Python praktikum

Alessandro Mammana
10.10.2014

Max Plank Institute for Molecular Genetics

Praktikum layout

introduction and “finger exercises” (2-3 hours)
let's go to eat something

guided problem (1-2 hours)

free time (until 18:00)

Python: pros and cons

e Pros:

- easy to write and to read
- Interactive
- general-puropse programming language
 Cons:
- not as fast as C, C++ and Java (but faster than R)
— not suitable for very large projects

Easy to write and to read

def sort(array):
If (len(array) <= 1):
return array

| ess =[]
equal =[]
greater = []

pi vot = array][0]
for x in array:
if x < pivot:
| ess. append(x)
I f X == pivot:
equal . append(x)
if x > pivot:
gr eat er . append(x)

return sort (|l ess)+equal +sort (greater)

Python is interactive

~> pyt hon3

Python 3.3.0 (default, Dec 5 2012, 11:05:54)
[GCC 4.7.1] on |inux

Type "hel p*, "copyright", "credits" or "license" for nore infornation.
>>> print("Hello Python!")
Hel | o Pyt hon!

>>>

Python is general-purpose

* You are not going to use python only for bioinformatics
* Applications:

— very good for scripting

- scientific computing (numpy and scipy)

- developing web applications (django)

- plugins of many applications can be written in python (e.g.
inkscape)

Interactive computing, scripting, programming

1. Interactive computing

~> pyt hon3
Python 3.3.0 (default, Dec 5 2012, 11:05:54)
[GCC 4.7.1] on |inux
Type "hel p", "copyright", "credits" or "license" for nore information.
>>> print("Hello Python!")
Hel | o Pyt hon!
>>> quit()
2. Scripting:

~> nkdi r pypr akt
~> cd pypr akt
~/ pyprakt> gedit code.py &

print(“hello world!”)

~/ pypr akt > pyt hon3 code. py
hel | o wor| d!

or.

#! [/ usr/ bi n/ pyt hon3
print(“hello world!”)

~/ pypr akt > ./ code. py
hell o worl d!

Interactive computing, scripting, programming

3. Programming

| nport sys #inporting nodul e
def i nmHappy(n): #function definition
for i in range(n): #i ndent code using spaces or a tab
print("Hello Python!")

If _name__ =="_ main__": #nmake the python program runnable fromterm nal

i mHappy(int(sys.argv[1]))

~/ pypr akt > pyt hon3 code. py 3
"Hel l o Pyt hon!"
"Hell o Python!"

"Hell o Python!"
~/ pypr akt > pyt hon3

Python 3.3.0 (default, Dec 5 2012, 11:05:54)

[GCC 4.7.1] on |inux

Type "hel p", "copyright", "credits" or "license" for nore information.
>>> | nport code

>>> code. i nHappy(3)

"Hell o Pyt hon!"

“"Hell o Pyt hon!"

"Hell o Pyt hon!"

No coding, no learning

we will play with python in interactive mode
we will write functions in gedit (or any text editor)
keep 2 windows open, one for python's terminal, one for the editor

how to modify/add functions in scratchpad.py and reload them:

i nport sys
def i nHappy(n):
for i in range(n):
print("Good norning Python!") #we nodified the code!

if __name_ =="_ main__":
I mHappy(sys. argv[1])

Python as a calculator

» Syntax as most other programming languages
* two main numeric types: int and float
* powers with the ** operator

* import the math module for more advanced functions

Assigning to a variable

» the equal sign (=) is used for variable assignment
» variables need to be defined before they are used

* multiple assignment

Warming up

121.5+42+33)

compute the following number: cos(x

42

Sequence types

Arrays in different flavours
» Strings: sequence of characters
« Lists: mutable sequence of arbitray objects
« Tuples: immutable sequence of arbitrary objects
« Ranges: implicit sequence of consecutive numbers

They all support random access (like arrays) and many other things

Strings

To define a string
* Enclose it in single quotes 'text'
 Enclose it in double quotes “text”
« if the text contains also quotes, escape them with \

» strings are immutable (cannot be modified)

Lists

General-purpose array

Comma-separated items between square brackets
Elements can have different types

lists are mutable

to add an element, use the append function

lists can be nested to any depth

Tuples

Difference compared to lists:
* round brackets instead of square brackets
 immutable

