

Python praktikum
Alessandro Mammana

10.10.2014
Max Plank Institute for Molecular Genetics

Praktikum layout

● introduction and “finger exercises” (2-3 hours)

● let's go to eat something

● guided problem (1-2 hours)

● free time (until 18:00)

Python: pros and cons

● Pros:

– easy to write and to read

– interactive

– general-puropse programming language
● Cons:

– not as fast as C, C++ and Java (but faster than R)

– not suitable for very large projects

Easy to write and to read

def sort(array):
 if (len(array) <= 1):
 return array

 less = []
 equal = []
 greater = []

 pivot = array[0]
 for x in array:
 if x < pivot:
 less.append(x)
 if x == pivot:
 equal.append(x)
 if x > pivot:
 greater.append(x)

 return sort(less)+equal+sort(greater)

Python is interactive

~> python3

Python 3.3.0 (default, Dec 5 2012, 11:05:54)
[GCC 4.7.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print("Hello Python!")
Hello Python!
>>>

Python is general-purpose

● You are not going to use python only for bioinformatics

● Applications:

– very good for scripting

– scientific computing (numpy and scipy)

– developing web applications (django)

– plugins of many applications can be written in python (e.g.
inkscape)

Interactive computing, scripting, programming

1. Interactive computing

2. Scripting:

~> python3

Python 3.3.0 (default, Dec 5 2012, 11:05:54)
[GCC 4.7.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> print("Hello Python!")
Hello Python!
>>> quit()

~> mkdir pyprakt
~> cd pyprakt
~/pyprakt> gedit code.py &

print(“hello world!”)

~/pyprakt> python3 code.py
hello world!

#!/usr/bin/python3
print(“hello world!”)

~/pyprakt> ./code.py
hello world!

or:

Interactive computing, scripting, programming

3. Programming

import sys #importing module
def imHappy(n): #function definition
 for i in range(n): #indent code using spaces or a tab

 print("Hello Python!")

if __name__=="__main__": #make the python program runnable from terminal
imHappy(int(sys.argv[1]))

~/pyprakt> python3 code.py 3
"Hello Python!"
"Hello Python!"
"Hello Python!"
~/pyprakt> python3

Python 3.3.0 (default, Dec 5 2012, 11:05:54)
[GCC 4.7.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import code
>>> code.imHappy(3)
"Hello Python!"
"Hello Python!"
"Hello Python!"

No coding, no learning

● we will play with python in interactive mode

● we will write functions in gedit (or any text editor)

● keep 2 windows open, one for python's terminal, one for the editor

● how to modify/add functions in scratchpad.py and reload them:

import sys
def imHappy(n):
 for i in range(n):

 print("Good morning Python!") #we modified the code!

if __name__=="__main__":
imHappy(sys.argv[1])

>>> import imp
>>> imp.reload(code) #reload an already imported module, don't forget it!
>>> code.imHappy(3)
"Good morning Python!"
"Good morning Python!"
"Good morning Python!"

Python as a calculator

>>> 2 + 2 # int + int = int
4
>>> 50 - 5*6
20
>>> (50 - 5.0*6)/4 # float
5.0
>>> 8/5.0 #float
1.6000000000000001
>>> 8//5 #integer division
1
>>> 17 // 3.0 #explicit integer division
5.0
>>> 5 * 3 + 2 # result * divisor + remainder
17
>>> 5 ** 2 # 5 squared
25
>>> 2 ** 7 # 2 to the power of 7
128
>>> import math
>>> math.sqrt(40)
6.324555320336759
>>> math.cos(2*math.pi)
1.0

● Syntax as most other programming languages

● two main numeric types: int and float

● powers with the ** operator

● import the math module for more advanced functions

Assigning to a variable

>>> width = 20
>>> height = 5*9
>>> width*height
900
>>> n
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined
>>> a, b, c = 1, 2, 3 #multiple assignment
>>> b
2
>>>

● the equal sign (=) is used for variable assignment

● variables need to be defined before they are used

● multiple assignment

Warming up

>>> math.cos(math.pi*(12**(1.5) + 4*4 + 3**3)/42)
0.9990937147385679

compute the following number: cos (π
121.5

+42
+33

42
)

