

Prior to tRNA footprinting, 5 pmol of ribosomal complexes were incu-

bated in 16.3 ml standard buffer at 37�C for 10 min. Chemical probing

with dimethyl sulfate (DMS) at 0�C for 30 min was performed as de-

scribed (Bayfield et al., 2001). Modification with 1-cyclohexyl-2-mor-

pholino-carbodiimidemetho-p-toluensulfonat (CMCT) was initiated

by the addition of 8.15 ml CMCT solution (84 mg/ml standard buffer)

and was performed at 37�C for 15 min. Pb(OAc)2 cleavage of 5 pmol

ribosomal complexes was performed in 18 ml standard buffer for 5

min at 25�C as described (Polacek et al., 2000). Primer extension prod-

ucts of modified rRNAs (Polacek and Barta, 1998) were separated on

6% polyacrylamide gels and quantified using a Molecular Dynamics

Storm PhosphorImager.

Toeprint

The following mRNA was used: GGCAAAGGAGGUAUUAUUAAUG

UUCAAACGAUCAAUCUACGUAUAAUAAAAGAAAAGAAAAGAAAAG

AAAAGAAAAGGACAUCACAGAUUAACG; this contains a Shine-

Dalgarno sequence (bold underlined) and codes for MFKSIRYV (bold

italic). The mRNA was annealed to a 32P-50-end-labeled primer (under-

lined italics) as described in Hartz et al. (1988) and then used to

program ribosomes for PRE and POST complexes. Briefly, 200 pmol

reassociated 70S were incubated with 5 pmol mRNA:primer and 400

pmol each of tRNAMet
f and Ac-Phe-tRNAPhe in standard buffer. Ali-

quots of the reaction mixture with 5 pmol 70S were withdrawn before

and after EF-G-dependent translocation reaction and used for toe-

printing assays. The remaining posttranslocational mixture of 275 ml
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was centrifuged through a 1 ml 10% sucrose cushion in standard

buffer (65,000 3 g for 18 hr). The pellet was resuspended in 90 ml stan-

dard buffer and aliquoted into 15 ml portions.

7.5 pmol POST complexes in 15 ml were incubated for 30 min at 37�C

with 5 times excess of LepA and 200 times excess GTP (0.1 mM) and

used for the toeprinting assay. The end-labeled primer on the mRNA

was extended by 100 units of MuMLV reverse transcriptase (Fermen-

tas) in the presence of dNTPs, each 135 mM in standard buffer at 37�C

for 15 min. The reaction was stopped by 20 ml of loading buffer (9 M

urea, 90 mM TRIS [pH 8.3] at room temperature, 90 mM boric acid,

15 mM EDTA, 0.05% xylene cyanol, 0.05% bromophenol blue) and

heated at 95�C for 5 min. Toeprint reactions were analyzed on 8%

urea-PAGE (8 M urea). The gels were quantified using a Molecular

Dynamics Storm PhosphorImager.

Coupled Transcription-Translation Assay and Quantification

of Fidelity

The assay and quantification were described previously (Dinos et al.,

2004), except that each reaction volume of 10 ml contained both 0.1

ml of the plasmid solution with the GFP gene after the T7 promoter

(pIVEX2.2-GFPcyc3; 1 mg/ml) and 1.4 ml with LepA and/or antibiotics.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.cell.com/cgi/content/full/127/4/721/DC1/.
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