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Software links

• Felsenstein’s list of software packages:

http://evolution.genetics.washington.edu/phylip/software.html

• PHYLIP is Felsenstein’s free software package for inferring phyloge-

nies,

http://evolution.genetics.washington.edu/phylip.html

• Webinterface for PHYLIP maintained at Institute Pasteur,

http://bioweb.pasteur.fr/seqanal/phylogeny/phylip-uk.html

• Puzzle (Strimmer, v. Haeseler 1996)

http://www.tree-puzzle.de/

• PAML, Phylogenetic Analysis by Maximum Likelihood,

http://abacus.gene.ucl.ac.uk/software/paml.html



Phylogeny, the tree of life

Essential molecular mechanisms like replication and gene expression are

similar among all organisms. A phylogenetic tree model captures the

assumption that present day organisms have evolved from common an-

cestors. The evolutionary relationships are called phylogeny.

(figure taken from Doolittle, Science 284, 1999)



Molecular Phylogenetics

Pioneers in the field of molecular phylogenetics were Zuckerkandl and

Pauling. They observed that the number of amino acid exchanges be-

tween hemoglobins of two species is approximately proportional to the

divergence time of the species.

E. Zuckerkandl and L. Pauling (1962), Molecular disease, evolution and

genetic heterogeneity, In Horizons in Biochemistry, ed. M. Marsha and

B. Pullman, Academic Press, pp. 189–225.

Human STPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRL

Gorilla STPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFKL

Horse SNPGAVMGNPKVKAHGKKVLHSFGEGVHHLDNLKGTFAALSELHCDKLHVDPENFRL

Pig SNADAVMGNPKVKAHGKKVLQSFSDGLKHLDNLKGTFAKLSELHCDQLHVDPENFRL

Cow STADAVMNNPKVKAHGKKVLDSFSNGMKHLDDLKGTFAALSELHCDKLHVDPENFKL

Deer SSAGAVMNNPKVKAHGKRVLDAFTQGLKHLDDLKGAFAQLSGLHCNKLHVNPQNFRL

Gull SSPTAINGNPMVRAHGKKVLTSFGEAVKNLDNIKNTFAQLSELHCDKLHVDPENFRL

(A window of an alignment of beta hemoglobin genes)



Molecular Phylogenetics, cont’d



Molecular Phylogenetics, cont’d

cat T A T G T A T T T C A T G A C A
dog T C T G T A T T T A A T G A C A
horse T C T T T A T T A C A T – – C A
ostrich – C T A T G T T A C A T – – C A
chicken – C T A T A T T A C A T – – C A
penguin – C T A T C T T A C A T – – C A

Nucleotides of one alignment column are homologous: They have evolved

from nucleotides in ancestral species.



Molecular Phylogenetics, cont’d

Advantages of molecular sequences over morphological characters for

molecular phylogenetics:

• DNA and amino acid sequences are strictly heritable units

• Unambigious description of molecular characters and character states

• Amenability to mathematical modeling and quantitative analysis

• Homology assessment is easy (?)

• Distant evolutionary relationships may be revealed

• huge amounts of data available



Molecular Phylogenetics, cont’d

Reconstructed molecular phylogenies are used to

• gain insights into (molecular) evolution

• predict gene functions

• predict that gene functions diversify

• detect various regimes of selective pressures (pharmacology)

• epidemiology

• ...

• ...



Gene Tree and Species Tree

The traditional objective of a phylogenetic tree is to represent the evolu-

tionary relationship between species. In molecular phylogenetics, usually

an alignment of homologous genes is put into the tree reconstruction.

The phylogeny of the species can be transferred from the gene tree, if

the genes are orthologous.

Consider the evolution of alpha–hemoglobins in human, chimp and rat:

Gene Tree Species Tree

human chimp rathuman chimp rat
α− α− α−



Gene Tree and Species Tree, cont’d

• Homologous genes have evolved from a common ancestor

• Orthologous genes have evolved from a common ancestor by a spe-

ciation event (the last common ancestor (LCA) of orthologous genes

represents a speciation event).

• Paralogous genes have evolved from a common ancestor by a dupli-

cation event (the LCA represents a duplication event).

α β

α− α− β−
rat chimphuman

duplication

β–chimp is paralogous to α–rat (and to α–human) since the least common

ancestor of the two genes corresponds to a duplication event.



Gene Tree and Species Tree, cont’d

Species may exchange hereditary information. This mainly occurs in

Prokaryotes and is called Horizontal Gene Transfer (HGT) . Consider

that a B. subtilis strain recently obtained the gene encoding Glyclosyl

Hydrolase (GH) from an E. coli strain.

Species Tree

E. coli H. pylori B. subtilis

Gene Tree

E. coli B. subtilis H. pylori
GH− GH− GH−

HGT of GH

The gene tree and the species tree are incongruent and it is not possible to

infer the species phylogeny based on the gene tree for Glycosyl Hydrolase.



Gene Tree and Species Tree, cont’d

There is no unique universal phylogenetic tree.

(figure taken from Doolittle, Science 284, 1999)



Phylogenetic tree reconstruction:

We are given a multiple alignment of homologous molecular sequences.

Find a leaf labeled binary tree that explains the data (best).

human

chimp

orang

gibbon

human
chimp
gorilla

gorilla

orang
gibbon

multiple sequence alignment



Binary trees

• A graph is a pair G = (V, E) consisting of a set of nodes (or vertices)

and a set E ⊆ V ×V of edges (or branches) that connect nodes. The

degree of a node v ∈ V is the number of edges incident to v.

• A path is a sequence of nodes v1, v2, . . . , vn where vi and vi+1 are

connected by an edge for all i = 1, . . . , n− 1.

• A cycle is a simple path in which the first and last vertex are the

same. A graph without cycles is called acyclic.

• A tree is a connected acyclic graph. Any two nodes of the tree are

connected by a unique simple path. A binary tree is a tree where the

nodes have degree 3 (iternal nodes) or degree 1 (leaves).

edge / branch leaf

internal node



Bifurcations

• Species evolve in time. In the simplified tree model, we assume that a

species evolves along an edge. Internal nodes reflect ancestral species

and split into two new species. This is reflected by bifurcations in the

binary tree.

HTU

OTU
(taxon)

• Internal nodes correspond to hypothetical ancestors. In phylogeny,

they are referred to as HTUs (hypothetical taxonomic units). Leaves

are called taxa or OTUs (operational taxonomic units). Phylogeny

is reconstructed for a set of taxa, which e.g. are given as genes or

proteins.



Binary tree vs. star tree

• Binary trees are said to be fully

resolved. They do not exhibit

multifurcations.

• A star tree only has one internal

node with a multifurcation (un-

resolved node, polytomy). It is

not resolved at all and does not

provide information about phylo-

genetic relationships.

• Reconstruction of phylogenies on

data with a weak phylogenetic

signal sometimes yields fully re-

solved trees which look starlike.



Where is the root?

Almost all phylogenetic tree reconstruction methods reconstruct an un-

rooted binary tree which cannot be interpreted with respect to a time

scale. In an unrooted tree, one does not know whether an internal node

is the ancestor or the descendant of its neighboring internal node.