Sequence types

>>> msg = "Python : <3"
>>> msg[0]
'P'
>>> msg[1]
'y'
>>> len(msg)
11

Arrays in different flavours

● Strings: sequence of characters

● Lists: mutable sequence of arbitray objects

● Tuples: immutable sequence of arbitrary objects

● Ranges: implicit sequence of consecutive numbers

They all support random access (like arrays) and many other things

Strings

>>> 'coding like a boss' #single quotes
'coding like a boss'
>>> 'doesn\'t' #use \ to escape the single quote
"doesn't"
>>> "doesn't" #no need to escape single quotes inside double quotes
"doesn't"
>>> '"Yes," he said.' # no need to escape double quotes inside single quotes
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'
>>> secret = "this is not going to work"
>>> secret[0] = 'W'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

To define a string

● Enclose it in single quotes 'text'

● Enclose it in double quotes “text”

● if the text contains also quotes, escape them with \

● strings are immutable (cannot be modified)

Lists

>>> a = ['bio', 'inf', 100, 1234]
>>> a
['bio', 'inf', 100, 1234]
>>> a[1] = 'madness' #lists are mutable
>>> a
['bio', 'madness', 100, 1234]
>>> a.append("rock'n'roll") #append function
>>> a
['bio', 'madness', 100, 1234, "rock'n'roll"]
>>> a.append(['another', 'list']) #nested list
>>> a
['bio', 'madness', 100, 1234, "rock'n'roll", ['another', 'list']]
>>> b = [2, 'nested', 'lists:', a]
>>> b
[2, 'nested', 'lists:', ['bio', 'madness', 100, 1234, "rock'n'roll", ['another', 'list']]]
>>> b[3][1] #nesting list is a way of creating matrices
'madness'

● General-purpose array

● Comma-separated items between square brackets

● Elements can have different types

● lists are mutable

● to add an element, use the append function

● lists can be nested to any depth

Tuples

>>> a = ('bio', 'inf', 100, 1234)
>>> a
('bio', 'inf', 100, 1234)
>>> a[1] = 'madness' #lists are immutable
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> a = list(a)
>>> a[1] = 'madness'
>>> a
['bio', 'madness', 100, 1234]

Difference compared to lists:

● round brackets instead of square brackets

● immutable

● can be converted to lists using the list() function

The beauty of slicing with python

>>> mystr = '12345'
>>> mystr[-1] #same as mystr[len(mystr)-1], but much nicer!
'5'
>>> mystr[-3]
'3'
>>> mylist = [1,2,3,4,5]
>>> mylist[-3]
3

Python supports very powerful slicing (subsetting) operators

● to count elements from the end, use negative indices

● to subset use [start:end]

● start defaults to 0, end defaults to the sequence length

● can also specify a step [start:end:step]

>>> mytuple = ("don't", "slice", "me", "please")
>>> mytuple[1:3] #start is included, end excluded
('slice', 'me')
>>> mytuple[1:-1] #negative indices can be mixed with positives
('slice', 'me')
>>> mylist[2:] #same as mylist[2:len(mylist)]
[3, 4, 5]
>>> mylist[:2] #same as mylist[0:2]
[1, 2]
>>> mylist[:] #same as mylist[0:len(mylist)] <- good for copying sequences
[1, 2, 3, 4, 5

Slicing and combining

● with the + operator, strings, tuples and lists can be combined

● with the * operator, strings, tuples and lists can be repeated

● with lists, whole slices can be replaced

>>> "that's " + "very " + "intuitive" # + for combining sequences
"that's very intuitive"
>>> mystr = "sliced and combined like a toy"
>>> mystr[:6] + mystr[6:]
'sliced and combined like a toy'
>>> mystr[11:19] + mystr[6:11] + mystr[:6] + mystr[19:]
'combined and sliced like a toy'
>>> "that's " + "very "*3 + "intuitive" # * for repeating sequences
"that's very very very intuitive"
>>> [1]*1 + [2]*2 + [3]*3 + [1,2,3]*3
[1, 2, 2, 3, 3, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> surprise = [1,2,3,4]
>>> surprise[3:] = [1,4,9] #that's not the same as: surprise[3] = [1,4,9]
>>> surprise
[1, 2, 3, 1, 4, 9]
>>> surprise[2:-2] = ["who", "put", "me", "there?"]
>>>
>>> surprise
[1, 2, 'who', 'put', 'me', 'there?', 4, 9]

Finger exercises

>>> fixEnding("path/to/myfasta.txt")
path/to/myfasta.fasta

● we store paths to fasta files in python strings. Every path ends in ".txt". Write a function that
takes in such a path and changes its ending in ".fasta"

● Example:

● we store reads from a sequencing experiment in python strings. read quality often gets worse at
the ends of the read. Write a function that takes as input a string and a number n and cuts away
the first n and the last n bases/characters.