« can be converted to lists using the list() function

The beauty of slicing with python

Python supports very powerful slicing (subsetting) operators

» to count elements from the end, use negative indices

* to subset use [start:end]
« start defaults to 0, end defaults to the sequence length

* can also specify a step [start:end:step]

Slicing and combining

« with the + operator, strings, tuples and lists can be combined
« with the * operator, strings, tuples and lists can be repeated

» with lists, whole slices can be replaced

we store paths to fasta files in python strings. Every path ends in ".txt". Write a function that

Finger exercises

takes in such a path and changes its ending in ".fasta"

Example:

>>> fi xEndi ng("path/to/ nyfasta.txt")
pat h/t o/ nyfasta. fasta

def fixEndi ng(fapath):
return fapath[:-3] + "fasta"

we store reads from a sequencing experiment in python strings. read quality often gets worse at
the ends of the read. Write a function that takes as input a string and a number n and cuts away

the first n and the last n bases/characters.

Example:

>>> cut ReadEnds(" AAATACGTGAAACATAAA" ,
" TACGTGAAACAT"

3)

def cut ReadEnds(read, n):
return read[n:-n]

write a function that creates a list with n zeros

Example

>>> zeros(4)
[0, 0, 0, 0]

def zeros(n):
return [0]*n

Finger exercises

« Write a function that takes in a list and returns a tuple with two lists: the even elements and
the odd elements of the original list

 Example:

def magicSplit(mylist):
return (nmylist[::2], nylist[1::2])

Booleans

* 'True' or 'False' keywords

 They work as you would expect

* boolean operators are more readable than in almost all other languages
* boolean operators convert any object to a boolean

« the keyword 'None' is normally to encode special values, it is converted to 'False’

« Empty sequences are also converted to 'False’, anything else behaves like 'True’, but it's not
converted

If statements and while loops

Just be careful to the intendation

‘else if' in python is 'elif’

« the 'while' loop is how you expect

for loop

* The 'for' statement loops over the elements of a sequence

 How to get the “traditional” for loop over a range of numbers?

- the range() function creates a range of consecutive numbers (efficiently)

Finger exercises

 Write a function that takes in two numbers 'a' <'b' and returns a list with all consecutive
numbers from 'a' to 'b' ('b' escluded) squared

« Example: >>> squareList (1, 4)
[1, 4, 9]

def squareList(a, b):
res = []
for i in range(a, Db):
res =res + [i*i]
return res

#or... better and faster wth append()
def squareList(a, b):
res = []
for i in range(a, b):
res = res. append(i*i)
return res

#or... nmaking a | arge-enough |ist before the |oop
def squareList(a, b):
res = |list(range(a,b))
for i in range(len(res)):
resfi] = i*i
return res

Finger exercises

Write a function that takes to integers 'nrow' and 'ncol' and returns a matrix of zeros with nrow

rows and ncol columns. Implement the matrix as a list of lists, where the nested lists are the
rows.

def makelMat (nrow, ncol):

mat = []
for i in range(nrow):
row = []

for j in range(ncol):
row. append(0)
mat . append(r ow)
return mat
#we can do it in less |ines!
def makeMat (nrow, ncol):
mat = []
for i in range(nrow):
mat . append([0] *ncol)
return mat

#but this is going to be wong... why?
def makeMat (nrow, ncol):

return [[O0] *ncol] *nrow

Finger exercises

The factorial (in German Fakultaet) function is defined like this:
0!'=1

n! = 1*2*3*...*n

write a function that takes an integer n and returns the factorial

Example:

#Sol ution 1:
def fact(n):
res =1
for i in range(l, n+l):
res *=i
return res

#Sol uti on 2:
def fact(n):
res =1
while (n > 0):
res *=n
n-=1#n python there is no n++ or n--

return res

Finger exercises

« The Euclid algorithm computes the greatest common divisor between two stictly positive
integers 'a' and 'b'". It goes like this:

- 1.if'b' is equal to zero, the result is 'a’', otherwise
- 2. compute the remainder between 'a' and 'b’
- 3. replace 'a' with 'b’

- 4. replace 'b' with the remainder just computed, go back to step 1

« Example: >>> gcd(3, 7)
1
>>> gcd(21, 28)
-

def gcd(a, b):
while (b !'= 0):
tnp a %b

(@)

return a

List comprehension

« very often we need to create a list with a for loop
* because Python requires to indent the code, we need at least 3 lines of code
* but Python also has a solution to this: list comprehension

« itreduces 3 lines to only 1, and it's readable!!!