Sometimes it is possible to obtain external information that a certain

taxon is more distantly related to the other taxa than the other ones

among themselves. Such a taxon is called outgroup. Adding a root node

to the edge to the outgroup then allows interpreting bifurcations with

respect to time.

orang
gorilla

chimp

human
gibbon (= outgroup) ogi go c h

time

The inclusion of an outgroup that is too distantly related may lead to

incorrect tree reconstructions.



Topology and splits

• Two trees showing the same branching pattern are said to have the

same tree topology.

A

C
F

D

E B

A

C

F

D
B

E

A

C

E

B

F D

a) b) c)

• The trees shown in a) and c) have the same topology whereas the

topology of the tree in b) is different.



Basic notions, topology and splits, cont’d

• A split (bipartition) at an edge partitions the set of taxa into two

disjoint sets.

A

C
F

D

E B

A

C

F

D
B

E

A

C

E

B

F D

a) b) c)

• A split at an edge is phylogenetically informative, if the edge

is not connected to a leaf. For the tree in b) the splits

(AC‖FDEB), (FD‖ACEB), (EB‖ACFD) are phylogenetically informa-

tive.

• The topology of a binary tree is given by its set of phylogenetically

informative splits.



Newick format

Electronically, trees are usually held in a readable text file in the Newick

format.

A B

C

D E

(((A,B),C),(D,E))

The root is represented by the outmost parenthesis. There are many

ways to represent unrooted trees.

A

B E

D

C

((A,B),C,(D,E))

(((A,B),C),(D,E))

((A,B),(C,(D,E)))

(A,(B,(C,(D,E))))

...



Weighted trees

Reconstructed phylogenetic trees normally are weighted trees. That is,

each edge is assigned an edge length. Edge lengths represent mutation

events which are supposed to have occured on the evolutionary path.

A

3 3

B

C D

1

1 1

Differences in edge lenghts in the above tree reflect the fact, that the

rates at which mutations accumulate in the sequences vary among the

lineages to the taxa.



Methods for phylogeny reconstruction ...

... are classified according to their input data.

1. Character based methods take as input a character state matrix.

Examples for characters are ’number of extremities’, ’existence of a

backbone, ’nucleotide at a site in a molecular sequence’, ...

• Maximum Parsimony

• Maximum Likelihood

2. Distance based methods take as input a distance matrix, which is

obtained by measuring the dissimilarity or the evolutionary distance

between the taxa.

• UPGMA, clustering

• Neighbor Joining

• Least Squares (Fitch–Margoliash)

• Minimum Evolution



Character state matrix

nucleus multicellular

E. coli 0 0

M. jannaschii 0 0

S. cerevisiae 1 0

H. sapiens 1 1

H. sapiens S. cerev. E. coli M. jannaschii

nucleus

multicellular

(0,0)

(0,0)(1,0)

(1,0)(1,1) (0,0) (0,0)

This tree in accordance with Ockham’s razor : The best hypothesis is the

one requiring the smallest number of assumptions.



Character state matrix, cont’d

An alignment is a character state matrix. The characters are the sites of

the alignment, the character states are the nucleotides a taxa holds at a

site.

Human STPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRL

Gorilla STPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFKL

Horse SNPGAVMGNPKVKAHGKKVLHSFGEGVHHLDNLKGTFAALSELHCDKLHVDPENFRL

Pig SNADAVMGNPKVKAHGKKVLQSFSDGLKHLDNLKGTFAKLSELHCDQLHVDPENFRL

Cow STADAVMNNPKVKAHGKKVLDSFSNGMKHLDDLKGTFAALSELHCDKLHVDPENFKL

Deer SSAGAVMNNPKVKAHGKRVLDAFTQGLKHLDDLKGAFAQLSGLHCNKLHVNPQNFRL

Gull SSPTAINGNPMVRAHGKKVLTSFGEAVKNLDNIKNTFAQLSELHCDKLHVDPENFRL

The characters, i.e. the alignment columns, are treated (or modeled)

independently of each other.



Maximum Parsimony

According to Ockham’s razor (”entia non sunt multiplicanda praeter ne-

cessitatem”) Maximum Parsimony identifies a tree which can be explained

by a minimum number of substitution events.

1 2 3 4

a G A A T
b G G C C
c G A C C
d T G A T

Consider the above alignment. There are three tree topologies for the

four taxa. For each tree topology, we place the sequences of the taxa at

its leaves. We are ignorant about sequences at internal nodes (HTUs).

But we assign sequences to internal nodes, such that the number of

substitutions along the edges which are required to describe the transition

from one sequence to another in the tree gets minimal. Among the three

topologies, the one(s) which can be explained by the smallest number of

substitution events is (are) the Maximum Parsimony Tree(s).

(Obtain Maximum Parsimony Tree for above alignment at blackboard.

Which sites are phylogenetically informative ?).



Maximum Parsimony, tree length

The tree length li of a tree Ti is the minimal number of substitutions

which is necessary to explain the tree when assigning sequences to internal

nodes. In order to identify the Maximum Parsimony Tree, we applied the

following procedure:

- For each tree topology Ti

- li ← 0

- For each alignment column j

- Assign nucleotides to internal nodes in Ti such that the number

of substitutions sij along the edges is minimal

- li ← li + sij

A tree Ti with the smallest tree length li is a Maximum Parsimony Tree.



Maximum Parsimony, Fitch algorithm

The first algorithm to compute sij efficiently was proposed by Fitch

(1971).

Given a set of taxa, a tree topology i and an alignment column j

orang

gibbon

human

chimp

gorilla

human A

chimp A

gorilla C

orang C

gibbon G

1.) Add a root node to any edge



Maximum Parsimony, Fitch algorithm, cont’d

2.) bottom-up-pass

The rooted tree is traversed

from the leaves to the root.

According to the follow-

ing rule, sets of nucleotides

(character states) are as-

signed to internal nodes. Say,

u is the ancestor of v and w

and U ,V,W are the respective

sets of nucleotides, then set

U =

{

V ∪W, if V ∩W = ∅
V ∩W, else

cgio h go

C G CA A

v

u

w



Maximum Parsimony, Fitch algorithm, cont’d

3.) top-down-pass

The tree is traversed from

the root node to the leaves

and the internal nodes are as-

signed nucleotides according

to the following rules

• Assign the root node any

nucleotide x out of its set

of states Uroot.

• Assign the child v of par-

ent u the nucleotide

{

x, if x ∈ U
any nucleotide, else

C CG A A

{A,C}{C,G}

{C,G,A}

{A}



Maximum Parsimony, Fitch algorithm, cont’d

cgio h go

CA AC G

C

C

A

A

For the given topology i and the alignment column j, the number of

substitutions in the tree is sij = 3. The time complexity of the Fitch

algorithm is O(n) where n is the number of taxa.

(Is there a tree topology with fewer substitutions for this column? Con-

sider the taxas’ set of character states.)



Maximum Parsimony, Sankoff algorithm

Sankoff (1975) suggests a Dynamic Programming algorithm to compute

sij. The Sankoff algorithm is more general than the Fitch algorithm.