● Example:

● write a function that creates a list with n zeros

● Example

def fixEnding(fapath):
return fapath[:-3] + "fasta"

>>> cutReadEnds("AAATACGTGAAACATAAA", 3)
"TACGTGAAACAT"

def cutReadEnds(read, n):
return read[n:-n]

>>> zeros(4)
[0,0,0,0]

def zeros(n):
return [0]*n

Finger exercises

>>> mylist = ['one', 1, 'two', 2, 'three', 3, 'four', 4]
>>> magicSplit(mylist)
(['one', 'two', 'three', 'four'], [1, 2, 3, 4])

● Write a function that takes in a list and returns a tuple with two lists: the even elements and
the odd elements of the original list

● Example:

def magicSplit(mylist):
return (mylist[::2], mylist[1::2])

Booleans

>>> 1>4 # comparisons return booleans
False
>>> 1>4 or 5>4 # 'or', 'and' are much more readable than '||' and '&&' (Java, C, C++, R)
True
>>> False and 5>4
False
>>> False or 5>4
True
>>> None or False # None gets converted to False
False
>>> [] or False # empty sequence gets converted to False
False
>>> "" or False
False
>>> [3,2] or False # anything else behaves like True, but it's not converted
[3, 2]
>>> "anything else" or False
'anything else'

● 'True' or 'False' keywords

● They work as you would expect

● boolean operators are more readable than in almost all other languages

● boolean operators convert any object to a boolean

● the keyword 'None' is normally to encode special values, it is converted to 'False'

● Empty sequences are also converted to 'False', anything else behaves like 'True', but it's not
converted

If statements and while loops

>>> if True:
... print("I love Python") #careful to the indentation!
I love Python
>>> if False:
... print("Python is hard to learn")
>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... x = 0
... print('Negative changed to zero')
... elif x == 0:
... print('Zero')
... elif x == 1:
... print('Single')
... else:
... print('More')
More
>>> a, b = 0, 1 #Fibonacci series
>>> while b < 10: #while loop, again, it must be indented!
... print(b)
... a = b
... b = a+b
...
1
2
4
8

● Just be careful to the intendation

● 'else if' in python is 'elif'

● the 'while' loop is how you expect

for loop

>>> for i in 'string, list, tuple, range...\n':
... print(i, end="") #variable 'i' takes on all the characters in the sequence
string, list, tuple, range...
>>> nums = [1,2,3,4]
>>> for i in nums:
... print(i**2)
1
4
9
16
>>> for i in range(3): #traditional foor loop
... print("Hello Python")
Hello Python
Hello Python
Hello Python
>>> for i in range(len(nums)):
... nums[i] = nums[i]**2
>>> nums
[1, 4, 9, 16]
>>> #in java:
>>> #for (int i = start; i < end; i+=step){
>>> # print(i)
>>> #}
>>> #in python:
>>> start, end, step = 0, 6, 2
>>> for i in range(start, end, step):
... print(i)

● The 'for' statement loops over the elements of a sequence

● How to get the “traditional” for loop over a range of numbers?

– the range() function creates a range of consecutive numbers (efficiently)

Finger exercises

>>> squareList(1, 4)
[1, 4, 9]

● Write a function that takes in two numbers 'a' < 'b' and returns a list with all consecutive
numbers from 'a' to 'b' ('b' escluded) squared

● Example:

def squareList(a, b):
res = []
for i in range(a, b):

res = res + [i*i]
return res

#or... better and faster with append()
def squareList(a, b):

res = []
for i in range(a, b):

res = res.append(i*i)
return res

#or... making a large-enough list before the loop
def squareList(a, b):

res = list(range(a,b))
for i in range(len(res)):

res[i] = i*i
return res

Finger exercises

>>> makeMat(2, 4)
[[0,0,0,0], [0,0,0,0]]

● Write a function that takes to integers 'nrow' and 'ncol' and returns a matrix of zeros with nrow
rows and ncol columns. Implement the matrix as a list of lists, where the nested lists are the
rows.