» the statement can be extended to have nested for loops and an if statement

Finger exercises

rewrite the functions squareList and makeMat in one line

def squareList(a, b):
return [i*i for i in range(a,b)]

def makeMat (nrow, ncol):
return [[0] *ncol for i in range(nrow)]

Write a function that combines every pair of elements from two lists into a list of tuples (of length
2), provided that the elements are not the same

« Example: | >>> magi cConmb([1,2,3],[3,1,4])
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

#Sol ution (wthout Iist conprehension):
def magi cConb(listl, list2):
conbs = []
for x in listl:
for y in list2:
If x I=y:
conbs. append((X, VY))
return conbs

#Sol ution (one-liner):
def magi cConb(listl, list2):
return [(x, y) for x inlistl for yinlist2 if x !=y]

Finger exercises

Write a function to transpose a matrix, implemented as before (list of rows)

Example:| 227 code. transpose([[1,2,3,4],[5,6,7,8],[9, 10, 11, 12]])
[[1, 5 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

#Sol uti on O:
def transpose(mat):
nrow = | en(mat)
ncol l en(mat [0])
t mat []
for i in range(ncol):
row = []
for j in range(nrow):
row. append(mat[j][i])
t mat . append(r ow)
return tmat

#Sol ution 1:
def transpose(nat):
tmat = []
for i in range(len(mat[0])):
t mat . append([rowfi] for rowin matrix])
return tmat

#Sol uti on 2:

#shorter but not necessarily better than solution 1, it is not very readable

def transpose(mat):
return [[rowi] for rowin mat] for i in range(len(mat[0]))]

Dictionaries

Very powerful, 'pythonic' object (not only in Python)
A dictionary contains items: item=(key, value)
values can be read, modified, inserted and deleted efficiently using their keys

it is easy to loop through the keys, or the items

different types in the keys or in the values can be mixed, but lists cannot be used as keys (they are not hashable)

Finger exercises

Write a function that takes as input a dictionary and returns a new dictionary where keys and
values are inverted

« Example:

>>> jnvertDict({ ' nane':"ale', '"age':'"inpolite to ask', 'nfingers':20})
{*ale':"name', 'inpolite to ask':'age', 20:'nfingers'}

#solution 1
def invertDi ct(dict):
newdi ct = {}
for (k, v) indict.itenms():
newdi ct[v] = kK
return newdi ct

#sol ution 2
def invertDi ct(dict):
newdi ct = {}
for key in dict.keys():
val ue = dict|[key]
newdi ct [val ue] = key
return newdi ct

Finger exercises

 Amino acids are coded in the DNA as codons: a sequence of three bases. Each codon codes
for a specific amino acid, but the same amino acid can be coded by more than one codon.

« Write a function that takes as input:

- 1. a sequence of possible codons (represented as strings, without duplicates)
- 2. a matching sequence of amino acids (represented as strings, possibly duplicated)
- 3. a sequence of codons

* And that returns

- 1. the correct translation of the given codon sequence (3.) into amino acids

 Example:
>>> translate([' TTT',' TTC ," ATT',' GOG], ('Phe','Phe','lle', 'Ala'), ['ATT,'GCG,'ATT','GOG,' TTT',' ATT',' GOG])
[‘Ile', "Ala’, 'Ile', "Ala’, 'Phe', 'lle'’, 'Ala']

def transl ate(codons, am nos, seq):
dict = {}
for i in range(codons):
di ct[codons[i]] = am nos[i]
return [dict[el] for el in seq]

File 1/0

* We are going to use only line-oriented file I/O: we read from or write to a file line by line

Other important modules

 The random module: generating random numbers
« the re module: pattern matching with regular expressions

« matplotlib and numpy: plotting and scientific computing

The random module

Finger exercises

Write a function that takes in an alphabet as a string, a number n and returns a string of length n

formed by choosing n times a random character in the alphabet.