For example, it allows to score different changes differently. Further,

it is possible to apply Sankoff’s algorithm to trees with multifurcations

(polytomies) at internal nodes.

The algorithm traverses the tree bottom-up from the leaves to the root

in a way such that when a node is processed, all its children have already

been processed. Each node is assigned to a map with all possible character

states λi as keys and the tree length li of the subtree rooted at this

node when assigning it to λi, as entries. A leaf’s map contains the leafs

character state as the only key with entry 0.



Maximum Parsimony, Sankoff algorithm,
cont’d

Initialisation: Root the tree T at any internal edge. Label each leaf of T

with the respective character state and set l (leaf) = 0.

Recursion:

Let v be an internal node in T . Let λi (v)

be the i − th state of node v and li (v)

be the length of the subtree rooted at v

when assigning λi to v.

foreach λi (v), do

li (v) =
∑

(w child of v) min
j

{

lj (w) + c
(

λj (w) , λi (v)
)}

where c
(

λj (w) , λi (v)
)

is the cost func-

tion for transitions.

v

l

l
l

(v)
(v)

(v)

l
l(v)

2

3

4

2

3

4

1λ
λ
λ
λ

1(v)
(v)
(v)

(v)

0 0 0 0 0C G A A C

A
G
C
T

2
A
G
C
T

2

A
G
C
T

A
G
C
T

1

1
2

2
1
1
2

1
3

3

3
3
3
4

T

The minimal entry in the roots map then is the parsimony tree length lT .



The number of leaf labeled binary trees for n
taxa

All possible leaf

labeled binary tree

topologies for n taxa

can be enumerated

by the following

procedure: We start

with a tree containing

any two taxa and

subsequently add the

other taxa to the tree

by inserting internal

nodes and edges to

the taxa.

(Derive formula as ex-

ercise. Hint: the

number of edges of

a binary tree with n

leaves equals 2n− 3)

A

A B

B

C

BA A A

C

C

B CD
D D

B

A E

B

CD

B E

A

CD

A B

E

CD

A B

C

D E

A B

D

E C

add taxon C

add taxon D

add taxon E



The number of binary trees given n taxa,
cont’d

The numbers of different unrooted and rooted binary tree topologies Un

and Rn are

Un =
n

∏

i=3

(2i− 5), Rn =
n+1
∏

i=3

(2i− 5)

where n is the number of taxa.

n Un Rn

2 1 1

3 1 3

4 3 15

5 15 105

6 105 945

7 945 10395

8 10395 135135

9 135135 2027025

10 2027025 34459425

R20 = 8 200 794 532 637 891 559 375



Maximum Parsimony, Branch and Bound

The identification of a Maximum Parsimony Tree requires checking the

tree lengths for exponentially many tree topologies. For treelike data,

the application of a branch and bound–strategy (Hendy and Penny 1982)

drastically reduces the tree search space and exact solutions for 20 or

more taxa are obtained in manageable time.

Concept:

• Obtain un upper bound for the tree length (e.g. by Neighbor Joining)

• Construct all tree topologies by consecutively adding edges and taxa

(see above)

• If the tree length of an intermediate tree is larger than the upper

bound, searching the corresponding subtrees is halted.



STOP

if tree length > upper bound

A E

B

D C

A

C

D

B

E

STOP

STOPSTOPSTOP
STOP

STOP

STOP

A

A B

B

C

BA A A

C

C

B CD
D D

B

B E

A

CD

A B

E

CD

A B

C

D E

A B

D

E C

A

CB

A D

B

A

C

D

C

D

B

E

D

E

C

B

E

E

A



Maximum Parsimony, miscellaneous

• If branch and bound methods are too slow, heuristic searches are used.

Usually an initial tree is obtained, e.g. by Neighbor Joining, and this

tree is rearranged, for example by subtree pruning and regrafting.

• Transitions (exchanges between either two pyrimidines or two purines)

occur more often than transversions (a pyrimidine is exchanged by a

purin or vice versa). Weighted parsimony therefore assigns a larger

’substitution weight’ to transversions. Then, the Sankoff algorithm

(and not the Fitch algorithm) has to be used to compute the cost of

an alignment column under a tree topology.



Maximum Parsimony, miscellaneous, cont’d

• A character is called phylogenetically uninformative if it does not

contribute to resolving relationships among sequences. For example,

any conserved alignment column that has the same character state

for each taxon is phylogenetically uninformative.

• Sometimes, Maximum Parsimony trees are represented as weighted

trees. The weight of an edge then is the cost (the parsimony score)

for the transition between the two sequences at the nodes. Note

however, that the assignment of sequences to internal nodes is not

unique. As a consequence, the most parsimonious tree topology might

be represented by different weighted trees.



Maximum Parsimony, miscellaneous, cont’d

• Maximum Parsimony is widely used. How-

ever, Maximum Parsimony does not take

into account that the observed character

states of taxa being neighbors in the tree

may have been multiply substituted. Max-

imum Parsimony therefore should only be

applied to closely related sequences where

the probability that multiple substitutions

occured is small.

A

A

C

T
C

T



Inconsistency of Maximum Parsimony

An estimation method is consistent, if it ap-

proaches the true value of the quantity es-

timated as more and more amounts of data

are available. When reconstructing phyloge-

nies, the estimated quantities are the edge

lengths of the tree and the tree topology.

Assume, we know that the four sequences

representing taxa a, b, c, d have evolved ac-

cording to the tree shown on the right. The

edges to a and b are short whereas the edge

lengths to c and d are much larger. In other

words, rates of evolution for taxa c and d

are relatively high compared to the rates at

which taxa a and b evolved.

The ’true’ tree

c

ba

d

1 1

1 1

99 99



Inconsistency of Maximum Parsimony, cont’d

The following sequence family was generated by REFORM (Random Evo-

lutionary FORests MOdel, see http://www.molgen.mpg.de/~rahmann/). The

root sequence was drawn from the uniform distribution of nucleotides,

and the sequences were simulated according to the Jukes–Cantor model

(see below) and the tree shown above, where the edge lengths correspond

to the expected number of substitutions per 100 sites.

s s s s | 4

a ATAAAGAGAAATGAGGACTACCCCAGACAAAATACTTAGTCATTAGAGGATGCACGAGAG |60

b ATAAAGCGAAAGGAGGAGTACCCCAGACAAAATACTCAGTCATTAGAGGCTGCACGAGAG |60

c AGCAAGAACTCGTCACCCTGCCACACACACAAAGCTGTATCGACCAACAAATGTCAAGAA |60

d ATAATGTGATTGGGGCTGCGGGGCACTGGACATTCTTCGCCCGCAACTCCAGCACGAGCA |60

* * * * * * * *** * ** * * * * * ** * |21

i i i i i i ii i | 9

s - sites where nucleotides in sequences a and b differ

* - sites with identical nucleotides in c and d

i - phylogenetically informative sites



Inconsistency of Maximum Parsimony, cont’d

Sequences a and b are well conserved. Only four susbstitutions have

accumulated in the sequences on their evolutionary paths. On the other

hand, sequences c and d are very divergent. But even for two random

sequences we expect that 1
4 of the sites have the same nucleotide. In the

alignment there are 21 sites with the same nucleotide in c and d. With

respect to a Maximum Parsimony reconstruction, these sites become the

phylogenetically informative ones in case that the nucleotides between a

and b are still conserved and different from the nucleotides in c and d. In

the alignment there are 9 informative sites, but only one of them favors

the correct topology. The Maximum Parsimony tree therefore has the

wrong topology.