● Example:

def makeMat(nrow, ncol):
mat = []
for i in range(nrow):

row = []
for j in range(ncol):

row.append(0)
mat.append(row)

return mat
#we can do it in less lines!
def makeMat(nrow, ncol):

mat = []
for i in range(nrow):

mat.append([0]*ncol)
return mat

#but this is going to be wrong... why?
def makeMat(nrow, ncol):

return [[0]*ncol]*nrow

>>> mat = makeMat(2,4) #the multiplication operator copies by reference,
>>> mat #when it needs to copy a non-primitive type
[[0, 0, 0, 0], [0, 0, 0, 0]] #int is primitive
>>> mat[0][0] = 1 #list is not
>>> mat #Copying an immutable type (e.g. a string) is safe
[[1, 0, 0, 0], [1, 0, 0, 0]]

Finger exercises

>>> fact(0)
1
>>> fact(4)
24
>>> fact(35)
265252859812191058636308480000000

● The factorial (in German Fakultaet) function is defined like this:

0! = 1

n! = 1*2*3*...*n

● write a function that takes an integer n and returns the factorial

● Example:

#Solution 1:
def fact(n):

res = 1
for i in range(1,n+1):

res *= i
return res

#Solution 2:
def fact(n):

res = 1
while (n > 0):

res *= n
n -= 1 #in python there is no n++ or n--

return res

Finger exercises

>>> gcd(3, 7)
1
>>> gcd(21, 28)
7

● The Euclid algorithm computes the greatest common divisor between two stictly positive
integers 'a' and 'b'. It goes like this:

– 1. if 'b' is equal to zero, the result is 'a', otherwise

– 2. compute the remainder between 'a' and 'b'

– 3. replace 'a' with 'b'

– 4. replace 'b' with the remainder just computed, go back to step 1

● Example:

def gcd(a, b):
while (b != 0):

tmp = a % b
a = b
b = tmp

return a

List comprehension

>>> mylist = []
>>> for i in sequence:
... mylist.append(fun(i))
>>>
>>> mylist = [fun(i) for i in sequence]
>>>
>>> mylist = []
>>> for a in seq1:
... for b in seq2:
... for c in seq3:
... if test(a, b, c):
... mylist.append(fun(a, b, c))
>>>
>>> mylist = [fun(a,b,c) for a in seq1 for b in seq2 for c in seq3 if test(a,b,c)]

● very often we need to create a list with a for loop

● because Python requires to indent the code, we need at least 3 lines of code

● but Python also has a solution to this: list comprehension

● it reduces 3 lines to only 1, and it's readable!!!

● the statement can be extended to have nested for loops and an if statement

Finger exercises

● rewrite the functions squareList and makeMat in one line

● Write a function that combines every pair of elements from two lists into a list of tuples (of length
2), provided that the elements are not the same

● Example:

def squareList(a, b):
return [i*i for i in range(a,b)]

def makeMat(nrow, ncol):
return [[0]*ncol for i in range(nrow)]

>>> magicComb([1,2,3],[3,1,4])
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

#Solution (without list comprehension):
def magicComb(list1, list2):

combs = []
for x in list1:

for y in list2:
if x != y:

combs.append((x, y))
return combs

#Solution (one-liner):
def magicComb(list1, list2):

return [(x, y) for x in list1 for y in list2 if x != y]

Finger exercises

● Write a function to transpose a matrix, implemented as before (list of rows)

● Example:

#Solution 0:
def transpose(mat):

nrow = len(mat)
ncol = len(mat[0])
tmat = []
for i in range(ncol):

row = []
for j in range(nrow):

row.append(mat[j][i])
tmat.append(row)

return tmat

#Solution 1:
def transpose(mat):

tmat = []
for i in range(len(mat[0])):

tmat.append([row[i] for row in matrix])
return tmat

#Solution 2:
#shorter but not necessarily better than solution 1, it is not very readable
def transpose(mat):

return [[row[i] for row in mat] for i in range(len(mat[0]))]