Example:

i nport random

#Sol ution 1:

def rndString(al pha, n):
reS = mmn
for i in range(n):

res += random choi ce(al pha)
return res

#Sol uti on 2:
def rndString(al pha, n):
res = [random choi ce(al pha) for i in range(n)]

return "".join(res)

Pattern matching with exact patterns

* when we look for exact patterns, there is no need to use the re module, strings already have
basic pattern matching capabilities

Advanced pattern matching: regular expressions

* The re module handles Perl-style regular expressions (same syntax as in Perl, Unix and many other
softwares)

* A good tutorial: https://docs.python.org/3.2/howto/regex.html

* We will focus on Python functions rather than on regular expression syntax

Advanced pattern matching: regular expressions

* regular expressions can represent also variable length matches

* with round brackets we can easily get subsets of the match

* more examples here: http://www.tutorialspoint.com/python/python_reg_expressions.htm

Problem: regular expressions

« Given a string 'text' and a character 'c', determine the lengths of all portions of the text where a
'c' appears

« Example:

Problem: file I/O, read fasta

» Read afile in fasta format. It's more or less like this:

>i d1 entry starts with an id and is
: : 22 - followed by some lines
o - id line starts always with '>'

i ne
i ne

line <+ there are 2 entries in this example

>gi | 31563518 ref | NP_852610. 1| mi crot ubul e-associ ated proteins 1A/1B light chain 3A isoformb [Hono sapi ens]

MKVRFFSSPCGKAAVDPADRCKEVQQ RDQHPSKI PVI | ERYKGEKQL PVLDKTKFLVPDHVNVSEL VKI
| RRRLQLNPTQAFFLLVNQHSMVSVSTPI ADI YEQEKDEDGFL YMVYASQETFGF

* input: a path to a fasta file

« output: a dictionary with the ids as keys and the sequences as values

>>> readFasta(' path/to/ nmy/fasta.fasta')
{*i1dl" :"lineline', "id2':'linelineline}

for real applications, use the Biopython module for python

Problem: file I/0O read bed

» Read afile in bed format. It's more or less like this:

- fields separated by tabs (character "\t')
- we will care about only the first 3 fields: chromosome, start and end

- discard lines starting with “#”

#di scard ne

chronosonel startl endl nanel scorel strandl ot her - st uf f -we-can-i gnorel i gnore. .
chr onosone2 start 2 end2 nane2 score2 strand2 ot her - st uf f - we- can-i gnor e2 i gnore. .
chr21 1000 5000 cloneA 960 + 1000 5000 O 2 567,488, 0, 3512
chr22 2000 6000 cloneB 900 - 2000 6000 0 2 433,399, 0, 3601

* input: a path to a bed file

« output: a list of tuples ('chr', start, end)

>>> readBed(' pat h/t o/ ny/ bed. bed")
[('chr21', 1000, 5000), ('chr22', 2000, 6000)]

for real applications, use the Biopython module for python

Problem: file I/O, write fasta

 Read a file in fasta format and a file in bed format, for each tuple (‘chr', start, end):

- slice the sequence with id 'chr' in the fasta file from position start to position end
- make a new id of the form: id-start-end

- write this new sequence to an output file in fasta format

chronosonel startl endl nanel scorel strandl ot her - st uf f-we-can-i gnorel i gnore. .
chr onosone2 start 2 end2 nane2 score2 st rand2 ot her - st uf f - we- can-i gnor e2 i gnore. .
chr21 1000 5000 cloneA 960 + 1000 5000 O 2 567,488, 0, 3512

chr22 2000 6000 cloneB 900 - 2000 6000 0 2 433,399, 0, 3601

e input:

- a path to a fasta file
- a path to a bed file
- an output path

« output: write in the given file (don't return anything)

>>> get Fasta(' path/to/ny/fasta.fasta', 'path/to/ny/bed.bed , 'output/path.fasta')

for real applications, use the “getfasta” utility in samtools: http://samtools.sourceforge.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43
	Slide 44
	Slide 45