Maximum Parsimony tree

a

b

c

d

This effect is called long branch attraction. A ML estimation finds the

correct topology.



Inconsistency of Maximum Parsimony, cont’d

For a binary alphabet and probabilities of change p and q, Felsenstein

(1978) showed that for enough long sequences, Maximum Parsimony will

find the wrong tree topology, if

q (1− q) ≤ p2

This area is called Felsenstein zone

0 0.1 0.2 0.3 0.4 0.5

q

0

0.1

0.2

0.3

0.4

0.5

p

Felsenstein
     zone

p p

q
q

c

a
q

b

d



Non–parametric Bootstrapping

Non–parametric bootstrapping is the most commonly used method to

obtain a quantity telling us something about the uncertainty of tree re-

constructions.” (Felsenstein 1983)

The idea of non–parametric bootstrapping is to disturb the observed

data, that is the composition of alignment columns, and to check if

the reconstructed trees are similar to the original one (or among each

other). The order of the columns is irrelevant for the outcome of the

tree estimate.

Procedure: In one bootstrap simulation step, a new alignment or boot-

strap replicate is generated by randomly drawing columns from the orig-

inal alignment with replacement. This is repeated until the bootstrap

replicate contains as many columns as the original alignment.

a
b
c
d
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original alignmentoriginal alignment bootstrap replicates

with replacement

...

draw columns at random

G G C C
G A C C
T G A T

G A A T



Non–parametric Bootstrapping, cont’d

In this way, n bootstrap replicates are obtained where typical values for

n range from 100− 1000. The tree estimation is applied to all bootstrap

replicates in turn. We end up with n “bootstrap trees” each coming with

a set of splits. Bootstrap values (or the bootstrap support) correspond

to the relative frequency at which a split of the tree (estimated on the

original alignment) occured in the bootstrap replicates.

If we apply the non-parametric bootstrap to the above alignment (sec-

tion Incosistency of MP), the wrong Maximum Parsimony tree is highly

supported

a
bootstrap value

97 %

b

d

c



Non–parametric Bootstrapping, cont’d

Non-parametric bootstrapping ...

“... is not a test of how accurate your tree is; it only gives information

about the stability of the tree topology (the branching order), and it helps

assess wether the sequence data is adequate to validate the topology.”

(Berry and Gascuel, 1996)

And, please note:

Bootstrapping does not provide information about the adequacy of the

method !



Summarizing Maximum Parsimony (MP):
keywords to remember

• MP is NP-hard.

Branch and Bound strategies (exact solution) or heuristics to search

the tree space have to be applied.

• Fitch algorithm (1971):

time complexity O(n), n - number of taxa

• Sankoff algorithm (1975), the DP version

• Felsenstein (1978):

MP is inconsistent (Long Branch Attraction)



Trees from distances

The input for distance based tree reconstruction methods are pairwise

distances between taxa. The pairwise distances normally are computed

from the multiple alignment.

Consider the set of taxa {A, B, C, D, E} and that the measured distances

between the taxa are given in the distance matrix dM .

dM

A B C D E
A 0 200 300 600 600
B 0 300 600 600
C 0 600 600
D 0 200
E 0

dT

100

150

300

A B C D E

d(C,D) = 600

d(A,C) = 300

We want to find a tree T with its path metric dT . T can be reconstructed

algorithmically or by fitting dT to dM . For the above tree we see that

dT = dM .



Trees from distances, cont’d

100

150

300

A B C D E

d(C,D) = 600

d(A,C) = 300

The above representation of a phylogenetic tree is called a dendrogram.

In a dendrogram, we can read off the edge lengths from the vertical axis.

For example, we can check that the path length between leaves A and B

is dT (A, B) = 100+100 = 200. All path lengths between two leaves form

the so called path metric dT on the set of leaves in the tree.



Metric

Definition: A metric on a set of objects O is given by an assignment of

a real number dij (a distance) to each pair i, j ∈ O, where dij fulfills the

following requirements:

(i) dij > 0 for i 6= j

(ii) dij = 0 for i = j

(iii) dij = dji ∀ i, j ∈ O

(iv) dij ≤ dik + dkj ∀ i, j, k ∈ O

The latter requirement is called the triangle inequality

dij

dik djk

i j

k



Additive metric

Let d be a metric on O. d is an additive metric if it satisfies the four

point condition (Bunemann 1971).

Four point condition: d is an additive metric on O, if the elements of

every four-element-subset of O can be labeled by x, y, u and v such that

dxy + duv ≤ dxu + dyv = dxv + dyu.

dxy

x

y

u

v

d

xu

dyv d

d

uv

d xv

yu

+ < =+ +

The four point condition is a strengthened version of the triangle inequal-

ity. It implies that the path metric of a tree is an additive metric.



Ultrametric

d is an ultrametric if it satisfies the three point condition.

Three point condition: d is an ultrametric on O, if the elements of

every three-element-subset of O can be labeled by x, y, z such that

dxy ≤ dxz = dyz.

dxy d d=xz yz

x

y

z

x

y

z

This is an even stronger version of the triangle inequality.

If d is an ultrametric, it is an additive metric.

If d is an additive metric, it is a metric.



Ultrametric trees

A weighted tree is called an ultrametric tree if it can be rooted in such a

way that the distances from the root to each leaf are equal.

evolutionary distance
time/

1t
4t

1 tt  = 2

4t1t  + t  =3

t  + t  = t5 4 6

A B C D

2

3

t

t
t

5t

6

There is a clear interpretation inherent to ultrametric trees: Sequences

have evolved from a common ancestor at constant rate (molecular clock

hypothesis).

The path metric of an ultrametric tree is an ultrametric. Conversely, if

distances dM between a set of objects form an ultrametric, there is one

ultrametric tree T corresponding to the distance measure, that is dT = dM .

Given an ultrametric, this ultrametric tree can easily be reconstructed by

one of the agglomerative clustering procedures described below.



UPGMA (Unweighted pair group method
using arithmetic averages

Given a set of objects O with n elements and distances di,j, i, j ∈ O,

initially each object is assigned a singleton cluster. Then the algorithm

proceeds as follows:

While there is more than one cluster left, do:

1. Find the pair (i, j) with the smallest distance dij and create a new

cluster u that joins clusters i and j.

2. Define the height (i.e. distance from leaves) of u to be lij := dij/2

3. Compute the distance dku of u to any other cluster: dku :=
nidki+njdkj

ni+nj
where ni is the number of elements in cluster i. dku is the arithmetic

average of the original distances of all elements in k and all elements

in u.