>>> code.transpose([[1,2,3,4],[5,6,7,8],[9,10,11,12]])
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

Dictionaries

>>> emptyDict = {}
>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127 #inserting an item
>>> tel
{'jack': 4098, 'sape': 4139, 'guido': 4127}
>>> tel['jack'] #reading an item
4098
>>> del tel['sape'] #deleting an item
>>> tel['guido'] = 3227 #modifying an item
>>> tel
{'jack': 4098, 'guido': 3227}
>>> tel['angelinajolie'] #key not present
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'angelinajolie'
>>> for key in tel.keys(): #same as: for key in tel:
... print(key)
...
jack
guido
>>> for key, value in tel.items():
... print(key, value)
...
jack 4098
guido 3227
>>> dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First', 1:18, 19.2:"that's a weird key..."} #mixed key types
>>> dict[['list', 'as','key']]=3 #lists as keys not possible
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
>>> dict["list1"]=['list', 'as', 'value'] #lists as value perfectly fine

● Very powerful, 'pythonic' object (not only in Python)

● A dictionary contains items: item=(key, value)

● values can be read, modified, inserted and deleted efficiently using their keys

● it is easy to loop through the keys, or the items

● different types in the keys or in the values can be mixed, but lists cannot be used as keys (they are not hashable)

Finger exercises

>>> invertDict({'name':'ale', 'age':'impolite to ask', 'nfingers':20})
{'ale':'name', 'impolite to ask':'age', 20:'nfingers'}

● Write a function that takes as input a dictionary and returns a new dictionary where keys and
values are inverted

● Example:

#solution 1
def invertDict(dict):

newdict = {}
for (k, v) in dict.items():

newdict[v] = k
return newdict

#solution 2
def invertDict(dict):

newdict = {}
for key in dict.keys():

value = dict[key]
newdict[value] = key

return newdict

Finger exercises

>>> translate(['TTT','TTC','ATT','GCG'], ('Phe','Phe','Ile', 'Ala'), ['ATT','GCG','ATT','GCG','TTT','ATT','GCG'])
['Ile', 'Ala', 'Ile', 'Ala', 'Phe', 'Ile', 'Ala']

● Amino acids are coded in the DNA as codons: a sequence of three bases. Each codon codes
for a specific amino acid, but the same amino acid can be coded by more than one codon.

● Write a function that takes as input:

– 1. a sequence of possible codons (represented as strings, without duplicates)

– 2. a matching sequence of amino acids (represented as strings, possibly duplicated)

– 3. a sequence of codons

● And that returns

– 1. the correct translation of the given codon sequence (3.) into amino acids

● Example:

def translate(codons, aminos, seq):
dict = {}
for i in range(codons):

dict[codons[i]] = aminos[i]
return [dict[el] for el in seq]

File I/O

>>> infile = open("secretData.txt", 'r') #to read, use open with the 'r' flag
>>> outfile = open("stealData.txt", 'w') #to write, use open with the 'w' flag
>>> infile.readline() #to read a line, 'use readline()'
"I'm hungry!\n" #lines end always with a newline character (“\n”)
>>> outfile.readline() #you can't read from a file opened for writing
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
io.UnsupportedOperation: not readable
>>> line = infile.readline()
>>> print(line) #the trailing '\n' can be annoying
I like pizza! #that's why here we get an extra blank line

>>> print(line[:-1])
I like pizza! #we can remove it in this way
>>> line=line.strip() #or using strip()
>>> print(line[:-1]) #now the last character is '!'
I like pizza
>>> for line in infile: #looping through lines is beautiful
... print(line.strip())
...
But also ice cream!
Today it's not very sunny...
wazzup bro?
>>> infile.close() #if we want to re-read a file, we need to close it
>>> infile = open("secretData.txt") #and open it again
>>> #lines = infile.readlines() #we can read all lines at once with readlines()
>>> for line in infile:
... outfile.write(line) #90% of my python scripts look like this
...
>>> infile.close() #better to close files at the end
>>> outfile.close()

● We are going to use only line-oriented file I/O: we read from or write to a file line by line