4. Remove i, j from the list of objects



Clustering

Different clustering methods differ in how they define the distance dku

between two clusters.

single linkage clustering:

dku := min(dki, dkj)

complete linkage clustering:

dku := max(dki, dkj)

average linkage clustering or WPGMA (weighted pair group method us-

ing arithmetic averages):

dku :=
dki + dkj

2

UPGMA

dku :=
nidki + njdkj

ni + nj



UPGMA, cont’d

UPGMA was originally developed for phenetics, i.e. for constructing

phenograms reflecting phenotypic similarities rather than evolutionary dis-

tances.

If the assumption of an approximately constant rate of evolution among

the lineages does not hold, UPGMA fails to find the correct topology.

Consider that taxa evolved according to the below tree:

A

3 3

B

C D

1

1 1



Additive trees

We call a weighted binary tree an additive tree. Rates of evolution vary

among species, among gene families, among genes, among sites in molec-

ular sequences, and in time. Additive trees do not presume a constant

evolutionary rate.

Given an additive metric there is exactly one tree topology that allows

for realization of an additive tree.

A

B

C

D

E



Exact reconstruction of additive trees

An additive metric can be represented as a unique additive tree which

can be reconstructed in time complexity O(n2) (Waterman, Smith, Singh,

Beyer, 1977).

The algorithm successively inserts objects into intermediate trees until no

objects are left to insert. It makes use of the following rationale:

Given an intermediate tree T ′ containing leaf i and leaf j, one tests if one

can insert an edge connecting leaf k to the intermediate tree along the

path connecting i and j. Denote the node connecting i, j and k as v and

the weight of the edge being inserted as dvk.



Exact reconstruction of additive trees, cont’d

diji j

k

dik djk

i j

k

dvk

v

dik + djk = div + dvk + djv + dvk = 2 · dvk + dij

dvk =
1

2
(dik + djk − dij)

div = dik − dvk

djv = djk − dvk



Neighbor Joining

Since distance measures on multiple alignments practically do not provide

an additive metric, the above algorithm to reconstruct the additive tree

from an additive metric is not applicable to real data. The neighbor

joining method (Saitou, Nei, 1987) is similar to cluster analysis in some

ways. The individual taxa are iteratively grouped together, forming larger

and larger clusters of taxa. In contrast to UPGMA, neighbor joining does

not assume a molecular clock, but it assumes that observed distances are

close to an additive metric. Given an additive metric, the neighbor joining

method identifies the correct tree and it also correctly reconstructs trees

if additivity only holds approximately.

Definition: Two taxa are neighbors in a tree if the path between them

contains only one node.

As neighbor relationships of nodes in a binary tree uniquely define the

tree topology, successively identifying neighbors is a way to reconstrut

the tree. The time complexity of the Neighbor Joining algorithm is O(n3)

given n taxa.



Neighbor Joining, cont’d

The concept to identify neighbors is the following: A star tree is decom-

posed

B

C

A

D

E

a)

B

C

d
c

e

D

E

b)
A

a

b
f

b)

B

A

E

C

D

c)

(A,B) (AB, D)

such that the tree length is minimized in each step. Consider the above

star tree with N leaves shown in a). The star tree corresponds to the

assumption that there is no clustering of taxa. In general there is a

clustering of taxa and if so, the overall tree length (the sum of all branch

lengths) SF of the true tree or the final NJ tree (see c)) is smaller than

the overall tree length of the star tree S0.



Neighbor Joining, cont’d

The tree length of the tree where neighbors i and

j are resolved is

Sij =
N
∑

k=1
k 6=i,j

dki + dkj

2(N − 2)
+

dij

2
+

N
∑

k<l
k,l 6=i,j

dkl

N − 2

where N is the number of taxa.

For example,

SAB = (3a + 3b + 6f + 2c + 2d + 2e) ·
1

6

+
a + b

2
+ (2c + 2d + 2e) ·

1

3
= a + b + f + c + d + e

S0

B

C

A

D

E

B

C

d
c

e

D

E A

a

b
f

SAB



Neighbor Joining, cont’d

Theorem: Given an additive tree T . O is the set of leaves of T . Values

of Sij are computed by means of the path metric dT . Then m, n ∈ O are

neighbors in T , if Smn ≤ Sij ∀ i, j ∈ O.

In other words, if our distances form an additive metric, we can identify

neighbors in the additive tree by computing Sij for all pairs of taxa if the

distances form an additive metric.

The neighbors are combined into one composite taxon and the procedure

is repeated.

We rewrite Sij:

Sij =
1

2(N − 2)

(

2 ·
N
∑

k<l
k,l 6=i,j

dkl +
N
∑

k=1
k 6=i,j

(dki + dkj)

)

+
dij

2

=
1

2(N − 2)

(

2 ·
N
∑

k<l

dkl − ri − rj

)

+
dij

2

with ri :=
∑N

k=1 dik.



Neighbor Joining, cont’d

Since the sum
∑N

k<l dkl is the same for all

pairs of taxa k and l, we can replace Sij by

Mij := dij −
ri + rj

N − 2

for the purpose of easier computation of rel-

ative values of Sij.

ri is also called net divergence.
ri+rj
N−2 holds averaged distances of i and j to

all other leaves. Thus, if i and j were neigh-

bors in evolution and i or j evolved fast such

that dij is large,
ri+rj
N−2 is also large and Mij

gets small.

i

ri := kiΣd
k

j



Neighbor Joining, cont’d

Algorithm: Given distances dij between members of a set O of N objects.

Represent the objects as terminal nodes in a starlike tree:

1. For each terminal node i compute

ri :=
N
∑

k=1

dik.

2. For all pairs of terminal nodes (i, j) compute

Mij := dij −
ri + rj

N − 2
.

Let (i, j) be a pair with minimal value Mij for i 6= j.

3. Join nodes i and j into a new terminal node u. The branch lengths

from u to i and j are:

viu =
dij

2
+

ri − rj

2N − 4
and vju = dij − viu.



Neighbor Joining, cont’d

4. Obtain the distances from u to another terminal node k by

dku =
dik + djk − dij

2
.

j

u

k

i

i

uj

ukd

uv

v

5. Delete i and j from the set of objects. If there are more than two

clusters left, continue with Step 1



Neighbor Joining, cont’d

• NJ is fast (O(n3)) and therefore it is suited to be applied to large data

sets

• takes rate differences into account

• makes use of distance measure and its model

• result is one tree (→ Bootstrapping)

• reduction of sequence information

• no objective function



Least Squares on Distances

The problem addressed in reconstructing trees on distances is to find a

tree T with path metric dT on measured distances dM . This problem

can be divided into identifying the topology and reconstructing the edge

lengths. Neighbor Joining solves the problem algorithmically and all at

once.

Given a tree topology, Fitch and Margoliash (1967) apply an objective

function to fit dT to dM . They define the disagreement between a tree

and the distance measure by the sum of squared weighted differences in

distances:

E :=
∑

i<j

|dT
ij − dM

ij |
2 ·

1

(dM
ij )2

The weights take into account relative uncertanties in the distance mea-

sures and may be adapted. dT is obtained by minimizing E.



Methods for phylogeny reconstruction ...

... can also be classified according to whether they find the tree algorith-

mically or whether they optimize an objective function

• with objective function

– Maximum Parsimony

– Least Squares (Fitch–Margoliash)

– Maximum Likelihood

• algorithmic

– UPGMA, clustering

– Neighbor Joining



Summarizing distance based methods,
keywords to remember:

• Additive metrics and ultrametrics

• UPGMA and hierarchical clustering, time complexity O(n2)

• concept of Neighbor Joining, time complexity O(n3)



Evolutionary distances

t = 0 C C A T G C G
↓

t = 1 C C A C G C G
↓

t = 2 C C G C G C G
↓

t = 3 C C C C G C G
↓

t = 4 C C C G G C G
↓

t = 5 C A C G G C G
↓

t = 6 G A C G G C G
↓

t = 7 G A C T G C G
↓

t = 8 G A C T G C A
↓

t = 9 A A C T G C A
↓

t = 10 A A T C G C A



Evolutionary distances, cont’d

• We are given a multiple alignment and want to obtain pairwise evo-

lutionary distances

• With u as the number of mismatches in an alignment of length n, the

Hamming distance per 100 sites is

D(u, n) = 100
u

n

• The distance D does not take multiple substitutions into account. As

a consequence, pairwise distances are not additivie.

• For any number of mismatches u and alignment lengths n, we have

0 <= D <= 100

. For example

D(u = 0, n = 100) = 0 and D(u = 75, n = 100) = 75



Evolutionary distances, cont’d

• Pairwise evolutionary distances d(u, n) are meant to scale in units of

substitutions (per 100 sites) that most likely have occured on the

evolutionary paths.

• If we assume (as in the Jukes-Cantor model, see below)

i) that sequence positions are i.i.d. (independently identically dis-

tributed)

ii) that nucleotides are uniformly distributed and independently sub-

stituted such that the probabilities for nucleotide substitutions are

all the same and do not depend on the particular nucleotides

we require that

d(u = 0, n = 100) = 0 and d(u = 75, n = 100) =∞

(the latter follows from the requirement that the evolutionary distance

for two random sequences is d =∞)



Markov chains (“time-discrete Markov
processes”)

1. The states are A, C, G, T

2. A starting distribution of states ρ0 =

(ρA, ρC, ρG, ρT )

3. Transition probabilites in one “time step” be-

tween states Pij = Pr(j|i)

A C

G T

State probabilities depend only on the previous state and not on the past

of the chain (Markov property). If transition probabilities don’t change in

time (homogeneity) the probability of a sequence x = (x1, ..., xL) is

Pr(x) = ρx1

L
∏

i=2

Pr(xi|xi−1)

Transition probabilities for n steps are obtained from the n-th power of

the stochastic one-step transition matrix P , from Pn.



The Markov model of sequence evolution

Sequence evolution is modeled by a (time-continuous) Markov process

that acts independently on the sites of the sequence.

Xt1 = A T C G C · · ·
↓ ↓ ↓ ↓ ↓

Xt2 = G T C A G · · ·
↓ ↓ ↓ ↓ ↓

Xt3 = G T C A C · · ·
↓ ↓ ↓ ↓ ↓

Xt4 = A G C A G · · ·

A Markov process is a sequence of random variables (Xt)t≥0 given by a

triple
(

A, ρ0, Q
)

, where A = {1, ..., n} is the set of states (nucleotides or

amino acid residues) (Xt) takes, ρ0 is the initial probability distribution

of states (ρ0
i = Pr[X0 = i]) and the rate matrix Q as a n× n matrix with

substitution rates (something like transition probabilities for infinitesimal

small time steps) between states.



The Markov model of sequence evolution,
cont’d

• Markov property (the process is memoryless):

Pr[X(tn) = s|X(t1) = i1, X(t2) = i2, ..., X(tn−1) = in−1]

= Pr[X(tn) = s|X(tn−1) = in−1]

• Homogeneity:

Transition probabilities only depend on the time interval:

Pij(t) = Pr[Xt+s = j|Xs = i] = Pr[Xt = j|X0 = i]

• The time t of the Markov process is measured in units of substitutions

• The transition probablity Pij(t) is the probability that state i changes

into state j in time t

• We think of the distribution ρ(t) as a row vector. The evolution of

the distribution of states at time s in time t is given by

ρ(s)P(t) = ρ(s + t)



The Markov model of sequence evolution,
cont’d

• Stationary distribution:

π is the stationary distribution of the process, if π doesn’t change in

time:

πj =
∑

i∈A

πiPij(t) for all j

πP(t) = π

We say that the process is in equilibrium if the distribution of the

process is the stationary distribution π.

π exists if any state can be reached by any other state.



The transition probability matrix

For nucleotides, the simplest model is the Jukes–

Cantor–model (1969). The set of states comprises

the nucleotides (A = {1,2,3,4}). The stationary

distribution π of nucleotides is the uniform distri-

bution (π = (1
4, 1

4, 1
4, 1

4)) and the probabilities that

any nucleotide is substituted by another any other

nucleotide are equal.

Thus, the transition probability matrix of the

Jukes–Cantor model has the form

at at

at

at

at

at

1−3at 1−3at

1−3at1−3at

A C

G T

P(t) =











1− 3at at at at
at 1− 3at at at
at at 1− 3at at
at at at 1− 3at













The transition probability matrix, cont’d

The transition probability matrix P(t) is a stochastic matrix and has the

following properties:

• P(0) = I, I - identity matrix,

• Pij(t) ≥ 0 and
∑

j Pij(t) = 1,

• P(s + t) = P(s)P(t)

The latter equation is called Chapman–Kolmogorov equation. E.g. think

of A = {1,2,3,4} and the process being in state 1 reaching state t in

time s + t. The transition probability P14(s + t) is

Pr[Xs+t = 4|X0 = 1] = Pr[Xs = 1|X0 = 1] · Pr[Xs+t = 4|Xs = 1]

+ Pr[Xs = 2|X0 = 1] · Pr[Xs+t = 4|Xs = 2]

+ Pr[Xs = 3|X0 = 1] · Pr[Xs+t = 4|Xs = 3]

+ Pr[Xs = 4|X0 = 1] · Pr[Xs+t = 4|Xs = 4]

=
∑

k∈AP1k(s)Pk4(t)



Maximum Likelihood and coin tossing

Assume, we have flipped a coin 10 times and got 7 times its head and 3

times its tail. We want to estimate the probability Prob(head), that the

head shows up when the coin is flipped?

The likelihood L(p) is the probability to observe one outcome (of many

possible outcomes) of a random experiment (one data set) under the

probabibilistic model with its model parameter p.

L(p) = Pr(data|p) = p7(1− p)3

We think of the likelihood as a function depending on the model param-

eters. Note that the sum or the integral over the parameter space is not

1!

p̂ = Prob(head) is determined as the p where L assumes its maximum.

The variance of the estimate depends on the sample size and can be

estimated from the likelihood curvature. If the data was generated under

the model, the ML estimate of the parameters yields exact or true values

for infinite sample sizes.



Evolutionary distances with Maximum
Likelihood

We think of the observed alignment D as the outcome of the Markovian

evolution.