Other important modules

● The random module: generating random numbers

● the re module: pattern matching with regular expressions

● matplotlib and numpy: plotting and scientific computing

The random module

>>> import random
>>> random.random() # Random float x, 0.0 <= x < 1.0
0.28537541483191564
>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
7.777871877674695
>>> random.randrange(10) # Integer from 0 to 9
0
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
14
>>> random.choice('abcdefghij') # Choose a random element in a sequence
'h'
>>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items
[7, 5, 1, 3, 6, 4, 2]
>>> random.sample([1, 2, 3, 4, 5], 3) #three samples without replacement
[2, 5, 1]

Finger exercises

>>> rndString('acgt', 10)
gactggtcag

● Write a function that takes in an alphabet as a string, a number n and returns a string of length n
formed by choosing n times a random character in the alphabet.

● Example:

import random
#Solution 1:
def rndString(alpha, n):

res = ""
for i in range(n):

res += random.choice(alpha)
return res

#Solution 2:
def rndString(alpha, n):

res = [random.choice(alpha) for i in range(n)]
return "".join(res)

Pattern matching with exact patterns

>>> infile = open("secretData.txt", 'r') #to read, use open with the 'r' flag
>>> lines = infile.readlines() #to read all lines at once, 'use readlines()': it makes a list of lines
["I'm hungry!\n", 'I like pizza!\n', 'But also ice cream!\n', "Today it's not very sunny...\n", 'wazzup bro?\n']
>>> text = “”.join(lines) #str.join() joins all the element in the lists separating them with str
text
"I'm hungry!\nI like pizza!\nBut also ice cream!\nToday it's not very sunny...\nwazzup bro?\n"
>>> text.find("sistah") #does the pattern 'sistah' occur in the text?
-1 #no
>>> text.find("bro") #does a bro occur in the text?
82 #yes, at index 82
>>> text[82:(82 + len(“bro”))] #from the index, we can slice off our occurrence from the text
'bro'
>>> text.find("I") #look for pattern “I”
0
>>> text.find("I", 10) #look for pattern “I” starting from position 10 (included)
12
>>> text.count("I") #count occurrences of “I”
2
>>> text.endswith("bro") #check pattern at the end of the text (useful for file extensions)
False
>>> text.endswith("bro?\n")
True
>>> text.startswith("I\n") #check pattern at the beginning
False
>>> text.startswith("I am")
False
>>> text.startswith("I'm")
True
>>> text.replace("I", "you") #replace all occurrences of a pattern with another pattern
"you'm hungry!\nyou like pizza!\nBut also ice cream!\nToday it's not very sunny...\nwazzup bro?\n"

● when we look for exact patterns, there is no need to use the re module, strings already have
basic pattern matching capabilities

Advanced pattern matching: regular expressions

>>> import re #module for regular expressions
>>> text = "that's an ode to the code that I wrote from remote"
>>> pattern = "o.e" #special character '.' means: any character
>>> m = re.match(pattern, text) #re.match tests if the entire text matches
>>> print(m) #it doesn't
None
>>> m = re.search(pattern, text) #re.search looks for the first match in the text
>>> print(m) #match object
<_sre.SRE_Match object at 0x7f864d40b510>
>>> m.start() #match start
10
>>> m.end() #match end
13
>>> m.group() #match content
'ode
>>> re.findall(pattern, text) #find all the match contents
['ode', 'ode', 'ote', 'ote']
>>> miter = re.finditer(pattern, text) #sequence of all match objects
>>> ms = list(miter) #convert it to a list
>>> ms
[<_sre.SRE_Match object at 0x7f864d40b510>,
 <_sre.SRE_Match object at 0x7f864d40b5e0>,
 <_sre.SRE_Match object at 0x7f864d40b648>,
 <_sre.SRE_Match object at 0x7f864d40b6b0>]
>>> [m.start() for m in ms] #get all starts
[10, 22, 35, 47]
>>> [m.end() for m in ms] #get all ends
[13, 25, 38, 50]
>>> [m.group() for m in ms] #get all contents
['ode', 'ode', 'ote', 'ote']

● The re module handles Perl-style regular expressions (same syntax as in Perl, Unix and many other
softwares)