Consider the following alignment D:
A G C
A T A

AGC

t1 t2

ATA
We assume that the process is in equilibrium.

The likelihood to observe the alignment D (the data) with distance t =

(t1 + t2) given the Markov model M then is

Pr(D|t,M) =
∑

i∈A

πiPiA(t1)PiA(t2)·
∑

i∈A

πiPiG(t1)PiT (t2)·
∑

i∈A

πiPiC(t1)PiA(t2)



Evolutionary distances with Maximum
Likelihood, cont’d

The Markov process is called reversible, if the evolution of state i into

state j in time t is modelled by the same process as the evolution of state

i into state j in time t:

πiPij(t) = πjPji(t) for all i, j, t

(detailed balance equations)

A C

We assume the time-reversible Jukes-Cantor model and apply the

Chapman-Kolmogorov equations:

Pr(D|t,M) = πAPAA(t) · πGPGT (t) · πCPCA(t)

= πAPAA(t) · πTPTG(t) · πAPAC(t)

If the process is reversible and if we are given a pairwise alignment, we

are ignorant about the location of the root node.



Evolutionary distances with Maximum
Likelihood, cont’d

Consider Pr(D|t,M) as likelihood function depending on the distance t as

model parameter:

logL(t) = logPr(D|t,M)

The evolutionary distance is estimated as distance t̂ where the likelihood

function assumes its maximum.

If sequences have evolved according to the evolutionary model (M, t), and

if we have infinitely many samples (alignment columns) of the outcome

of this evolution, the evolutionary distance can be exactly reestimated by

Maximum Likelihood (ML), i.e. the ML distance estimator is consistent.

For finite sample sizes, ML estimates t̂ are normally distributed around

the ’true’ value for t.

We have to evaluate the likelihood function and thus the transition prob-

abilities for different times or distances t. This is achieved by means of

the rate matrix...



The rate matrix

The rate matrix Q of a time-continuous Markov process provides an in-

finitesimal description of the process.

We assume that the probability transition matrix P(t) of a time continuous

Markov process is continuous and differentiable at any t > 0. I.e. the limit

Q := lim
tց0

P(t)− I

t

exists. Q is known as the rate matrix or the generator of the Markov

chain. For very small time periods h > 0, transition probabilities are

approximated by

P(h) ≈ I + hQ

Pij(h) ≈ Qij · h, i 6= j.

From the last equation we see, that the entries of Q may be interpreted

as substitution rate.



The rate matrix, cont’d

From the Chapman-Kolmogorov equation we get

d

dt
P(t) = lim

hց0

P(t + h)− P(t)

h

= lim
hց0

P(t)P(h) − P(t)I

h

= P(t) lim
hց0

P(h)− P(0)

h
d

dt
P(t) = P(t)Q

Under the initial condition P(0) = I the differential equation can be solved

and yields (as in the one–dimensional case)

P(t) = exp(tQ) =
∞
∑

k=0

Qktk

k!
.

Transition probabilities for any t > 0 are computed from the matrix Q.



The rate matrix, cont’d

Recall, that for very small h we have P(h) ≈ I + hQ.

Q has the following properties:

• Qij ≥ 0 for i 6= j

• Qij ≥ 0, i 6= j ⇒ Qii ≤ 0

•
∑

j Qij = 0, Qii = −
∑

j 6=i Qij

Further,

• π is stationary distribution if πQ = 0

• the process is reversible, if πiQij = πjQji for all i, j



The rate matrix, cont’d

The rate matrix of the Jukes-Cantor model is

Q =











−3α α α α
α −3α α α
α α −3α α
α α α −3α











.

where α ≥ 0.

Due to the simple structure of Q, exp(tQ) can be calculated analytically.

The transition probability matrix is

P(t) =











1− 3at at at at
at 1− 3at at at
at at 1− 3at at
at at at 1− 3at











,

where

at =
1− exp(−4αt)

4



The rate matrix, cont’d

If we assume the stationary distribution, Q summarizes all model param-

eters of the Markov process, since πQ = 0. Clearly, Q can be multiplied

with a factor and the distribution π doesn’t change. In other words: The

model parameters hold substitution rates. And rates hold the information

how many substitutions per time unit one expects.

The rate matrix can be calibrated to PAM (percent accepted mutations)–

units. 1 PAM is the time (or evolutionary distance) where one substitution

event per 100 sites is expected to have occured.

Given Q, one expects E =
∑

i πi
∑

j 6=i Qij = −
∑

i πiQii substitution events

per time unit.

The Jukes–Cantor rate matrix Q is calibrated to PAM-units by setting

E = 1
100 ⇔ −4 · 14 · −3α = 1

100 ⇔ α = 1
300.



Evolutionary distances with Maximum
Likelihood

Again, consider the log likelihood of the alignment D:
A G C
A T A

We had

logL(t) = log(πAPAA(t)) + log(πGPGL(t)) + log(πCPCA(t))

with the Jukes-Cantor model:

logL(t) = log

(

1

4
·
(

1−
3

4
· (1− exp(

−4

300
t))

)

)

+ 2 · log
(

1

4
·
1− exp( −4

300 t)

4

)



Evolutionary distances with Maximum
Likelihood, cont’d

The log likelihood functions for the single alignment columns and JC69:
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Evolutionary distances with Maximum
Likelihood, cont’d
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The Maximum Likelihood estimate t̂ = 165 PAM is the value for t where

where logL(t) is maximal. The variance of the estimate is huge because

i) the small sample size, ii) the large distance. Variances can be computed

from the second derivative of logL(t̂).



The Jukes-Cantor correction

The Hamming distance D = 100·u
n (u-mismatches, n- sequence length) for

the distance between two DNA sequences ignores the putative occurence

of multiple substitutions. The Jukes-Cantor correction d provides a for-

mula for the evolutionary distance d of two DNA sequences, i.e. d(u, n)

holds the number of substitutions which are expected to have occured

per 100 sites.

The probability p to observe that a nucleotide is not substituted after

time t is

p =
∑

i πiPii(t) = 4 · 14(1− 3at) = 1− 3
4(1− exp(−4αt)) = 1+3exp(−4αt)

4

There are u mismatches among n sites. That is, we observe p = 1 − u
n.

Calibration to PAM–units and setting t = d yields

1−
u

n
=

1 + 3exp(−4d/300)

4



Jukes–Cantor correction, cont’d
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If u
n ≥ 0.75, d is not defined.



Maximum Likelihood Trees

Consider one site Ds of an alignment with the states A,C,C,T ∈ A. We

consider a particular tree topology T with edge lengths ~t = (t1, ..., t5) and

label the leaves with the states of the alignment.

2t 4t

3t
5t

1t

A

C
C

G

u

T

v

We want to compute the likelihood to observe the states under this tree

(T,~t) and the Markov model Q. Reversibility implies that the likelihood

does not depend on the position of a root node.