● A good tutorial: https://docs.python.org/3.2/howto/regex.html

● We will focus on Python functions rather than on regular expression syntax

Advanced pattern matching: regular expressions

>>> text = "dogs are smarter than cats" #* means repeat the previous pattern any number of times
>>> pattern = r"([a-z]*) are (\w+) .*" #+ means repeat the previous pattern at least once
>>> m = re.match(pattern, text) #[c-e] means all characters between c and e, same as [cde]
>>> m.group() # \w is a shortcut for [a-zA-Z]
'dogs are smarter than cats'
>>> m.group(1) #first round bracket
'dogs'
>>> m.group(2) #second round bracket
'smarter'
>>> text = "dogs are smarter than cats, her eyes are blue, they are very good students"
>>> pattern = r"([^]*) are (\S*)" #[^abc] means any character ecxept a, b and c
>>> ms = list(re.finditer(pattern, text)) #\S is a shortcut for [^ \t\n\r\f\v]
>>> [m.group() for m in ms]
['dogs are smarter', 'eyes are blue,', 'they are very']
>>> [m.group(1) for m in ms]
['dogs', 'eyes', 'they']
>>> [m.group(2) for m in ms]
['smarter', 'blue,', 'very']

● regular expressions can represent also variable length matches

● with round brackets we can easily get subsets of the match

● more examples here: http://www.tutorialspoint.com/python/python_reg_expressions.htm

Problem: regular expressions

>>> runlengths('aaaaccagaataaataaaa', 'a')
[4,1,2,3,4]

● Given a string 'text' and a character 'c', determine the lengths of all portions of the text where a
'c' appears

● Example:

Problem: file I/O, read fasta

>>> readFasta('path/to/my/fasta.fasta')
{'id1':'lineline', 'id2':'linelineline'}

● Read a file in fasta format. It's more or less like this:

● input: a path to a fasta file

● output: a dictionary with the ids as keys and the sequences as values

>id1
line
line
>id2
line
line
line

>gi|31563518|ref|NP_852610.1| microtubule-associated proteins 1A/1B light chain 3A isoform b [Homo sapiens]
MKMRFFSSPCGKAAVDPADRCKEVQQIRDQHPSKIPVIIERYKGEKQLPVLDKTKFLVPDHVNMSELVKI
IRRRLQLNPTQAFFLLVNQHSMVSVSTPIADIYEQEKDEDGFLYMVYASQETFGF

entry starts with an id and is
followed by some lines

id line starts always with '>'

there are 2 entries in this example

for real applications, use the Biopython module for python

Problem: file I/O read bed

>>> readBed('path/to/my/bed.bed')
[('chr21', 1000, 5000), ('chr22', 2000, 6000)]

● Read a file in bed format. It's more or less like this:

– fields separated by tabs (character '\t')

– we will care about only the first 3 fields: chromosome, start and end

– discard lines starting with “#”

● input: a path to a bed file

● output: a list of tuples ('chr', start, end)

chr21 1000 5000 cloneA 960 + 1000 5000 0 2 567,488, 0,3512
chr22 2000 6000 cloneB 900 - 2000 6000 0 2 433,399, 0,3601

#discard me
chromosome1 start1 end1 name1 score 1 strand1 other-stuff-we-can-ignore1 ignore..
chromosome2 start 2 end2 name2 score2 strand2 other-stuff-we-can-ignore2 ignore..

for real applications, use the Biopython module for python

Problem: file I/O, write fasta

>>> getFasta('path/to/my/fasta.fasta', 'path/to/my/bed.bed', 'output/path.fasta')

● Read a file in fasta format and a file in bed format, for each tuple ('chr', start, end):

– slice the sequence with id 'chr' in the fasta file from position start to position end

– make a new id of the form: id-start-end

– write this new sequence to an output file in fasta format

● input:

– a path to a fasta file

– a path to a bed file

– an output path

● output: write in the given file (don't return anything)

chr21 1000 5000 cloneA 960 + 1000 5000 0 2 567,488, 0,3512
chr22 2000 6000 cloneB 900 - 2000 6000 0 2 433,399, 0,3601

chromosome1 start1 end1 name1 score 1 strand1 other-stuff-we-can-ignore1 ignore..
chromosome2 start 2 end2 name2 score2 strand2 other-stuff-we-can-ignore2 ignore..

for real applications, use the “getfasta” utility in samtools: http://samtools.sourceforge.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43
	Slide 44
	Slide 45