Maximum Likelihood Trees, cont’d
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C
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u
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v

We choose node u as root node. First assume that we know states at

internal nodes u and v and that both of them are C. Then

L(T,~t, Q | Ds, [C, C]) = πCPCC(t1)PCA(t2)PCC(t5)PCC(t3)PCG(t4)

Because we do not know states at internal nodes

L(T,~t, Q | Ds) =
∑

i∈A

πiPiC(t1)PiA(t2)
∑

j∈A

Pij(t5)PjC(t3)PjG(t4)

Note that we have 4n summands for n internal nodes.



Maximum Likelihood Trees, cont’d

Recursive definition of the likelihood

We want to apply a dynamic programming strategy to compute the like-

lihood. The algorithm requires a rooted tree which is traversed from the

leaves to the root (as the Sankoff algorithm does).

Felsenstein (1981) defines the conditional likelihood

Lk(w)

as the likelihood of the subtree rooted at node w, given that node w has

state k ∈ A.

At a leaf node l we have

Lk(l) =

{

1 if the leaf has state k
0 else



Maximum Likelihood Trees, cont’d

For ease of illustration, we now insert a root node r at the internal edge

such that t5 = t6 + t7.

2t 4t

3t
5t

1t

1t 2t 3t 4t
A

C
C

G

u

T

v

C A C G

t t6 7

u v

r

The conditional likelihood at the node r is

Lk(r) =

(

∑

i∈APki(t6)Li(u)

)

·
(

∑

i∈APki(t7)Li(v)

)

r is already the root of the tree. Thus

L(T,~t, Q | Ds) =
∑

i∈A

πiLi(r)



Maximum Likelihood Trees, cont’d

Note that the number of summands in the likelihood function now is linear

in the number of internal nodes.

Sites are modeled independently of each other. The likelihood to observe

an alignment D with n sites is the product over the site likelihoods

L(T,~t, Q | D) =
n

∏

s=1

L(T,~t, Q | Ds)

Accordingly, the log likelihood is a sum over the site log likelihoods.

The likelihood L(T |D) to observe the alignment D under the tree T de-

pends on the model parameters, the edge lengths ~t and the rate matrix

elements in Q. In order to compute the likelihood one has to numerically

optimize over ~t and the rate matrix Q (for a rate matrix Q with more

parameters than the JC69-Q).

A Maximum Likelihood Tree T̂ is the one with the largest likelihood

L(T |D) among all possible tree topologies.



Heuristics to search the tree space

As discussed in the Maximum Parsimony section, the tree space is enor-

mous. If it’s not possible to examine all possible tree topologies, heuristic

methods to search the tree space are applied.

Start with some ’good’ tree (for example a Neighbor Joining tree) ...



Heuristics to search the tree space, cont’d

A fast and widely used heuristic to reduce the tree search space is Quartet

Puzzling (Strimmer, v. Haeseler 1996, see also http://www.tree-puzzle.

de/). The optimal tree for all subsets of sequences consisting only of four

sequences (=quartet) is computed. Subsequently, the quartet trees are

combined into a larger tree for all sequences.

Note that heuristics may get stuck in local optima of the likelihood land-

scape. The heuristic tree search procedure possibly should be repeated

several times (with different initializations or starting points).



Evolutionary Markov processes

Müller and Vingron (2000) have summarized the properties of a Markov

process being that describes the substitution process at a site of a molec-

ular sequence. A π–EMP has the following properties:

• (Xt) is time homogeneous.

Pij(t) = Prob[Xs+t = j|Xs = i] = Prob[Xt = j|X0 = i].

• (Xt) is stationary w.r.t. π.

πj =
∑

i πiPij(t), π = πP(t) ∀ t.

• (Xt) is reversible. πiPij(t) = πjPji(t).



Evolutionary Markov processes, cont’d

The assumptions of the Jukes-Cantor model for the evolution of a DNA

sequence are simplistic regarding substitution rates and the stationary

distribution.

The Kimura 2-parameter model takes into account that transitions (A↔

G and C ↔ T) are more frequently observed than transversions.

QK2P =











. α β β
α . β β
β β . α
β β α .











T

A G

C

α

α

β β
β

β

Normally, the ML estimate α̂ is larger than β̂.

The stationary distribution π is still the uniform distribution..



Evolutionary Markov processes, cont’d

The Felsenstein 81 model has one parameter for a substitution rate, but

three parameters for a non-uniform nucleotide distribution:

QF81 =











. πC πA πG
πT . πA πG
πT πC . πG
πT πC πA .











The GTR model is the most general time reversible model for nucleotide

sequence evolution with 9 parameters (if one does not care about cali-

bration 8 parameters)

QGTR =











. απC βπA γπG
απT . δπA ǫπG
βπT δπC . πG
γπT ǫπC πA .













Empirical models of amino acid evolution

The number of model parameters specifying transitions between amino

acids amounts to 209. This large number of parameters cannot be es-

timated from a single alignment of homologous amino acid sequences.

Therefore the empirical approach has become generally accepted. The

rate matrix is estimated by considering a large set of aligned sequences

from a database and the obtained fixed parameter set is supposed to

apply to other datasets.

Dayhoff proposed her pioneering and prominent model of amino acid

replacement in the 1970ies from which she derived the PAM family of

amino acid similarity matrices. The model is based on global alignments

of closely related sequences and the reconstruction of phylogenetic trees

followed by the estimation of ancestral sequences. Within the trees she

counts the frequency of residues and residue pairs which are used to set

up the 1-step transition matrix P(1) of a time-discrete Markov chain.

Transition matrices for larger evolutionary distances are obtained from

multiples of P(1), for example P(250) = P(1)250, that is by extrapolating

the observed replacement frequencies between close sequences.



Empirical models of amino acid evolution,
cont’d

Similarity scores in the PAM similarity matrices for pairs of amino acids

(i, j) are defined as a log likelihood ratio. For example, in the PAM250

similarity matrix,

Sij(250) := log
πiPij(250)

πiπj

The nominator is the probability that the residues have diverged from

an ancestral residue according to Dayhoff’s evolutionary model. The

denominator is the probability to observe two residues by chance. The

score is positive if the pair (i, j) frequently occurs in the alignments that

were used to estimate transition probabilities of the Markov model.

Other empirical models of amino acid evolution are the VT models of

Müller and Vingron (2000) and the WAG model of Wheelan and Goldman

(2001).



Maximum Likelihood vs. Maximum Parsimony

• Compared to parsimony, Markov models take all possible evolutions

into account (there is a small probability for each possible evolution)

• MP trees and ML trees are the same for well conserved alignments,

that is, if the probability of change is very small

• We can estimate the variance of real valued parameters with ML

• One can test evolutionary hypothesis with Likelihood Ratio Tests and

ask questions like:

– Did the sequences evolve like a molecular clock and can thus be

used to infer divergence times (in physical time units) ?

– Were the substitution rates different for different nucleotide pairs?

– Was some gene subject to positive selection in some lineage?



Summarizing probabilistic methods, keywords
to remember:

• Time-continuous Markov Models:

– stationary distribution

– reversibility (detailed balance eq.)

– rate matrix exponential

• Likelihood concept and Likelihood as objective function

• Jukes-Cantor correction

• Maximum Likelihood trees

• PAM matrices: the one-step transition probability matrix and the PAM

series of similarity matrices


